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1 Introduction
For decades, common sense has deemed the complex, intricate formulas created
by training machine learning algorithms to be uninterpretable. While it is un-
likely that nonlinear, non-monotonic, and even non-continuous machine-learned
response functions will ever be as directly interpretable as more traditional linear
models, great advances have been made in recent years [1]. H2O Driverless AI
incorporates a number of contemporary approaches to increase the transparency
and accountability of complex models and to enable users to debug models for
accuracy and fairness including:

• Decision tree surrogate models [2]

• Individual conditional expectation (ICE) plots [3]

• K local interpretable model-agnostic explanations (K -LIME)

• Leave-one-covariate-out (LOCO) local feature importance [4]

• Partial dependence plots [5]

• Random forest feature importance [5]

Before describing these techniques in detail, this booklet introduces fundamental
concepts in machine learning interpretability (MLI) and puts forward a useful
global versus local analysis motif. It also provides a brief, general justification
for MLI and quickly examines a major practical challenge for the field: the
multiplicity of good models [6]. It then presents the interpretability techniques
in Driverless AI, puts forward expectations for explanation consistency across
techniques, and finally, discusses several use cases.

1.1 About H2O Driverless AI
H2O Driverless AI is an artificial intelligence (AI) platform that automates
some of the most difficult data science and machine learning workflows such
as feature engineering, model validation, model tuning, model selection and
model deployment. It aims to achieve highest predictive accuracy, comparable
to expert data scientists, but in much shorter time thanks to end-to-end automa-
tion. Driverless AI also offers automatic visualizations and machine learning
interpretability (MLI). Especially in regulated industries, model transparency
and explanation are just as important as predictive performance.

Driverless AI runs on commodity hardware. It was also specifically designed
to take advantage of graphical processing units (GPUs), including multi-GPU
workstations and servers such as the NVIDIA DGX-1 for order-of-magnitude
faster training.

For more information, see https://www.h2o.ai/driverless-ai/.

https://www.h2o.ai/driverless-ai/
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1.2 Machine Learning Interpretability Taxonomy
In the context of machine learning models and results, interpretability has been
defined as the ability to explain or to present in understandable terms to a
human [7]. Of course, interpretability and explanations are subjective and
complicated subjects, and a previously defined taxonomy has proven useful for
characterizing interpretability in greater detail for various explanatory techniques
[1]. Following Ideas on Interpreting Machine Learning, presented approaches
will be described in technical terms but also in terms of response function
complexity, scope, application domain, understanding, and trust.

1.2.1 Response Function Complexity

The more complex a function, the more difficult it is to explain. Simple
functions can be used to explain more complex functions, and not all explanatory
techniques are a good match for all types of models. Hence, it’s convenient to
have a classification system for response function complexity.

Linear, monotonic functions: Response functions created by linear regression
algorithms are probably the most popular, accountable, and transparent class
of machine learning models. These models will be referred to here as linear
and monotonic. They are transparent because changing any given input feature
(or sometimes a combination or function of an input feature) changes the
response function output at a defined rate, in only one direction, and at a
magnitude represented by a readily available coefficient. Monotonicity also
enables accountability through intuitive, and even automatic, reasoning about
predictions. For instance, if a lender rejects a credit card application, they can
say exactly why because their probability of default model often assumes that
credit scores, account balances, and the length of credit history are linearly
and monotonically related to the ability to pay a credit card bill. When these
explanations are created automatically and listed in plain English, they are
typically called reason codes. In Driverless AI, linear and monotonic functions
are fit to very complex machine learning models to generate reason codes using
a technique known as K -LIME discussed in section 2.3.

Nonlinear, monotonic functions: Although most machine learned response
functions are nonlinear, some can be constrained to be monotonic with respect
to any given input feature. While there is no single coefficient that represents
the change in the response function induced by a change in a single input
feature, nonlinear and monotonic functions are fairly transparent because their
output always changes in one direction as a single input feature changes.
Nonlinear, monotonic response functions also enable accountability through the
generation of both reason codes and feature importance measures. Moreover,
nonlinear, monotonic response functions may even be suitable for use in regulated
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applications. In Driverless AI, users may soon be able to train nonlinear,
monotonic models for additional interpretability.

Nonlinear, non-monotonic functions: Most machine learning algorithms
create nonlinear, non-monotonic response functions. This class of functions are
typically the least transparent and accountable of the three classes of functions
discussed here. Their output can change in a positive or negative direction and
at a varying rate for any change in an input feature. Typically, the only standard
transparency measure these functions provide are global feature importance
measures. By default, Driverless AI trains nonlinear, non-monotonic functions.
Users may need to use a combination of techniques presented in sections 2.2 -
2.5 to interpret these extremely complex models.

1.2.2 Scope

Traditional linear models are globally interpretable because they exhibit the same
functional behavior throughout their entire domain and range. Machine learning
models learn local patterns in training data and represent these patterns through
complex behavior in learned response functions. Therefore, machine-learned
response functions may not be globally interpretable, or global interpretations
of machine-learned functions may be approximate. In many cases, local expla-
nations for complex functions may be more accurate or simply more desirable
due to their ability to describe single predictions.

Global Interpretability: Some of the presented techniques facilitate global
transparency in machine learning algorithms, their results, or the machine-learned
relationship between the inputs and the target feature. Global interpretations
help us understand the entire relationship modeled by the trained response
function, but global interpretations can be approximate or based on averages.

Local Interpretability: Local interpretations promote understanding of small
regions of the trained response function, such as clusters of input records and
their corresponding predictions, deciles of predictions and their corresponding
input observations, or even single predictions. Because small sections of the
response function are more likely to be linear, monotonic, or otherwise well-
behaved, local explanations can be more accurate than global explanations.

Global Versus Local Analysis Motif: Driverless AI provides both global
and local explanations for complex, nonlinear, non-monotonic machine learning
models. Reasoning about the accountability and trustworthiness of such complex
functions can be difficult, but comparing global versus local behavior is often a
productive starting point. A few examples of global versus local investigation
include:

• For observations with globally extreme predictions, determine if their local
explanations justify their extreme predictions or probabilities.
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• For observations with local explanations that differ drastically from global
explanations, determine if their local explanations are reasonable.

• For observations with globally median predictions or probabilities, analyze
whether their local behavior is similar to the model’s global behavior.

