
Machine Learning with Sparkling Water: H2O + Spark

Michal Malohlava Nidhi Mehta

Edited by: Brandon Hill & Vinod Iyengar

http://h2o.ai/resources

August 2017: Second Edition

http://h2o.ai/resources

Machine Learning with Sparkling Water: H2O + Spark
by Michal Malohlava & Nidhi Mehta
Edited by: Brandon Hill & Vinod Iyengar

Published by H2O.ai, Inc.
2307 Leghorn St.
Mountain View, CA 94043

© 2017H2O.ai, Inc. All Rights Reserved.

August 2017: Second Edition

Photos by ©H2O.ai, Inc.

While every precaution has been taken in the
preparation of this book, the publisher and
authors assume no responsibility for errors or
omissions, or for damages resulting from the
use of the information contained herein.

Printed in the United States of America.

CONTENTS | 3

Contents

1 What is H2O? 5

2 Sparkling Water Introduction 6
2.1 Typical Use Cases . 7

2.1.1 Model Building . 7
2.1.2 Data Munging . 7
2.1.3 Stream Processing . 8

2.2 Features . 8
2.3 Supported Data Sources . 9
2.4 Supported Data Formats . 9
2.5 Supported Spark Execution Environments 10

3 Design 11
3.1 Data Sharing between Spark and H2O 11
3.2 Provided Primitives . 12

4 Programming API 15
4.1 Starting H2O Services . 15
4.2 Memory Allocation . 15
4.3 Converting H2OFrame into RDD[T] 16
4.4 Converting H2OFrame into DataFrame 16
4.5 Converting RDD[T] into H2OFrame 17
4.6 Converting DataFrame into H2OFrame 18
4.7 Creating H2OFrame from an Existing Key 18
4.8 Type Map Between H2OFrame and Spark DataFrame Types . 18
4.9 Calling H2O Algorithms . 19
4.10 Using Spark Data Sources with H2OFrame 19

4.10.1 Reading from H2OFrame 20
4.10.2 Saving to H2OFrame 20
4.10.3 Loading and Saving Options 20
4.10.4 Specifying Saving Mode 21

5 Deployment 22
5.1 Referencing Sparkling Water 22

5.1.1 Using Fatjar . 22
5.1.2 Using Spark Package 23

5.2 Target Deployment Environments 24
5.2.1 Local cluster . 24
5.2.2 On Standalone Cluster 24
5.2.3 On YARN Cluster . 25

4 | CONTENTS

5.3 Sparkling Water Configuration Properties 26

6 Building a Standalone Application 28

7 What is PySparkling Water? 30
7.1 Getting Started: . 30
7.2 Using Spark Data Sources . 32

7.2.1 Reading from H2OFrame 32
7.2.2 Saving to H2OFrame 32
7.2.3 Loading and Saving Options 32

8 A Use Case Example 34
8.1 Predicting Arrival Delay in Minutes - Regression 34

9 FAQ 38

10 References 40

What is H2O? | 5

1 What is H2O?

H2O.ai is focused on bringing AI to businesses through software. Its flagship
product is H2O, the leading open source platform that makes it easy for
financial services, insurance companies, and healthcare companies to deploy AI
and deep learning to solve complex problems. More than 9,000 organizations and
80,000+ data scientists depend on H2O for critical applications like predictive
maintenance and operational intelligence. The company – which was recently
named to the CB Insights AI 100 – is used by 169 Fortune 500 enterprises,
including 8 of the world’s 10 largest banks, 7 of the 10 largest insurance
companies, and 4 of the top 10 healthcare companies. Notable customers
include Capital One, Progressive Insurance, Transamerica, Comcast, Nielsen
Catalina Solutions, Macy’s, Walgreens, and Kaiser Permanente.

Using in-memory compression, H2O handles billions of data rows in-memory,
even with a small cluster. To make it easier for non-engineers to create complete
analytic workflows, H2O’s platform includes interfaces for R, Python, Scala,
Java, JSON, and CoffeeScript/JavaScript, as well as a built-in web interface,
Flow. H2O is designed to run in standalone mode, on Hadoop, or within a
Spark Cluster, and typically deploys within minutes.

H2O includes many common machine learning algorithms, such as generalized
linear modeling (linear regression, logistic regression, etc.), Näıve Bayes, principal
components analysis, k-means clustering, and word2vec. H2O implements best-
in-class algorithms at scale, such as distributed random forest, gradient boosting,
and deep learning. H2O also includes a Stacked Ensembles method, which finds
the optimal combination of a collection of prediction algorithms using a process
known as ”stacking.” With H2O, customers can build thousands of models and
compare the results to get the best predictions.

H2O is nurturing a grassroots movement of physicists, mathematicians, and
computer scientists to herald the new wave of discovery with data science by
collaborating closely with academic researchers and industrial data scientists.
Stanford university giants Stephen Boyd, Trevor Hastie, and Rob Tibshirani
advise the H2O team on building scalable machine learning algorithms. And
with hundreds of meetups over the past several years, H2O continues to remain
a word-of-mouth phenomenon.

Try it out

� Download H2O directly at http://h2o.ai/download.

� Install H2O’s R package from CRAN at https://cran.r-project.
org/web/packages/h2o/.

http://h2o.ai/download
https://cran.r-project.org/web/packages/h2o/
https://cran.r-project.org/web/packages/h2o/

6 | Sparkling Water Introduction

� Install the Python package from PyPI at https://pypi.python.
org/pypi/h2o/.

Join the community

� To learn about our training sessions, hackathons, and product updates,
visit http://h2o.ai.

� To learn about our meetups, visit https://www.meetup.com/
topics/h2o/all/.

� Have questions? Post them on Stack Overflow using the h2o tag at
http://stackoverflow.com/questions/tagged/h2o.

� Have a Google account (such as Gmail or Google+)? Join the open source
community forum at https://groups.google.com/d/forum/
h2ostream.

� Join the chat at https://gitter.im/h2oai/h2o-3.

2 Sparkling Water Introduction

Sparkling Water allows users to combine the fast, scalable machine learning
algorithms of H2O with the capabilities of Spark. With Sparkling Water, users
can drive computation from Scala, R, or Python and use the H2O Flow UI,
providing an ideal machine learning platform for application developers.