1.2.3 Application Domain

Another important way to classify interpretability techniques is to determine
whether they are model-agnostic (meaning they can be applied to different
types of machine learning algorithms) or model-specific (meaning techniques
that are only applicable for a single type or class of algorithms). In Driverless
AI, decision tree surrogate, ICE, K -LIME, and partial dependence are all model-
agnostic techniques, whereas LOCO and random forest feature importance are
model-specific techniques.

1.2.4 Understanding and Trust

Machine learning algorithms and the functions they create during training are
sophisticated, intricate, and opaque. Humans who would like to use these
models have basic, emotional needs to understand and trust them because we
rely on them for our livelihoods or because we need them to make important
decisions for us. The techniques in Driverless AI enhance understanding and
transparency by providing specific insights into the mechanisms and results
of the generated model and its predictions. The techniques described here
enhance trust, accountability, and fairness by enabling users to compare model
mechanisms and results to domain expertise or reasonable expectations and by
allowing users to observe or ensure the stability of the Driverless AI model.

1.3 Why Machine Learning for Interpretability?
Why consider machine learning approaches over linear models for explanatory
or inferential purposes? In general, linear models focus on understanding and
predicting average behavior, whereas machine-learned response functions can
often make accurate, but more difficult to explain, predictions for subtler aspects
of modeled phenomenon. In a sense, linear models are approximate but create
very exact explanations, whereas machine learning can train more exact models
but enables only approximate explanations. As illustrated in figures 1 and 2, it is
quite possible that an approximate explanation of an exact model may have as
much or more value and meaning than an exact interpretation of an approximate
model. In practice, this amounts to use cases such as more accurate financial
risk assessments or better medical diagnoses that retain explainability while
leveraging sophisticated machine learning approaches.
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Figure 1: An illustration of approximate model with exact explanations.

Figure 2: An illustration of an exact model with approximate explanations.
Here f(x) represents the true, unknown target function, which is approximated
by training a machine learning algorithm on the pictured data points.

Moreover, the use of machine learning techniques for inferential or predictive
purposes does not preclude using linear models for interpretation [8]. In fact, it
is usually a heartening sign of stable and trustworthy results when two different
predictive or inferential techniques produce similar results for the same problem.

1.4 The Multiplicity of Good Models
It is well understood that for the same set of input features and prediction
targets, complex machine learning algorithms can produce multiple accurate
models with very similar, but not the same, internal architectures [6]. This
alone is an obstacle to interpretation, but when using these types of algorithms
as interpretation tools or with interpretation tools, it is important to remember
that details of explanations can change across multiple accurate models. This
instability of explanations is a driving factor behind the presentation of multiple
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explanatory results in Driverless AI, enabling users to find explanatory information
that is consistent across multiple modeling and interpretation techniques.

1.5 Citation
To cite this booklet, use the following: Hall, P., Gill, N., Kurka, M., Phan,
W. (Jan 2024). Machine Learning Interpretability with H2O Driverless AI.
http://docs.h2o.ai.

2 Interpretability Techniques
2.1 Notation for Interpretability Techniques
Spaces. Input features come from a P -dimensional input space X (i.e. X ∈
RP ). Output responses are in a C-dimensional output space Y (i.e. Y ∈ RC).

Dataset. A dataset D consists of N tuples of observations:
[(x(0),y(0)), (x(1),y(1)), . . . , (x(N−1),y(N−1))],x(i) ∈ X ,y(i) ∈ Y.

The input data can be represented as X =
[
x(0),x(1), . . . ,x(N−1)]. With

each i-th observation denoted as an instance x(i) =
[
x
(i)
0 , x

(i)
1 , . . . , x

(i)
P−1

]
of a

feature set P = {X0, X1, . . . , XP−1}.

Learning Problem. We want to discover some unknown target function
f : X → Y from our data D. To do so, we explore a hypothesis set H and
use a given learning algorithm A to find a function g that we hope sufficiently

approximates our target function: D
A−→ g ≈ f . For a given observation (x,y),

we hope that g(x) = ŷ ≈ y and generalizes for unseen observations.

Explanation. To justify the predictions of g(x), we may resort to a number of
techniques. Some techniques will be global in scope and simply seek to generate
an interpretable approximation for g itself, such that h(x) ≈ g(x) = ŷ(x). Other
techniques will be more local in scope and attempt to rank local contributions
for each feature Xj ∈ P for some observation x(i); this can create reason codes
for g(x(i)). Local contributions are often estimated by evaluating the product

of a learned parameter βj in g with a corresponding observed feature x
(i)
j (i.e.

βjx
(i)
j ), or by seeking to remove the contribution of some Xj in a prediction,

g(x
(i)
(−j)).

2.2 Decision Tree Surrogate Model
A surrogate model is a data mining and engineering technique in which a
generally simpler model is used to explain another usually more complex model
or phenomenon. Given our learned function g and set of predictions, g(X) = Ŷ,

we can train a surrogate model h: X, Ŷ
Asurrogate−−−−−→ h, such that h(X) ≈ g(X)

http://docs.h2o.ai
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Figure 3: The learning problem. Adapted from Learning From Data. [9]

[2]. To preserve interpretability, the hypothesis set for h is often restricted to
linear models or decision trees.

For the purposes of interpretation in Driverless AI, g is considered to rep-
resent the entire pipeline, including both the feature transformations and model,
and the surrogate model is a decision tree (htree). Users must also note that
there exist few guarantees that htree accurately represents g. The RMSE for
htree is displayed for assessing the fit between htree and g.

htree is used to increase the transparency of g by displaying an approximate
flow chart of the decision making process of g as displayed in figure 4. htree
also shows the likely important features and the most important interactions in
g. htree can be used for visualizing, validating, and debugging g by comparing
the displayed decision-process, important features, and important interactions
to known standards, domain knowledge, and reasonable expectations.