Spark is an elegant and powerful general-purpose, open-source, in-memory
platform with tremendous momentum. H2O is an in-memory application for
machine learning that is reshaping how people apply math and predictive
analytics to their business problems.

Integrating these two open-source environments provides a seamless experience
for users who want to make a query using Spark SQL, feed the results into
H2O to build a model and make predictions, and then use the results again in
Spark. For any given problem, better interoperability between tools provides a
better experience.

For additional examples, please visit the Sparkling Water GitHub repository at
https://github.com/h2oai/sparkling-water/tree/master/
examples.

https://pypi.python.org/pypi/h2o/
https://pypi.python.org/pypi/h2o/
http://h2o.ai
https://www.meetup.com/topics/h2o/all/
https://www.meetup.com/topics/h2o/all/
http://stackoverflow.com/questions/tagged/h2o
https://groups.google.com/d/forum/h2ostream
https://groups.google.com/d/forum/h2ostream
https://gitter.im/h2oai/h2o-3
https://github.com/h2oai/sparkling-water/tree/master/examples
https://github.com/h2oai/sparkling-water/tree/master/examples

Sparkling Water Introduction | 7

2.1 Typical Use Cases

Sparkling Water excels in leveraging existing Spark-based workflows needed
to call advanced machine learning algorithms. We identified three the most
common use-cases which are described below.

2.1.1 Model Building

A typical example involves multiple data transformations with help of Spark
API, where a final form of data is transformed into H2O frame and passed to
an H2O algorithm. The constructed model estimates different metrics based on
the testing data or gives a prediction that can be used in the rest of the data
pipeline (see Figure 1).

Figure 1: Sparkling Water extends existing Spark data pipeline with advanced
machine learning algorithms.

2.1.2 Data Munging

Another use-case includes Sparkling Water as a provider of ad-hoc data trans-
formations. Figure 2 shows a data pipeline benefiting from H2O’s parallel data
load and parse capabilities, while Spark API is used as another provider of data
transformations. Furthermore, H2O can be used as in-place data transformer.

8 | Sparkling Water Introduction

Figure 2: Sparkling Water introduces H2O parallel load and parse into Spark
pipelines.

2.1.3 Stream Processing

The last use-case depicted on Figure 3 introduces two data pipelines. The first
one, called an off-line training pipeline, is invoked regularly (e.g., every hour or
every day), utilizes Spark as well as H2O API and provides an H2O model as
output. The H2O API allows the model to be exported in a source code form.
The second one processes streaming data (with help of Spark Streaming or
Storm) and utilizes the model trained in the first pipeline to score the incoming
data. Since the model is exported as a code, the streaming pipeline can be
lightweight and independent on H2O or Sparkling Water infrastructure.

2.2 Features

Sparkling Water provides transparent integration for the H2O engine and its
machine learning algorithms into the Spark platform, enabling:

� Use of H2O algorithms in Spark workflow

� Transformation between H2O and Spark data structures

� Use of Spark RDDs and DataFrames as input for H2O algorithms

� Use of H2OFrames as input for MLlib algorithms

� Transparent execution of Sparkling Water applications on top of Spark

Sparkling Water Introduction | 9

Figure 3: Sparkling Water used as an off-line model producer feeding models
into a stream-based data pipeline.

2.3 Supported Data Sources

Currently, Sparkling Water can use the following data source types:

� Standard Resilient Distributed Dataset (RDD) API for loading data and
transforming it into H2OFrames

� H2O API for loading data directly into H2OFrame from file(s) stored on:

– local filesystems

– HDFS

– S3

– HTTP/HTTPS

For more details, please refer to the H2O documentation at http://docs.
h2o.ai.

2.4 Supported Data Formats

Sparkling Water can read data stored in the following formats:

� CSV

� SVMLight

http://docs.h2o.ai
http://docs.h2o.ai

10 | Sparkling Water Introduction

� ARFF

For more details, please refer to the H2O documentation at http://docs.
h2o.ai.

2.5 Supported Spark Execution Environments

Sparkling Water can run on top of Spark in the following ways:

� as a local cluster (where the master node is local, local[*], or
local-cluster[...])

� as a standalone cluster1

� in a YARN environment2

1Refer to the Spark standalone documentation http://spark.apache.org/docs/
latest/spark-standalone.html

2Refer to the Spark YARN documentation http://spark.apache.org/docs/
latest/running-on-yarn.html

http://docs.h2o.ai
http://docs.h2o.ai
http://spark.apache.org/docs/latest/spark-standalone.html
http://spark.apache.org/docs/latest/spark-standalone.html
http://spark.apache.org/docs/latest/running-on-yarn.html
http://spark.apache.org/docs/latest/running-on-yarn.html

Design | 11

3 Design
Sparkling Water is designed to be executed as a regular Spark application. It
provides a way to initialize H2O services on each node in the Spark cluster and
access data stored in data structures of Spark and H2O.

Since Sparkling Water is primarily designed as Spark application, it is launched
inside a Spark executor created after submitting the application. At this point,
H2O starts services, including distributed key-value (K/V) store and memory
manager, and orchestrates them into a cloud. The topology of the created
cloud replicates the topology of the underlying Spark cluster.

Figure 4: Sparkling Water design depicting deployment of the Sparkling Water
application to the standalone Spark cluster.

3.1 Data Sharing between Spark and H2O

Sparkling Water enables transformation between different types of RDDs and
H2O’s H2OFrame, and vice versa.

When converting from an H2OFrame to an RDD, a wrapper is created around
the H2OFrame to provide an RDD-like API. In this case, data is not duplicated
but served directly from the underlying H2OFrame.

Converting from an RDD/DataFrame to an H2OFrame requires data duplication
because it transfers data from the RDD storage into H2OFrame. However,

12 | Design

data stored in an H2OFrame is heavily compressed and does not need to be
preserved in RDD.

Figure 5: Sharing between Spark and H2O inside an executor JVM.

3.2 Provided Primitives

Sparkling Water provides several primitives (for more information, refer to
Table 1). Before using H2O algorithms and data structures, the first step
is to create and start the H2OContext instance using the val hc = new
H2OContext(sc).start() call.

The H2OContext contains the necessary information for running H2O services
and exposes methods for data transformation between the Spark RDD or
DataFrame and the H2OFrame. Starting H2OContext involves a distributed
operation that contacts all accessible Spark executor nodes and initializes H2O
services (such as the key-value store and RPC) inside the executors’ JVMs.

When H2OContext is running, H2O data structures and algorithms can
be manipulated. The key data structure is H2OFrame, which represents a
distributed table composed of vectors. A new H2OFrame can be created using
one of the following methods:

� loading a cluster local file (a file located on each node of the cluster):

Design | 13

1 val h2oFrame = new H2OFrame(new File("/data/iris.
csv"))

� loading a file from HDFS/S3/S3N/S3A:

1 val h2oFrame = new H2OFrame(URI.create("hdfs://
data/iris.csv"))

� loading multiple files from HDFS/S3/S3N/S3A:

1 val h2oFrame = new H2OFrame(URI.create("hdfs://
data/iris/01.csv"), URI.create("hdfs://data/
iris/02.csv"))

� transforming Spark RDD or DataFrame:

1 val h2oFrame = h2oContext.asH2OFrame(rdd)

� referencing existing H2OFrame by its key

1 val h2oFrame = new H2OFrame("iris.hex")

14 | Design

Concept API Representation Description

H2O Context H2OContext Contains H2O state, provides primi-
tives to publish RDD as H2OFrame
and vice versa. Follows design prin-
ciples of Spark primitives such as
SparkContext or SQLContext.

H2O Entry Point water.H2O Represents the entry point for ac-
cessing H2O services. Contains in-
formation about running H2O ser-
vices, including a list of nodes and
the status of the distributed K/V
datastore.

H2O Frame water.fvec.H2OFrame A data structure representing a table
of values. The table is column-based
and provides column and row acces-
sors.

H2O Algorithm package hex Represents the H2O machine learn-
ing algorithms library, including
DeepLearning, GBM, GLM, DRF,
and other algorithms.

Table 1: Sparkling Water primitives

When the H2OContext is running, any H2O algorithm can be called. Most
of provided algorithms are located in the hex package. Calling an algorithm is
composed of two steps:

� Specifying parameters:

1 val train: H2OFrame = new H2OFrame(new File("
prostate.csv"))

2 val gbmParams = new GBMParameters()
3 gbmParams._train = train
4 gbmParams._response_column = ’CAPSULE
5 gbmParams._ntrees = 10

� Creating the model builder and launching computations. The trainModel
method is non-blocking and returns a job representing the computation.

1 val gbmModel = new GBM(gbmParams).trainModel.get

Programming API | 15

4 Programming API

4.1 Starting H2O Services

1 val sc: SparkContext = ...
2 val hc = H2OContext.getOrCreate(sc)

or:

1 val sc: SparkContext = ...
2 val hc = new H2OContext(sc).start()

When the number of Spark nodes is known, it can be specified in the getOrCreate
call:

1 val hc = H2OContext.getOrCreate(sc, numOfSparkNodes)

or, in start method of H2OContext:

1 val hc = new H2OContext(sc).start(numOfSparkNodes)

The former variant is preferred, because it initiates and starts H2OContext
in one call and can be used to obtain already existing H2OContext. It is
semantically the same as the latter variant though.

4.2 Memory Allocation

H2O resides in the same executor JVM as Spark. The memory provided for
H2O is configured via Spark; refer to Spark configuration for more details.

Generic configuration

� Configure the Executor memory (i.e., memory available for H2O) via the
Spark configuration property spark.executor.memory. For example,
bin/sparkling-shell --conf spark.executor.memory=5g
or configure the property in $SPARK_HOME/conf/spark-defaults
.conf

� Configure the Driver memory (i.e., memory available for H2O client
running inside the Spark driver) via the Spark configuration property
spark.driver.memory. For example, bin/sparkling-shell
--conf spark.driver.memory=4g or configure the property in
$SPARK_HOME/conf/spark-defaults.conf.

16 | Programming API

Yarn specific configuration

� Refer to the Spark documentation https://spark.apache.org/
docs/latest/running-on-yarn.html

� For JVMs that require a large amount of memory, we strongly recommend
configuring the maximum amount of memory available for individual
mappers.

4.3 Converting H2OFrame into RDD[T]

The H2OContext class provides the explicit conversion, asRDD, which creates
an RDD-like wrapper around the provided H2OFrame:

1 def asRDD[A <: Product: TypeTag: ClassTag](fr:
H2OFrame): RDD[A]

The call expects the type A to create a correctly-typed RDD. The conversion
requires type A to be bound by Product interface. The relationship between
the columns of H2OFrame and the attributes of class A is based on name
matching.

Example

1 val df: H2OFrame = ...
2 val rdd = asRDD[Weather](df)

4.4 Converting H2OFrame into DataFrame

The H2OContext class provides the explicit conversion, asDataFrame,
which creates a DataFrame-like wrapper around the provided H2OFrame.
Technically, it provides the RDD[sql.Row] RDD API:

1 def asDataFrame(fr: H2OFrame)(implicit sqlContext:
SQLContext): DataFrame

This call does not require any type of parameters, but since it creates DataFrame
instances, it requires access to an instance of SQLContext. In this case, the
instance is provided as an implicit parameter of the call. The parameter can
be passed in two ways: as an explicit parameter or by introducing an implicit
variable into the current context.

The schema of the created instance of the DataFrame is derived from the
column name and the types of H2OFrame specified.

https://spark.apache.org/docs/latest/running-on-yarn.html
https://spark.apache.org/docs/latest/running-on-yarn.html

Programming API | 17

Example

Using an explicit parameter in the call to pass sqlContext:

1 val sqlContext = new SQLContext(sc)
2 val schemaRDD = asDataFrame(h2oFrame)(sqlContext)

or as implicit variable provided by actual environment:

1 implicit val sqlContext = new SQLContext(sc)
2 val schemaRDD = asDataFrame(h2oFrame)

4.5 Converting RDD[T] into H2OFrame

The H2OContext provides implicit conversion from the specified RDD[A] to
H2OFrame. As with conversion in the opposite direction, the type A has to
satisfy the upper bound expressed by the type Product. The conversion will
create a new H2OFrame, transfer data from the specified RDD, and save it to
the H2O K/V data store.