Figure 4 displays the decision tree surrogate, htree, for an example probability
of default model, g, created with Driverless AI using the UCI repository credit
card default data [10]. The PAY 0 feature is likely the most important feature
in g due to its place in the initial split in htree and its second occurrence on
the third level of htree. First level interactions between PAY 0 and PAY 2
and between PAY 0 and PAY 5 are visible along with several second level
interactions. Following the decision path to the lowest probability leaf node in
htree (figure 4 lower left) shows that customers who pay their first (PAY 0) and
second (PAY 2) month bills on time are the least likely to default according
to htree. The thickness of the edges in this path indicate that this is a very
common decision path through htree. Following the decision path to the highest
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Figure 4: A summarization of a complex model’s decision process as represented
by a decision tree surrogate.

probability leaf node in htree (figure 4 second from right) shows that customers
who are late on their first (PAY 0) and fifth (PAY 5) month bills and who
pay less than 16520 in their sixth payment (PAY AMT6) are the most likely to
default according to htree. The thinness of the edges in this path indicate that
this is a relatively rare decision path through htree. When an observation of
data is selected using the K -LIME plot, discussed in section 2.3, htree can also
provide a degree of local interpretability. When a single observation, x(i), is
selected, its path through htree is highlighted. The path of x(i) through htree
can be helpful when analyzing the logic or validity of g(x(i)).

MLI Taxonomy: Decision Tree Surrogate Models

• Scope of Interpretability. (1) Generally, decision tree surrogates provide
global interpretability. (2) The attributes of a decision tree are used
to explain global attributes of a complex Driverless AI model such as
important features, interactions, and decision processes.

• Appropriate Response Function Complexity. Decision tree surrogate
models can create explanations for models of nearly any complexity.

• Understanding and Trust. (1) Decision tree surrogate models foster
understanding and transparency because they provide insight into the
internal mechanisms of complex models. (2) They enhance trust, ac-
countability, and fairness when their important features, interactions, and
decision paths are in line with human domain knowledge and reasonable
expectations.

• Application Domain. Decision tree surrogate models are model agnostic.
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2.3 K-LIME
K -LIME is a variant of the LIME technique proposed by Ribeiro et al [8].
With K -LIME, local generalized linear model (GLM) surrogates are used to
explain the predictions of complex response functions, and local regions are
defined by K clusters or user-defined segments instead of simulated, perturbed
observation samples. Currently in Driverless AI, local regions are segmented
with K-means clustering, separating the input training data into K disjoint
sets: {X0 ∪X1 ∪ . . .XK−1} = X.

For each cluster, a local GLM model hGLM,k is trained. K is chosen such that
predictions from all the local GLM models would maximize R2. This can be
summarized mathematically as follows:

(Xk, g(Xk))
AGLM−−−→ hGLM,k,∀k ∈ {0, . . . ,K − 1}

argmax
K

R2(Ŷ, hGLM,k(Xk)),∀k ∈ {0, . . . ,K − 1}

K -LIME also trains one global surrogate GLM hglobal on the entire input training
dataset and global model predictions g(X). If a given k-th cluster has less than
20 members, then hglobal is used as a linear surrogate instead of hGLM,k. Inter-
cepts, coefficients, R2 values, accuracy, and predictions from all the surrogate
K-LIME models (including the global surrogate) can be used to debug and
increase transparency in g.

In Driverless AI, global K -LIME information is available in the global ranked
predictions plot and the global section of the explanations dialog. The param-
eters of hglobal give an indication of overall linear feature importance and the
overall average direction in which an input feature influences g.

Figure 5 depicts a ranked predictions plot of g(X), hglobal(X), and actual target
values Y for the example probability of default model introduced in section 2.2.
For N input training data observations ordered by index i = {0, . . . , N − 1},
let’s sort the global model predictions g(X) from smallest to largest and define
an index ` = {0, . . . , N − 1} for this ordering. The x-axis of the ranked pre-
diction plot is `, and the y-axis is the correspond predictions values: g(x(`)),
hGLM,k(x(`)) (or hglobal(x

(`))), and y(`).

The global ranked predictions plot itself can be used as a rough diagnostic tool.
In figure 5 it can be seen that g accurately models the original target, giving
low probability predictions when most actual target values are 0 and giving high
probability values when most actual target values are 1. Figure 5 also indicates
that g behaves nonlinearly as the predictions of the global GLM surrogate,
hglobal(x

(`)), are quite far from g(x(`)) in some cases. All displayed behavior of
g is expected in the example use case. However, if this is not the case, users
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Figure 5: A ranked predictions plot of a global GLM surrogate model.

are encouraged to remove any potentially problematic features from the original
data and retrain g or to retrain g on the same original features but adjust the
settings in the new Driverless AI experiment to train a more acceptable model.

The coefficient parameters for each hGLM,k can be used to profile a local region
of g, to give an average description of the important features in the local region
and to understand the average direction in which an input feature affects g(x(`)).
In Driverless AI, this information is available in the ranked predictions plot for
each cluster as in figure 6 or in the cluster section of the explanations dialog.
While coefficient parameter values are useful, reason code values that provide
the user with a feature’s approximate local, linear contribution to g(x(`)) can
be generated from K -LIME. Reason codes are powerful tools for accountability
and fairness because they provide an explanation for each g(x(`)), enabling
the user to understand the approximate magnitude and direction of an input
feature’s local contribution for g(x(`)). In K -LIME, reason code values are
calculated by determining each coefficient-feature product. Reason code values
are also written into automatically generated reason codes, available in the local
reason code section of the explanations dialog (figure 7). A detailed example
of calculating reason codes using K -LIME and the credit card default data
introduced in section 2.2 is explained in an upcoming sub-section.

Like all LIME explanations based on GLMs, the local explanations are lin-
ear in nature and are offsets from the baseline prediction, or intercept, which
represents the average of the hGLM,k model residuals. Of course, linear ap-
proximations to complex non-linear response functions will not always create
suitable explanations, and users are urged to check the appropriate ranked
predictions plot, the local GLM R2 in the explanation dialog, and the accuracy
of the hGLM,k(x(`)) prediction to understand the validity of the K -LIME reason
codes. When hGLM,k(x(`)) accuracy for a given point or set of points is quite



Interpretability Techniques | 15

low, this can be an indication of extremely nonlinear behavior or the presence
of strong or high-degree interactions g. In cases where hGLM,k is not fitting g
well, nonlinear LOCO feature importance values, discussed in section 2.5, may
be a better explanatory tool for local behavior of g. As K -LIME reason codes
rely on the creation of K -means clusters, extremely wide input data or strong
correlation between input features may also degrade the quality of K -LIME
local explanations.

K-LIME Reason Codes

For hGLM,k and observation x(i):

g(x(i)) ≈ hGLM,k(x(i)) = β
[k]
0 +

P∑
p=1

β[k]
p x(i)p (1)

By disaggregating the K -LIME predictions into individual coefficient-feature

products, β
[k]
p x

(i)
p , the local, linear contribution of the feature can be determined.