1 implicit def asH2OFrame[A <: Product: TypeTag](rdd:
RDD[A]): H2OFrame

The API also provides explicit version which allows for specifying name for
resulting H2OFrame.

1 def asH2OFrame[A <: Product: TypeTag](rdd: RDD[A],
frameName: String): H2OFrame

Example

1 val rdd: RDD[Weather] = ...
2 import h2oContext._
3 // Implicit call of H2OContext.asH2OFrame[Weather](rdd

) is used
4 val hf: H2OFrame = rdd
5 // Explicit call of of H2OContext API with name for

resulting H2OFrame
6 val hfNamed: H2OFrame = h2oContext.asH2OFrame(rdd, "

hfNamed")

18 | Programming API

4.6 Converting DataFrame into H2OFrame

The H2OContext provides implicit conversion from the specified DataFrame
to H2OFrame. The conversion will create a new H2OFrame, transfer data
from the specified DataFrame, and save it to the H2O K/V data store.

1 implicit def asH2OFrame(rdd: DataFrame): H2OFrame

The API also provides explicit version which allows for specifying name for
resulting H2OFrame.

1 def asH2OFrame(rdd: DataFrame, frameName: String):
H2OFrame

Example

1 val df: DataFrame = ...
2 import h2oContext._
3 // Implicit call of H2OContext.asH2OFrame(srdd) is

used
4 val hf: H2OFrame = df
5 // Explicit call of H2Context API with name for

resulting H2OFrame
6 val hfNamed: H2OFrame = h2oContext.asH2OFrame(df, "

hfNamed")

4.7 Creating H2OFrame from an Existing Key

If the H2O cluster already contains a loaded H2OFrame referenced by the key
train.hex, it is possible to reference it from Sparkling Water by creating a
proxy H2OFrame instance using the key as the input:

1 val trainHF = new H2OFrame("train.hex")

4.8 Type Map Between H2OFrame and Spark
DataFrame Types

For all primitive Scala types or Spark SQL types (see
org.apache.spark.sql.types) which can be part of Spark RDD/DataFrame,
we provide mapping into H2O vector types (numeric, categorical, string, time,
UUID - see water.fvec.Vec):

Programming API | 19

Scala type SQL type H2O type

NA BinaryType Numeric
Byte ByteType Numeric
Short ShortType Numeric
Integer IntegerType Numeric
Long LongType Numeric
Float FloatType Numeric
Double DoubleType Numeric
String StringType String
Boolean BooleanType Numeric
java.sql.TimeStamp TimestampType Time

4.9 Calling H2O Algorithms

1. Create the parameters object that holds references to input data and
parameters specific for the algorithm:

1 val train: RDD = ...
2 val valid: H2OFrame = ...
3

4 val gbmParams = new GBMParameters()
5 gbmParams._train = train
6 gbmParams._valid = valid
7 gbmParams._response_column = ’bikes
8 gbmParams._ntrees = 500
9 gbmParams._max_depth = 6

2. Create a model builder:

1 val gbm = new GBM(gbmParams)

3. Invoke the model build job and block until the end of computation
(trainModel is an asynchronous call by default):

1 val gbmModel = gbm.trainModel.get

4.10 Using Spark Data Sources with H2OFrame

Spark SQL provides configurable data source for SQL tables. Sparkling Water
enable H2OFrame to be used as data source to load/save data from/to Spark
SQL table.

20 | Programming API

4.10.1 Reading from H2OFrame

Let’s suppose we have a H2OFrame. The shortest way to load a DataFrame
from H2OFrame with default settings is:

1 val df = sqlContext.read.h2o(frame.key)

There are two more ways to load a DataFrame from H2OFrame allowing us
to specify additional options:

1 val df = sqlContext.read.format("h2o").option("key",
frame.key.toString).load()

or

1 val df = sqlContext.read.format("h2o").load(frame.key.
toString)

4.10.2 Saving to H2OFrame

Let’s suppose we have DataFrame df. The shortest way to save the DataFrame
as H2OFrame with default settings is:

1 df.write.h2o("new_key")

There are two more ways to save the DataFrame as H2OFrame allowing us
to specify additional options:

1 df.write.format("h2o").option("key","new_key").save()

or

1 df.write.format("h2o").save("new_key")

All three variants save the DataFrame as H2OFrame with the key ”new key”.
They won’t succeed if a H2OFrame with the same key already exists.

4.10.3 Loading and Saving Options

If the key is specified as ’key’ option, and also in the load/save method, the
option ’key’ is preferred:

Programming API | 21

1 val df = sqlContext.read.from("h2o").option("key","
key_one").load("key_two")

or

1 val df = sqlContext.read.from("h2o").option("key","
key_one").save("key_two")

In both examples, ”key one” is used.

4.10.4 Specifying Saving Mode

There are four save modes available when saving data using Data Source API-
see http://spark.apache.org/docs/latest/sql-programming-
guide.html#save-modes

� If ”append” mode is used, an existing H2OFrame with the same key
is deleted, and a new one created with the same key. The new frame
contains the union of all rows from the original H2OFrame and the
appended DataFrame.

� If ”overwrite” mode is used, an existing H2OFrame with the same key is
deleted, and new one with the new rows is created with the same key.

� If ”error” mode is used, and a H2OFrame with the specified key already
exists, an exception is thrown.

� If ”ignore” mode is used, and a H2OFrame with the specified key already
exists, no data are changed.

http://spark.apache.org/docs/latest/sql-programming-guide.html#save-modes
http://spark.apache.org/docs/latest/sql-programming-guide.html#save-modes

22 | Deployment

5 Deployment

Since Sparkling Water is designed as a regular Spark application, its deployment
cycle is strictly driven by Spark deployment strategies (refer to Spark documen-
tation3). Spark applications are deployed by the spark-submit 4 script that
handles all deployment scenarios:

1 ./bin/spark-submit \
2 --class <main-class> \
3 --master <master-url> \
4 --conf <key>=<value> \
5 ... # other options \
6 <application-jar> [application-arguments]

� --class: Name of main class with main method to be executed. For
example, the water.SparklingWaterDriver application launches
H2O services.

� --master: Location of Spark cluster

� --conf: Specifies any configuration property using the format key=value

� application-jar: Jar file with all classes and dependencies required
for application execution

� application-arguments: Arguments passed to the main method
of the class via the --class option

5.1 Referencing Sparkling Water

5.1.1 Using Fatjar

The Sparkling Water archive provided at http://h2o.ai/download con-
tains a Fatjar with all classes required for Sparkling Water run.

An application submission with Sparkling Water Fatjar is using the --jars
option which references included fatjar.

3Spark deployment guide http://spark.apache.org/docs/latest/cluster-
overview.html

4Submitting Spark applications http://spark.apache.org/docs/latest/
submitting-applications.html

http://h2o.ai/download
http://spark.apache.org/docs/latest/cluster-overview.html
http://spark.apache.org/docs/latest/cluster-overview.html
http://spark.apache.org/docs/latest/submitting-applications.html
http://spark.apache.org/docs/latest/submitting-applications.html

Deployment | 23

1 $SPARK_HOME/bin/spark-submit \
2 --jars assembly/build/libs/sparkling-water-assembly

-2.1.8-all.jar \
3 --class org.apache.spark.examples.h2o.

CraigslistJobTitlesStreamingApp \
4 /dev/null

5.1.2 Using Spark Package

Sparkling Water is also published as a Spark package. The benefit of using the
package is that you can use it directly from your Spark distribution without
need to download Sparkling Water.

For example, if you have Spark version 2.1 and would like to use Sparkling Water
version 2.1.8 and launch example CraigslistJobTitlesStreamingApp,
then you can use the following command:

1 $SPARK_HOME/bin/spark-submit \
2 --packages ai.h2o:sparkling-water-core_2.11:2.1.8,ai

.h2o:sparkling-water-examples_2.11:2.1.8 \
3 --class org.apache.spark.examples.h2o.

CraigslistJobTitlesStreamingApp \
4 /dev/null

The Spark option --packages points to coordinate of published Sparkling
Water package in Maven repository.

The similar command works for spark-shell:

1 $SPARK_HOME/bin/spark-shell \
2 --packages ai.h2o:sparkling-water-core_2.11:2.1.8,ai.

h2o:sparkling-water-examples_2.11:2.1.8

Note: When you are using Spark packages, you do not need to download
Sparkling Water distribution. Spark installation is sufficient.

24 | Deployment

5.2 Target Deployment Environments

Sparkling Water supports deployments to the following Spark cluster types:

� Local cluster

� Standalone cluster

� YARN cluster

5.2.1 Local cluster

The local cluster is identified by the following master URLs - local, local[K],
or local[*]. In this case, the cluster is composed of a single JVM and is
created during application submission.

For example, the following command will run the ChicagoCrimeApp application
inside a single JVM with a heap size of 5g:

1 $SPARK_HOME/bin/spark-submit \
2 --conf spark.executor.memory=5g \
3 --conf spark.driver.memory=5g \
4 --master local[*] \
5 --packages ai.h2o:sparkling-water-examples_2

.11:2.1.8 \
6 --class org.apache.spark.examples.h2o.

ChicagoCrimeApp \
7 /dev/null

5.2.2 On Standalone Cluster

For AWS deployments or local private clusters, the standalone cluster deploy-
ment5 is typical. Additionally, a Spark standalone cluster is also provided by
Hadoop distributions like CDH or HDP. The cluster is identified by the URL
spark://IP:PORT.

The following command deploys the ChicagoCrimeApp on a standalone
cluster where the master node is exposed on IP machine-foo.bar.com
and port 7077:

5Refer to Spark documentation http://spark.apache.org/docs/latest/spark-
standalone.html

http://spark.apache.org/docs/latest/spark-standalone.html
http://spark.apache.org/docs/latest/spark-standalone.html

Deployment | 25

1 $SPARK_HOME/bin/spark-submit \
2 --conf spark.executor.memory=5g \
3 --conf spark.driver.memory=5g \
4 --master spark://machine-foo.bar.com:7077 \
5 --packages ai.h2o:sparkling-water-examples_2

.11:2.1.8 \
6 --class org.apache.spark.examples.h2o.

ChicagoCrimeApp \
7 /dev/null

In this case, the standalone Spark cluster must be configured to provide the
requested 5g of memory per executor node.

5.2.3 On YARN Cluster

Because it provides effective resource management and control, most production
environments use YARN for cluster deployment.6 In this case, the environment
must contain the shell variable HADOOP CONF DIR or YARN CONF DIR which
point to Hadoop configuration directory (e.g., /etc/hadoop/conf).

1 $SPARK_HOME/bin/spark-submit \
2 --conf spark.executor.memory=5g \
3 --conf spark.driver.memory=5g \
4 --num-executors 5 \
5 --master yarn-client \
6 --packages ai.h2o:sparkling-water-examples_2

.11:2.1.8 \
7 --class org.apache.spark.examples.h2o.

ChicagoCrimeApp \
8 /dev/null

The command in the example above creates a YARN job and requests for 5
nodes, each with 5G of memory. The yarn-client option forces driver to
run in the client process.

6See Spark documentation http://spark.apache.org/docs/latest/running-
on-yarn.html

http://spark.apache.org/docs/latest/running-on-yarn.html
http://spark.apache.org/docs/latest/running-on-yarn.html

26 | Deployment

5.3 Sparkling Water Configuration Properties

The following configuration properties can be passed to Spark to configure
Sparking Water:

Generic parameters

Property name Default value Description

spark.ext.h2o.flatfile true Use flatfile (instead of multi-
cast) for creating H2O cloud.

spark.ext.h2o.cluster.size -1 Expected number of workers
of H2O cloud. -1 automati-
cally detects the cluster size.
This number must be equal to
number of Spark workers.

spark.ext.h2o.port.base 54321 Base port used for individual
H2O node configuration.

spark.ext.h2o.port.incr 2 Increment added to base port
to find the next available port.

spark.ext.h2o.cloud.timeout 60*1000 Timeout (in msec) for cloud.

spark.ext.h2o.spreadrdd.retries 10 Number of retries for creation
of an RDD covering all exist-
ing Spark executors.

spark.ext.h2o.cloud.name sparkling-water- Name of H2O cloud.

spark.ext.h2o.network.mask – Subnet selector for H2O if
IP detection fails. Use-
ful for detecting correct IP
if ’spark.ext.h2o.flatfile’ is
false.*

spark.ext.h2o.nthreads -1 Limit for number of threads
used by H2O. -1 means unlim-
ited.

spark.ext.h2o.disable.ga false Disable Google Analytics
tracking for embedded H2O.