This coefficient-feature product is referred to as a reason code value and is used
to create reason codes for each g(x(`)), as displayed in figures 6 and 7.

Figure 6: A ranked predictions plot of a local GLM surrogate model with
selected observation and reason code values displayed.

In this example, reason codes are generated by evaluating and disaggregating the
local GLM presented in figure 6. The ranked predictions plot for the local GLM
(cluster zero), hGLM,0, is highlighted for observation index i = 62 (not ranked
ordered index `) and displays a K -LIME prediction of 0.817 (i.e. hGLM,0(x(62)) =
0.817), a Driverless AI prediction of 0.740 (i.e. g(x(62)) = 0.740), and an
actual target value of 1 (i.e. y(62) = 1). The five largest positive and negative

reason code values, β
[0]
p x

(i)
p , are also displayed. Using the displayed reason code

values in figure 6 and the automatically generated reason codes in figure 7
and following equation 1, it can be seen that hGLM,0(x(62)) is an acceptable
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Figure 7: Automatically generated reason codes.

approximation to the g(x(62)): hGLM,0(x(62)) = 0.817 ≈ g(x(62)) = 0.740.
This indicates displayed reason code values are likely to be accurate.

A partial disaggregation of hGLM,0 into reason code values can also be derived
from the displayed information in figures 6 and 7:

hGLM,0(x(62)) = β
[0]
0 + β

[0]
PAY 0x

(62)
PAY 0

+ β
[0]
PAY 2x

(62)
PAY 2 + β

[0]
PAY 3x

(62)
PAY 3 + βPAY 5x

(62)
PAY 5

+ β
[0]
PAY 6x

(62)
PAY 6 + ...+ β

[0]
P x

(62)
P

(2)

hGLM,0(x(62)) = 0.418 + 0.251

+ 0.056 + 0.041 + 0.037

+ 0.019 + ...+ β
[0]
P x

(62)
P

(3)

where 0.418 is the intercept or baseline of hGLM,0 in figure 7, and the remaining
numeric terms of equation 3 are taken from the reason code values in figure 6.
Other reason codes, whether large enough to be displayed by default or not,
follow the same logic.

All of the largest reason code values in the example are positive, meaning
they all contribute to the customer’s high probability of default. The largest

contributor to the customer’s probability of default is β
[0]
PAY 0x

(62)
PAY 0, or in plainer

terms, PAY 0 = 2 months delayed increases the customer’s probability
of default by approximately 0.25 or by 25%. This is the most important reason
code in support the g(x(i)) probability for the customer defaulting next month.
For this customer, according to K -LIME, the five most important reason codes
contributing to their high g(x(i)) probability of default in ranked order are:
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• PAY 0 = 2 months delayed

• PAY 3 = 2 months delayed

• PAY 5 = 2 months delayed

• PAY 2 = 2 months delayed

• PAY 6 = 2 months delayed

Using the global versus local analysis motif to reason about the example analysis
results thus far, it could be seen as a sign of explanatory stability that several
globally important features identified by the decision tree surrogate in section
2.2 are also appearing as locally important in K -LIME.

MLI Taxonomy: K-LIME

• Scope of Interpretability. K -LIME provides several different scales
of interpretability: (1) coefficients of the global GLM surrogate provide
information about global, average trends, (2) coefficients of in-segment
GLM surrogates display average trends in local regions, and (3) when
evaluated for specific in-segment observations, K -LIME provides reason
codes on a per-observation basis.

• Appropriate Response Function Complexity. (1) K -LIME can create
explanations for machine learning models of high complexity. (2) K -
LIME accuracy can decrease when the Driverless AI model becomes too
nonlinear.

• Understanding and Trust. (1) K -LIME increases transparency by
revealing important input features and their linear trends. (2) K -LIME
enhances accountability by creating explanations for each observation in
a dataset. (3) K -LIME bolsters trust and fairness when the important
features and their linear trends around specific records conform to human
domain knowledge and reasonable expectations.

• Application Domain. K -LIME is model agnostic.

2.4 Partial Dependence and Individual Condi-
tional Expectation

2.4.1 One-Dimensional Partial Dependence

For a P -dimensional feature space, we can consider a single feature Xj ∈ P
and its complement set X(−j) (i.e Xj ∪ X(−j) = P). The one-dimensional
partial dependence of a function g on Xj is the marginal expectation:

PD(Xj , g) = EX(−j)

[
g(Xj , X(−j))

]
(4)
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Recall that the marginal expectation over X(−j) sums over the values of X(−j).
Now we can explicitly write one-dimensional partial dependence as:

PD(Xj , g) = EX(−j)

[
g(Xj , X(−j))

]
=

1

N

N−1∑
i=0

g(Xj ,x
(i)
(−j))

(5)

Equation 5 essentially states that the partial dependence of a given feature Xj

is the average of the response function g, setting the given feature Xj = xj

and using all other existing feature vectors of the complement set x
(i)
(−j) as they

exist in the dataset.

Partial dependence plots show the partial dependence as a function of specific
values of our feature subset Xj . The plots show how machine-learned response
functions change based on the values of an input feature of interest, while
taking nonlinearity into consideration and averaging out the effects of all other
input features. Partial dependence plots enable increased transparency in g and
enable the ability to validate and debug g by comparing a feature’s average
predictions across its domain to known standards and reasonable expectations.

Figure 8 displays the one-dimensional partial dependence and ICE (see section
2.4.2) for a feature in the example credit card default data Xj = LIMIT BAL
for balance limits of xj ∈ {10, 000, 114, 200, 218, 400, ..., 947, 900}. The par-
tial dependence (bottom Figure 8) gradually decreases for increasing values
of LIMIT BAL, indicating that the average predicted probability of default
decreases as customer balance limits increase. The grey bands above and
below the partial dependence curve are the standard deviations of the individual
predictions, g(x(i)), across the domain of Xj . Wide standard deviation bands
can indicate the average behavior of g (i.e., its partial dependence) is not
highly representative of individual g(x(i)), which is often attributable to strong
interactions between Xj and some X(−j). As the displayed curve in figure 8 is
aligned with well-known business practices in credit lending, and its standard
deviation bands are relatively narrow, this result should bolster trust in g.