Deployment | 27

H2O server node parameters

Property name Default value Description

spark.ext.h2o.node.log.level INFO Set H2O node internal
logging level.

spark.ext.h2o.node.log.dir System.getProperty
(”user.dir”) +
File.separator +
”h2ologs” or YARN
container dir

Location of h2o logs
on executor machine.

H2O client parameters

Property name Default value Description

spark.ext.h2o.client.log.level INFO Set H2O client internal
logging level (running
inside Spark driver).

spark.ext.h2o.client.log.dir System.getProperty
(”user.dir”) +
File.separator +
”h2ologs”

Location of h2o logs
on driver machine.

spark.ext.h2o.client.web.port -1 Exact client port to
access web UI. -1 trig-
gers automatic search
for free port starting at
spark.ext.h2o.port.base.

28 | Building a Standalone Application

6 Building a Standalone Application
Sparkling Water Example Project

This is a simple example project to start coding with Sparkling Water.

Dependencies

This droplet uses Sparkling Water 2.1 which integrates:

� Spark 2.1

� H2O 3.10.5 Vajda

For more details see build.gradle.

Project structure

gradle/ Gradle definition files

src/ Source code

main/ Main implementation code

scala/

test/ Test code

scala/

build.gradle ... Build file for this project

gradlew Gradle wrapper

Project building

For building, please, use provided gradlew command:

1 ./gradlew build

Run demo

For running a simple application:

1 ./gradlew run

Starting with IDEA

There are two ways to open this project in IntelliJ IDEA

Building a Standalone Application | 29

Using Gradle build file directly:

Open the project’s build.gradle in IDEA via File → Open

or using Gradle generated project files:

1. Generate Idea configuration files via ./gradlew idea

2. Open project in Idea via File → Open

Note: To clean up Idea project files please launch ./gradlew cleanIdea

Starting with Eclipse

1. Generate Eclipse project files via ./gradlew eclipse

2. Open project in Eclipse via File → Import → Existing Projects into
Workspace

Running tests

To run tests, please, run:

1 ./gradlew test

Checking code style

To check codestyle:

1 ./gradlew scalaStyle

Creating and Running Spark Application

Create application assembly which can be directly submitted to Spark cluster:

1 ./gradlew shadowJar

The command creates jar file build/libs/sparkling-water-droplet-
app.jar containing all necessary classes to run application on top of Spark
cluster.

Submit application to Spark cluster (in this case, local cluster is used):

1 export MASTER=’local-cluster[3,2,1024]’
2 $SPARK_HOME/bin/spark-submit --class water.droplets.

SparklingWaterDroplet build/libs/sparkling-water-
droplet-all.jar

30 | What is PySparkling Water?

7 What is PySparkling Water?
PySparkling Water is an integration of Python with Sparkling water. It allows
the user to start H2O services on a spark cluster from Python API.

In the PySparkling Water driver program, the SparkContext (sc) uses Py4J
to start the driver JVM and the JAVA SparkContext is used to create
H2OContext (hc). This in turn starts the H2O cloud in the Spark ecosystem.
Once the H2O cluster is up, H2O-Python package is used to interact with the
cloud and run H2O algorithms. All pure H2O calls are executed via H2O’s
REST API interface. Users can easily integrate their regular PySpark workflow
with H2O algorithms using PySparkling Water.

PySparkling Water programs can be launched as an application, or in an
interactive shell, or notebook environment.

7.1 Getting Started:

1. Download Spark (if not already installed) from the Spark Downloads
Page.

Choose Spark release : 2.1.0

Choose a package type: Pre-built for Hadoop 2.4 and later

2. Point SPARK HOME to the existing installation of Spark and export
variable MASTER.

1 export SPARK_HOME="/path/to/spark/installation"

Launch a local Spark cluster with 3 worker nodes with 2 cores and 1g per
node.

1 export MASTER="local-cluster[3,2,1024]"

3. From your terminal, run:

1 cd ˜/Downloads
2 unzip sparkling-water-2.1.8.zip
3 cd sparkling-water-2.1.8

Start an interactive Python terminal:

1 bin/pysparkling

What is PySparkling Water? | 31

Or start a notebook:

1 IPYTHON_OPTS="notebook" bin/pysparkling

4. Create an H2O cloud inside the Spark cluster and import H2O-Python
package:

1 from pysparkling import *
2 hc= H2OContext(sc).start()
3 import h2o

5. Follow this demo, which imports Chicago crime, census, and weather
data. It also predicts the probability of arrest: https://github.com/
h2oai/h2o-world-2015-training/blob/master/tutorials/
pysparkling/Chicago_Crime_Demo.ipynb

Alternatively, to launch on YARN:

1 wget http://h2o-release.s3.amazonaws.com/sparkling-
water/rel-2.1/8/sparkling-water-2.1.8.zip

2 unzip sparkling-water-2.1.8.zip
3

4 export SPARK_HOME="/path/to/spark/installation"
5 export HADOOP_CONF_DIR=/etc/hadoop/conf
6 export SPARKLING_HOME="/path/to/SparklingWater/

installation"
7 $SPARKLING_HOME/bin/pysparkling --num-executors 3 --

executor-memory 20g --executor-cores 10 --driver-
memory 20g --master yarn-client

Then create an H2O cloud inside the Spark cluster and import H2O-Python
package:

1 from pysparkling import *
2 hc= H2OContext(sc).start()
3 import h2o

Or to launch as a Spark Package application:

1 $SPARK_HOME/bin/spark-submit --packages ai.h2o:
sparkling-water-core_2.11:2.1.8 --py-files
$SPARKLING_HOME/py/dist/pySparkling-2.1.8-py2.7.
egg

2 $SPARKLING_HOME/py/examples/scripts/H2OContextDemo.py

https://github.com/h2oai/h2o-world-2015-training/blob/master/tutorials/pysparkling/Chicago_Crime_Demo.ipynb
https://github.com/h2oai/h2o-world-2015-training/blob/master/tutorials/pysparkling/Chicago_Crime_Demo.ipynb
https://github.com/h2oai/h2o-world-2015-training/blob/master/tutorials/pysparkling/Chicago_Crime_Demo.ipynb

32 | What is PySparkling Water?

7.2 Using Spark Data Sources

The way that a H2OFrame can be used as Spark’s data source differs a little
bit in Python from Scala.

7.2.1 Reading from H2OFrame

Let’s suppose we have an H2OFrame. There are two ways how the DataFrame
can be loaded from H2OFrame in pySparkling:

1 df = sqlContext.read.format("h2o").option("key",frame.
frame_id).load()

or

1 df = sqlContext.read.format("h2o").load(frame.frame_id
)

7.2.2 Saving to H2OFrame

Let’s suppose we have a DataFrame df. There are two ways how DataFrame
can be saved as H2OFrame in pySparkling:

1 df.write.format("h2o").option("key","new_key").save()

or

1 df.write.format("h2o").save("new_key")

Both variants save DataFrame as a H2OFrame with key new key. They
won’t succeed if a H2OFrame with the same key already exists.

7.2.3 Loading and Saving Options

If the key is specified as ’key’ option, and also in the load/save method, the
option ’key’ is preferred:

1 df = sqlContext.read.from("h2o").option("key","key_one
").load("key_two")

What is PySparkling Water? | 33

or

1 df = sqlContext.read.from("h2o").option("key","key_one
").save("key_two")

In both examples, key one is used.

34 | A Use Case Example

8 A Use Case Example

8.1 Predicting Arrival Delay in Minutes - Regres-
sion

What is the task?

As Chief Air Traffic Controller, your job is come up with a prediction engine
that can be used to tell passengers whether an incoming flight will be delayed
by X number of minutes. To accomplish this task, we have an airlines dataset
containing ∼44k flights since 1987 with features such as: Origin and Destination
codes, distance traveled, carrier, etc. The key variable we are trying to predict
is ’ArrDelay’ (arrival delay) in minutes. We will do this leveraging H2O and the
Spark SQL library.

Spark SQL

One of the many cool features about the Spark project is the ability to initiate
a SQL context within our application that enables us to write SQL-like queries
against an existing DataFrame. Given the ubiquitous nature of SQL, this is
very appealing to data scientists who may not be comfortable yet with Scala /
Java / Python, but want to perform complex manipulations of their data.

Within the context of this example, we are going to first read in the airlines
dataset and then process a weather file which contains the weather data at the
arriving city. Joining the two tables will require a SQL context such that we
can write an INNER JOIN against the two independent DataFrames. Let’s
get started!

Data Ingest

Our first order of business is to process both files, the flight data and the
weather data:

1 object AirlinesWithWeatherDemo extends
SparkContextSupport {

2

3 def main(args: Array[String]): Unit = {
4 // Configure this application
5 val conf: SparkConf = configure("Sparkling Water:

Join of Airlines with Weather Data")
6

7 // Create SparkContext to execute application on
Spark cluster

8 val sc = new SparkContext(conf)

A Use Case Example | 35

9 val h2oContext = H2OContext.getOrCreate(sc)
10 import h2oContext._
11 // Setup environment
12 addFiles(sc,
13 absPath("examples/smalldata/

Chicago_Ohare_International_Airport.csv"),
14 absPath("examples/smalldata/allyears2k_headers.

csv.gz"))
15

16 val wrawdata = sc.textFile(SparkFiles.get("
Chicago_Ohare_International_Airport.csv"),3).
cache()

17 val weatherTable = wrawdata.map(_.split(",")).map(
row => WeatherParse(row)).filter(!_.isWrongRow
())

18

19 // Load H2O from CSV file (i.e., access directly
H2O cloud)

20 val airlinesData = new H2OFrame(new File(
SparkFiles.get("allyears2k_headers.csv.gz")))

21

22 val airlinesTable: RDD[Airlines] = asRDD[Airlines
](airlinesData)

The flight data file is imported directly into H2O already as an H2OFrame. The
weather table, however, is first processed in Spark where we do some parsing of
the data and data scrubbing.

After both files have been processed, we then take the airlines data that currently
sits in H2O and it pass back into Spark whereby we filter for those flights ONLY
arriving at Chicago’s O’Hare International Airport:

1 val flightsToORD = airlinesTable.filter(f => f.Dest ==
Some("ORD"))

2

3 flightsToORD.count
4 println(s"\nFlights to ORD: ${flightsToORD.count}\n")

At this point, we are ready to join these two tables which are currently Spark
RDDs. The workflow required for this is as follows:

� Convert the RDD into a DataFrame and register the resulting DataFrame
as ’TempTable’

36 | A Use Case Example

1 val sqlContext = new SQLContext(sc)
2 // Import implicit conversions
3 import sqlContext.implicits._
4 flightsToORD.toDF.registerTempTable("FlightsToORD

")
5 weatherTable.toDF.registerTempTable("WeatherORD")

� Join the two temp tables using Spark SQL

1 val bigTable = sqlContext.sql(
2 """SELECT
3 |f.Year,f.Month,f.DayofMonth,
4 |f.CRSDepTime,f.CRSArrTime,f.CRSElapsedTime,
5 |f.UniqueCarrier,f.FlightNum,f.TailNum,
6 |f.Origin,f.Distance,
7 |w.TmaxF,w.TminF,w.TmeanF,w.PrcpIn,w.SnowIn,w

.CDD,w.HDD,w.GDD,
8 |f.ArrDelay
9 |FROM FlightsToORD f

10 |JOIN WeatherORD w
11 |ON f.Year=w.Year AND f.Month=w.Month AND f.