2.4.2 Individual Conditional Expectation

Individual conditional expectation (ICE) plots, a newer and less well-known
adaptation of partial dependence plots, can be used to create more localized
explanations for a single observation of data using the same basic ideas as
partial dependence plots. ICE is also a type of nonlinear sensitivity analysis
in which the model predictions for a single observation are measured while a
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Figure 8: Partial dependence and ICE.

feature of interest is varied over its domain.

Technically, ICE is a disaggregated partial dependence of the N responses

g(Xj ,x
(i)
(−j)), i ∈ {1, . . . , N} (for a single feature Xj), instead of averaging the

response across all observations of the training set [3]. An ICE plot for a single

observation x(i) is created by plotting g(Xj = xj,q,x
(i)
(−j)) versus Xj = xj,q,

(q ∈ {1, 2, . . . }) while fixing x
(i)
(−j).

ICE plots enable a user to assess the Driverless AI model’s prediction for
an individual observation of data, g(x(i)):

1. Is it outside one standard deviation from the average model behavior
represented by partial dependence?

2. Is the treatment of a specific observation valid in comparison to average
model behavior, known standards, domain knowledge, and reasonable
expectations?

3. How will the observation behave in hypothetical situations where one
feature, Xj , in a selected observation is varied across its domain?

In Figure 8, the selected observation of interest and feature of interest are x(62)

and XLIMIT BAL, respectively. The ICE curve’s values, g(XLIMIT BAL,x
(62)
(−LIMIT BAL)),

are much larger than PD(XLIMIT BAL, g), clearly outside of the grey standard
deviation regions. This result is parsimonious with previous findings, as the
customer represented by x(62) was shown to have a high probability of default
due to late payments in section 2.3. Figure 8 also indicates that the prediction
behavior for the customer represented by x(62) is somewhat rare in the training
data, and that no matter what balance limit the customer is assigned, they will
still be very likely to default according the Driverless AI model.
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MLI Taxonomy: Partial Dependence and ICE

• Scope of Interpretability. (1) Partial dependence is a global inter-
pretability measure. (2) ICE is a local interpretability measure.

• Appropriate Response Function Complexity. Partial dependence and
ICE can be used to explain response functions of nearly any complexity.

• Understanding and Trust. (1) Partial dependence and ICE increase
understanding and transparency by describing the nonlinear behavior of
complex response functions. (2) Partial dependence and ICE enhance
trust, accountability, and fairness by enabling the comparison of described
nonlinear behavior to human domain knowledge and reasonable expecta-
tions. (3) ICE, as a type of sensitivity analysis, can also engender trust
when model behavior on simulated data is acceptable.

• Application Domain. Partial dependence and ICE are model-agnostic.

2.5 Feature Importance
Feature importance measures the effect that a feature has on the predictions
of a model. Global feature importance measures the overall impact of an
input feature on the Driverless AI model predictions while taking nonlinearity
and interactions into consideration. Global feature importance values give an
indication of the magnitude of a feature’s contribution to model predictions
for all observations. Unlike regression parameters, they are often unsigned and
typically not directly related to the numerical predictions of the model. Local
feature importance describes how the combination of the learned model rules or
parameters and an individual observation’s attributes affect a model’s prediction
for that observation while taking nonlinearity and interactions into effect.

Figure 9: Global random forest and local LOCO feature importance.



Interpretability Techniques | 21

2.5.1 Random Forest Feature Importance

Currently in Driverless AI, a random forest surrogate model hRF consisting of
B decision trees htree,b is trained on the predictions of the Driverless AI model.

hRF(x(i)) =
1

B

B∑
b=1

htree,b

(
x(i); Θb

)
, (6)

Here Θb is the set of splitting rules for each tree htree,b. As explained in [5],
at each split in each tree htree,b, the improvement in the split-criterion is the
importance measure attributed to the splitting feature. The importance measure
is accumulated over all trees seperately for each feature. The aggregated feature
importance values are then scaled between 0 and 1, such that the most important
feature has an importance value of 1.

Figure 9 displays the global and local feature importance values for the credit
card default data, sorted in descending order from the globally most important
feature to the globally least important feature. Local feature importance values
are displayed under the global feature importance value for each feature. In
figure 9, PAY 0, PAY 2, LIMIT BAL, PAY 3, and BILL AMT1 are the top
5 most important features globally. As expected, this result is well aligned
with the results of the decision tree surrogate model discussed in section 2.2.
Taking the results of two interpretability techniques into consideration, it is
extremely likely that timing of the customer’s first 3 payments, PAY 0, PAY 2,
and PAY 3, are the most important global features for any g(x(i)) prediction.

2.5.2 LOCO Feature Importance

Leave-one-covariate-out (LOCO) provides a mechanism for calculating feature
importance values for any model g on a per-observation basis x(i) by subtracting
the model’s prediction for an observation of data, g(x(i)), from the model’s
prediction for that observation of data without an input feature Xj of interest,

g(x
(i)
(−j))− g(x

(i)) [4]. LOCO is a model-agnostic idea, and g(x
(i)
(−j)) can be

calculated in various ways. However, in Driverless AI, g(x
(i)
(−j)) is currently

calculated using a model-specific technique in which the contribution Xj to
g(x(i)) is approximated by using random forest surrogate model hRF. Specifically,

the prediction contribution of any rule θ
[b]
r ∈ Θb containing Xj for tree htree,b is

subtracted from the original prediction htree,b
(
x(i); Θb

)
. For the random forest:

g(x
(i)
(−j)) = hRF(x

(i)
(−j)) =

1

B

B∑
b=1

htree,b

(
x(i); Θb,(−j)

)
, (7)
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where Θb,(−j) is the set of splitting rules for each tree htree,b with the con-
tributions of all rules involving feature Xj removed. Although LOCO feature
importance values can be signed quantities, they are scaled between 0 and 1
such that the most important feature for an observation of data, x(i), has an
importance value of 1 for direct global versus local comparison to random forest
feature importance in Driverless AI.

In figure 9, LOCO local feature importance values are displayed under global
random forest feature importance values for each Xj , and the global and local
feature importance for PAY 2 are highlighted for x(62) in the credit card default
data. From the nonlinear LOCO perspective, the most important local features
for g(x(62)) are PAY 0, PAY 5, PAY 6, PAY 2, and BILL AMT1. Because
there is good alignment between the linear K -LIME reason codes and LOCO
local feature importance values, it is extremely likely that PAY 0, PAY 2, PAY 5,
and PAY 6 are the most locally important features contributing to g(x(62)).

MLI Taxonomy: Fearture Importance

• Scope of Interpretability. (1) Random forest feature importance is a
global interpretability measure. (2) LOCO feature importance is a local
interpretability measure.

• Appropriate Response Function Complexity. Both random forest and
LOCO feature importance can be used to explain tree-based response
functions of nearly any complexity.

• Understanding and Trust. (1) Random forest feature importance in-
creases transparency by reporting and ranking influential input features.
(2) LOCO feature importance enhances accountability by creating ex-
planations for each model prediction. (3) Both global and local feature
importance enhance trust and fairness when reported values conform to
human domain knowledge and reasonable expectations.

• Application Domain. (1) Random forest feature importance is a model-
specific explanatory technique. (2) LOCO is a model-agnostic concept,
but its implementation in Driverless AI is model specific.

2.6 Expectations for Consistency Between Ex-
planatory Techniques

Because machine learning models have intrinsically high variance, it is rec-
ommended that users look for explanatory themes that occur across multiple
explanatory techniques and that are parsimonious with reasonable expectations
or human domain knowledge. However, when looking for similarities between
decision tree surrogates, K -LIME, partial dependence, ICE, sensitivity analysis,
and feature importance, note that each technique is providing a different per-



Interpretability Techniques | 23

spective into a complex, nonlinear, non-monotonic, and even noncontinuous
response function.

The decision tree surrogate is a global, nonlinear description of the Driverless
AI model behavior. Features that appear in the tree should have a direct
relationship with features that appear in the global feature importance plot.
For more linear Driverless AI models, features that appear in the decision tree
surrogate model may also have large coefficients in the global K -LIME model.

K -LIME explanations are linear, do not consider interactions, and represent
offsets from the local GLM intercept. LOCO importance values are nonlinear,
do consider interactions, and do not explicitly consider a linear intercept or
offset. K -LIME explanations and LOCO importance values are not expected to
have a direct relationship but should align roughly as both are measures of a
feature’s local contribution on a model’s predictions, especially in more linear
regions of the Driverless AI model’s learned response function.

ICE has a complex relationship with LOCO feature importance values. Com-
paring ICE to LOCO can only be done at the value of the selected feature
that actually appears in the selected observation of the training data. When
comparing ICE to LOCO, the total value of the prediction for the observation,
the value of the feature in the selected observation, and the distance of the ICE
value from the average prediction for the selected feature at the value in the
selected observation must all be considered.

Partial dependence takes into consideration nonlinear, but average, behavior of
the complex Driverless AI model. Strong interactions between input features
can cause ICE values to diverge from partial dependence values. ICE curves
that are outside the standard deviation of partial dependence would be expected
to fall into less populated decision paths of the decision tree surrogate; ICE
curves that lie within the standard deviation of partial dependence would be
expected to belong to more common decision paths.

2.7 Correcting Unreasonable Models
Once users have gained an approximate understanding of the Driverless AI
response function using the tools described in sections 2.2 - 2.5, it is crucial
to evaluate whether the displayed global and local explanations are reasonable.
Explanations should inspire trust and confidence in the Driverless AI model. If
this is not the case, users are encouraged to remove potentially problematic
features from the original data and retrain the Driverless AI model. Users may
also retrain the model on the same original features but change the settings in
the Driverless AI experiment to create a more reasonable model.
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3 Use Cases
3.1 Use Case: Titanic Survival Model Explana-

tions
We have trained a Driverless AI model to predict survival on the well-known
Titanic dataset. The goal of this use case is to explain and validate the
mechanisms and predictions of the Driverless AI model using the techniques
presented in sections 2.2 - 2.5.

3.1.1 Data

The Titanic dataset is available from: https://s3.amazonaws.com/
h2o-public-test-data/smalldata/gbm test/titanic.csv.

The data consist of passengers on the Titanic. The prediction target is whether
or not a passenger survived (survive). The dataset contains 1,309 passengers,
of which 500 survived. Several features were removed from the dataset including
name, boat, body, ticket, and home.dest due to data leakage, as well as
ambiguities that can hinder interpreting the Driverless AI model. The remaining
input features are summarized in tables 1 and 2.

Table 1: Summary of numeric input features in the Titanic dataset.

Statistic N Mean St. Dev. Min Max

age 1,309 29.88 14.41 0.17 80
sibsp 1,309 0.50 1.04 0 8
parch 1,309 0.39 0.87 0 9
fare 1,309 33.30 51.76 0 512.33

Table 2: Summary of categorical input features in the Titanic dataset.
pclass sex cabin embarked

1 1:323 female:466 :1014 : 2
2 2:277 male :843 C23 C25 C27 : 6 C:270
3 3:709 B57 B59 B63 B66: 5 Q:123
4 G6 : 5 S:914
5 B96 B98 : 4
6 C22 C26 : 4
7 (Other) : 271

https://s3.amazonaws.com/h2o-public-test-data/smalldata/gbm_test/titanic.csv
https://s3.amazonaws.com/h2o-public-test-data/smalldata/gbm_test/titanic.csv
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Sex, pclass, and age are expected to be globally important in the Driverless
AI model. The summaries show that woman are much more likely to survive
than men (73% vs 19%) and that first class passengers and children have a
survival rate of over 50% compared with the overall survival rate of 38%.

3.1.2 K-LIME

Figure 10: K -LIME plot for the Titanic survival model.

The K -LIME plot in figure 10 shows the Driverless AI model predictions as a
continuous curve starting on the lower left and ending in the upper right. The
K -LIME model predictions are the discontinuous points around the Driverless
AI model predictions. Considering the global explanations in figure 11, we can
also see that the K -LIME predictions generally follow the Driverless AI model’s
predictions, and the global K -LIME model explains about 75% of the variability
in the Driverless AI model predictions, indicating that global explanations are
approximate, but reasonably so.

Figure 11: Global explanations for the Titanic survival model.

Figure 11 presents global explanations for the Driverless AI model. The ex-
planations provide a linear understanding of input features and the outcome,
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survive, in plain English. As expected, they indicate that sex and pclass
make the largest global, linear contributions to the Driverless AI model.

3.1.3 Feature Importance

Figure 12: Feature importance for the Titanic survival model.