DayofMonth=w.Day
12 |WHERE f.ArrDelay IS NOT NULL""".stripMargin)

� Transfer the joined table from Spark back to H2O to run an algorithm
against

1 val train: H2OFrame = bigTable

H2O Deep Learning

Now we have our dataset loaded into H2O. Recall this dataset has been filtered
to only include the flights and weather data on Chicago Ohare. It’s now time
to run a machine learning algorithm to predict flight delay in minutes. As
always, we start off with the necessary imports we need followed by declaring
the parameters that we wish to control:

A Use Case Example | 37

1 val dlParams = new DeepLearningParameters()
2 dlParams._train = train
3 dlParams._response_column = ’ArrDelay
4 dlParams._epochs = 5
5 dlParams._activation = Activation.RectifierWithDropout
6 dlParams._hidden = Array[Int](100, 100)
7

8 val dl = new DeepLearning(dlParams)
9 val dlModel = dl.trainModel.get

More parameters for Deep Learning and all other algorithms can be found in
H2O documentation at http://docs.h2o.ai .

Now we can run this model on our test dataset to score the model against our
holdout dataset:

1 val predictionH2OFrame = dlModel.score(bigTable)(’
predict)

2 val predictionsFromModel = asRDD[DoubleHolder](
predictionH2OFrame).collect.map(_.result.getOrElse
(Double.NaN))

3 println(predictionsFromModel.mkString("\n===> Model
predictions: ", ", ", ", ...\n"))

The full source for the application is here: http://bit.ly/1mo3XO2

http://docs.h2o.ai
http://bit.ly/1mo3XO2

38 | FAQ

9 FAQ
Where do I find the Spark logs?

Spark logs are located in the directory $SPARK_HOME/work/app-<AppName
> (where <AppName> is the name of your application).

Spark is very slow during initialization, or H2O does not form a cluster.
What should I do?

Configure the Spark variable SPARK LOCAL IP. For example:

1 export SPARK_LOCAL_IP=’127.0.0.1’

How do I increase the amount of memory assigned to the Spark execu-
tors in Sparkling Shell?

Sparkling Shell accepts common Spark Shell arguments. For example, to increase
the amount of memory allocated by each executor, use the spark.executor.memory
parameter: bin/sparkling-shell --conf "spark.executor.memory
=4g"

How do I change the base port H2O uses to find available ports?

The H2O accepts spark.ext.h2o.port.base parameter via Spark configuration
properties: bin/sparkling-shell --conf "spark.ext.h2o.port
.base=13431". For a complete list of configuration options, refer to Devel
Documentation.

How do I use Sparkling Shell to launch a Scala test.script that I created?

Sparkling Shell accepts common Spark Shell arguments. To pass your script,
please use -i option of Spark Shell: bin/sparkling-shell -i test.
script

How do I increase PermGen size for Spark driver?

Specify --conf spark.driver.extraJavaOptions="-XX:MaxPermSize
=384m"

How do I add Apache Spark classes to Python path?

Configure the Python path variable PYTHONPATH:

1 export PYTHONPATH=$SPARK_HOME/python:$SPARK_HOME/
python/build:$PYTHONPATH

2 export PYTHONPATH=$SPARK_HOME/python/lib/py4j-0.8.2.1-
src.zip:$PYTHONPATH

FAQ | 39

Trying to import a class from the hex package in Sparkling Shell but
getting weird error:

1 error: missing arguments for method hex in object
functions; follow this method with ’_’ if you want
to treat it as a partially applied

In this case you are probably using Spark 1.5 which is importing SQL functions
into Spark Shell environment. Please use the following syntax to import a class
from the hex package:

1 import _root_.hex.tree.gbm.GBM

40 | References

10 References
H2O.ai Team. H2O website, 2017. URL http://h2o.ai

H2O.ai Team. H2O documentation, 2017. URL http://docs.h2o.ai

H2O.ai Team. H2O GitHub Repository, 2017. URL https://github.
com/h2oai

H2O.ai Team. H2O Datasets, 2017. URL http://data.h2o.ai

H2O.ai Team. H2O JIRA, 2017. URL https://jira.h2o.ai

H2O.ai Team. H2Ostream, 2017. URL https://groups.google.com/
d/forum/h2ostream

H2O.ai Team. H2O R Package Documentation, 2017. URL http://h2o-
release.s3.amazonaws.com/h2o/latest_stable_Rdoc.html

http://h2o.ai
http://docs.h2o.ai
https://github.com/h2oai
https://github.com/h2oai
http://data.h2o.ai
https://jira.h2o.ai
https://groups.google.com/d/forum/h2ostream
https://groups.google.com/d/forum/h2ostream
http://h2o-release.s3.amazonaws.com/h2o/latest_stable_Rdoc.html
http://h2o-release.s3.amazonaws.com/h2o/latest_stable_Rdoc.html

	What is H2O?
	Sparkling Water Introduction
	Typical Use Cases
	Model Building
	Data Munging
	Stream Processing

	Features
	Supported Data Sources
	Supported Data Formats
	Supported Spark Execution Environments

	Design
	Data Sharing between Spark and H2O
	Provided Primitives

	Programming API
	Starting H2O Services
	Memory Allocation
	Converting H2OFrame into RDD[T]
	Converting H2OFrame into DataFrame
	Converting RDD[T] into H2OFrame
	Converting DataFrame into H2OFrame
	Creating H2OFrame from an Existing Key
	Type Map Between H2OFrame and Spark DataFrame Types
	Calling H2O Algorithms
	Using Spark Data Sources with H2OFrame
	Reading from H2OFrame
	Saving to H2OFrame
	Loading and Saving Options
	Specifying Saving Mode

	Deployment
	Referencing Sparkling Water
	Using Fatjar
	Using Spark Package

	Target Deployment Environments
	Local cluster
	On Standalone Cluster
	On YARN Cluster

	Sparkling Water Configuration Properties

	Building a Standalone Application
	What is PySparkling Water?
	Getting Started:
	Using Spark Data Sources
	Reading from H2OFrame
	Saving to H2OFrame
	Loading and Saving Options

	A Use Case Example
	Predicting Arrival Delay in Minutes - Regression

	FAQ
	References