The features with the greatest importance values in the Driverless AI model
are sex, cabin, and age as displayed in figure 12. Class is not ranked as
a top feature, and instead cabin is assigned a high importance value. cabin
denotes the cabin location of the passenger. The first letter of the cabin tells
us the deck level of the passenger. For example, all cabins that start with A
correspond to cabins in the upper promenade deck. Further data exploration
indicates that first class passengers stayed in the top deck cabins, above second
class passengers in the middle decks, and above third class passengers at the
lowest deck levels. This correlation between cabin and pclass may explain
why cabin is located higher than pclass in the global feature importance
plot, especially if cabin contains similar but more granular information than
pclass.

The feature importance figure matches hypotheses created during data explo-
ration to a large extent. Feature importance, however, does not explain the
relationship between a feature and the Driverless AI model’s predictions. This
is where we can examine partial dependence plots.

3.1.4 Partial Dependence Plots

The partial dependence plots show how different values of a feature affect
the average prediction of the Driverless AI model. Figure 13 displays the
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partial dependence plot for sex and indicates that predicted survival increases
dramatically for female passengers.

Figure 13: Partial dependence plot for sex for the Titanic survival model.

Figure 14 displays the partial dependence plot for age. The Driverless AI model
predicts high probabilities for survival for passengers younger than 17. After the
age of 17, increases in age do not result in large changes in the Driverless AI
model’s average predictions. This result is in agreement with previous findings
in which children have a higher probability of survival.

Figure 14: Partial dependence plot for age for the Titanic survival model.

3.1.5 Decision Tree Surrogate

In figure 15, the RMSE of 0.164 indicates the decision tree surrogate is able
to approximate the Driverless AI model well. By following the decision paths
down the decision tree surrogate, we can begin to see details in the Driverless
AI model’s decision processes. For example, it is not totally accurate to assume
that all women will survive. Women in third class who paid a small amount for
their fare actually have a lower prediction than the overall average survival rate.
Likewise, there are some groups of men with high average predictions. Men
with a cabin beginning in A (the top deck of the ship) have an average survival
prediction greater than 75%.
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Figure 15: Decision tree surrogate for the Titanic survival model.

3.1.6 Local Explanations

Following the global versus local analysis motif, local contributions to model
predictions for a single passenger are also analyzed and compared to global
explanations and reasonable expectations. Figure 16 shows the local dashboard
after selecting a single passenger in the K -LIME plot. For this example use
case, a female with a first class ticket is selected.

Figure 16: Local interpretability dashboard for a single female passenger.

In figure 16, the path of the selected individual through the far right decision
path in the decision tree surrogate model is highlighted. This selected passenger
falls into the leaf node with the greatest average model prediction for survival,
which is nicely aligned with the Driverless AI model’s predicted probability for
survival of 0.89.
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Figure 17: Local feature importance for a single female passenger.

When investigating observations locally, the feature importance has two bars
per feature. The upper bar represents the global feature importance and the
lower bar represents the local feature importance. In figure 17, the two features
sex and cabin are the most important features both globally and locally for
the selected individual.

Figure 18: Partial dependence and ICE for a single female passenger.

The local dashboard also overlays ICE curves onto partial dependence plots.
In figure 18, the lower points for partial dependence remain unchanged from
figure 13 and show the average model prediction by sex. The upper points
indicate how the selected passenger’s prediction would change if their value
for sex changed, and figure 18 indicates that her prediction for survival would
decrease dramatically if her value for sex changed to male. Figure 18 also
shows that the selected passenger is assigned a higher-than-average survival
rate regardless of sex. This result is most likely due to the selected individual
being a first class passenger.



30 | Use Cases

Figure 19: Local reason codes for a single female passenger.

The local English language explanations, or reason codes, from the K -LIME
model in figure 19 parsimoniously indicate that the Driverless AI model’s
prediction increased for the selected passenger due to her value for sex and
fare and decreased due to her relatively old age. For the selected passenger,
global and local explanations are reasonable when compared to one-another
and to logical expectations. In practice, explanations for several different types
of passengers, and especially for outliers and other anomalous observations,
should be investigated and analyzed to enhance understanding and trust in the
Driverless AI model.

3.2 Use Case: King County Housing Model Ex-
planations

We have trained a Driverless AI model to predict housing prices in King County,
Washington. The goal of this use case is to explain and validate the mechanisms
and predictions of the trained Driverless AI model using the techniques presented
in sections 2.2 - 2.5.

3.2.1 Data

The housing prices dataset is available from: https://www.kaggle.com/
harlfoxem/housesalesprediction.

This dataset contains house sale prices for King County, Washington, which
includes Seattle. It includes homes sold between May 2014 and May 2015.
The prediction target is housing price, price. Several features were removed
from the analysis including ID, date, latitude, longitude, zipcode,
and several other ambiguous or multicollinear features that could hinder inter-

https://www.kaggle.com/harlfoxem/housesalesprediction
https://www.kaggle.com/harlfoxem/housesalesprediction
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pretability. The remaining input features are summarized in tables 3 and 4. The
outcome price is right-skewed, requiring a log transform before training a
Driverless AI model.

Table 3: Summary of numeric input features in the housing prices dataset.

Statistic N Mean St. Dev. Min Max

price 21,613 540,088.100 367,127.200 75,000 7,700,000
sqft living 21,613 2,079.900 918.441 290 13,540
sqft lot 21,613 15,106.970 41,420.510 520 1,651,359
sqft above 21,613 1,788.391 828.091 290 9,410
sqft basement 21,613 291.509 442.575 0 4,820
yr built 21,613 1,971.005 29.373 1,900 2,015
yr renovated 21,613 84.402 401.679 0 2,015

Table 4: Summary of categorical input features in the housing prices dataset.
bathrooms bedrooms floors waterfront view condition

1 2.5 :5380 3 :9824 1.0:10680 0:21450 0:19489 1: 30
2 1.0 :3852 4 :6882 1.5: 1910 1: 163 1: 332 2: 172
3 1.75 :3048 2 :2760 2.0: 8241 2: 963 3:14031
4 2.25 :2047 5 :1601 2.5: 161 3: 510 4: 5679
5 2.0 :1930 6 : 272 3.0: 613 4: 319 5: 1701
6 1.5 :1446 1 : 199 3.5: 8
7 (Other):3910 (Other): 75

Living square footage, sqft living, is linearly associated with increases in
price with a correlation coefficient of greater than 0.6. There is also a linearly
increasing trend between the number of bathrooms and the home price.
The more bathrooms, the higher the home price. Hence, inputs related
to square footage and the number of bathrooms are expected to be globally
important in the Driverless AI model.

3.2.2 K-LIME

The K -LIME plot in figure 20 shows the Driverless AI model predictions as a
continuous curve starting at the middle left and ending in the upper right. The
K -LIME model predictions are the discontinuous points around the Driverless
AI model predictions. In figure 20, K -LIME accurately traces the original target,
and according to figure 21, K -LIME explains 92 percent of the variability in
the Driverless AI model predictions. The close fit of K -LIME to the Driverless
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Figure 20: K -LIME plot for the King County home prices model.

AI model indicates that the global explanations in figure 21 very likely to be
insightful and trustworthy.

Figure 21: Global explantions for the King County home prices model.

The explanations provide a linear understanding of input features and the
outcome, price. (Note, the K -LIME explanations are in the log() space for
price.) For example:

When bathrooms increase by 1 unit, this is associated with
price K -LIME predictions increase of 0.076

This particular explanation falls in line with findings from data exploration in
section 3.2.1 and with reasonable expectations. The more bathrooms a house
has, the higher the price.

Another interesting global explanation relates to the year when a house was
built.
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When yr built increases by 1 unit, this is associated with price
K -LIME predictions decrease of 0.004

This explanation indicates newer homes will have a lower price than older
homes. We will explore this, perhaps counterintuitive, finding further with a
partial dependence plot in section 3.2.4 and a decision tree surrogate model in
section 3.2.5.

3.2.3 Feature Importance

Figure 22: Feature Importance for the King County home prices model.

According to figure 22, the features with the largest global importance in
the Driverless AI model are sqft living, sqft above, yr built, and
bathrooms. The high importance of sqft living (total square footage of
the home), sqft above (total square footage minus square footage of the
basement), and bathrooms follow trends observed during data exploration
and are parsimonious with reasonable expectations. yr built is also playing a
large role in the predictions for price, beating out bathrooms just slightly.

3.2.4 Partial Dependence Plots

Partial dependence plots show how different values of a feature affect the
average prediction for price in the Driverless AI model. Figure 23 indicates
that as sqft living increases, the average prediction of the Driverless AI
model also increases.
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Figure 23: Partial dependence plot of sqft living for the King County
home prices model.

In figure 24, the partial dependence for bathrooms can be seen to increase
slightly as the total number of bathrooms increases. Figures 23 and 24 are
aligned with findings from data exploration and reasonable expectations.

Figure 24: Partial dependence plot of bathrooms for the King County home
prices model.

Figure 25 displays the partial dependence for yr built, where Driverless AI
model predictions for price decrease as the age of the house decreases. Figure
25 confirms the global K -LIME explanation for yr built discussed in section
3.2.2. A relationship of this nature could indicate something unique about King
County, Washington, but requires domain knowledge to decide whether the
finding is valid or calls the Driverless AI model’s behavior into question.

Figure 25: Partial dependence plot of yr built for the King County home
prices model.



Use Cases | 35

3.2.5 Decision Tree Surrogate

Figure 26: Decision tree surrogate for the King County home prices model.

In figure 26, the RMSE of 0.181 indicates the decision tree surrogate is able
to approximate the Driverless AI model well. By following the decision paths
down the decision tree surrogate, we can begin to see details in the Driverless
AI model’s decision processes. sqft living is found in the first split and in
several other splits of the decision tree surrogate, signifying its overall importance
in the Driverless AI model and in agreement with several previous findings.

Moving down the left side of the decision tree surrogate, yr built interacts
with sqft living. If sqft living is greater than or equal to 1,526 square
feet and the home was built before 1944, then the price is predicted to be
log(13.214), which is about $547,983, but if the home was built after 1944,
then the price is predicted to be log(12.946), which is about $419,156.
This interaction, which is clearly expressed in the decision tree surrogate model,
provides more insight into why older homes are predicted to cost more as
discussed in sections 3.2.2 and 3.2.4.

3.2.6 Local Explanations

Following the global versus local analysis motif, local contributions to model
predictions for a single home are also analyzed and compared to global explana-
tions and reasonable expectations. Figure 27 shows the local dashboard after
selecting a single home in the K -LIME plot. For this example use case, the
least expensive home is selected.

Figure 28 shows the feature importance plot with two bars per feature. The top
bar represents the global feature importance and the bottom bar represents the
local feature importance. Locally for the least expensive home, bathrooms
is the most important feature followed by sqft living, sqft above, and
yr built. What might cause this difference between global and local feature
importance values? It turns out the least expensive home has zero bathrooms!
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Figure 27: Local interpretability dashboard for the least expensive home.

Figure 28: Local feature importance for the least expensive home.

The local dashboard also overlays ICE onto the partial dependence plot, as
seen in figure 29. The upper partial dependence curve in figure 29 remains
unchanged from figure 24 and shows the average Driverless AI model prediction
by the number of bathrooms. The lower ICE curve in figure 29 indicates how
the least expensive home’s price prediction would change if its number of
bathrooms changed, following the global trend of more bathrooms leading to
higher predictions for price.

The local English language explanations, i.e. reason codes, from K -LIME in
figure 30 show that the Driverless AI model’s prediction increased for this home
due to its relatively high sqft living and decreased due to its relatively
recent yr built, which is aligned with global explanations. Note that the
number of bathrooms is not considered in K -LIME reason codes because
this home does not have any bathrooms. Since this home’s local value for
bathrooms is zero, bathrooms cannot contribute to the K -LIME model.
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Figure 29: Partial dependence and ICE for the least expensive home.

Figure 30: Reason codes for the least expensive home.

Continuing with the global versus local analysis, explanations for the most expen-
sive home are considered briefly. In figure 31, the two features sqft living
and sqft above are the most important features locally along with bathrooms
and yr built. The data indicate the most expensive home has eight bathrooms,
12050 square feet of total square footage in which 8570 is allocated for living
space (not including the basement), and the home was built in 1910. Following
global explanations and reasonable expectations, this most expensive home has
characteristics that justify it’s high prediction for price.

Figure 31: Local feature importance for the most expensive home.

For the selected homes, global and local explanations are reasonable when com-
pared to one-another and to logical expectations. In practice, explanations for
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several different types of homes, and especially for outliers and other anomalous
observations, should be investigated and analyzed to enhance understanding
and trust in the Driverless AI model.
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