calibration_frame

  • Available in: GBM, DRF, XGBoost

  • Hyperparameter: no

Description

The calibration_frame option specifies the calibration frame that will be used for Platt scaling. This option is required if calibrate_model is enabled.

Platt scaling transforms the output of a classification model into a probability distribution over classes. It works by fitting a logistic regression model to a classifier’s scores. Platt scaling will generally not affect the ranking of observations. Logloss, however, will generally improve with Platt scaling.

Refer to the following for more information about Platt scaling:

Examples

library(h2o)
h2o.init()

# Import the ecology dataset
ecology <- h2o.importFile("https://s3.amazonaws.com/h2o-public-test-data/smalldata/gbm_test/ecology_model.csv")

# Convert response column to a factor
ecology$Angaus <- as.factor(ecology$Angaus)

# Split the dataset into training and calibrating datasets
ecology_split <- h2o.splitFrame(ecology, seed = 12354)
ecology_train <- ecology_split[[1]]
ecology_calib <- ecology_split[[2]]

# Introduce a weight column (artificial non-constant) ONLY to the train set (NOT the calibration one)
weights <- c(0, rep(1, nrow(ecology_train) - 1))
ecology_train$weight <- as.h2o(weights)

# Train an H2O GBM Model with the Calibration dataset
ecology_model <- h2o.gbm(x = 3:13, y = "Angaus", training_frame = ecology_train,
                         ntrees = 10,
                         max_depth = 5,
                         min_rows = 10,
                         learn_rate = 0.1,
                         distribution = "multinomial",
                         weights_column = "weight",
                         calibrate_model = TRUE,
                         calibration_frame = ecology_calib
)

predicted <- h2o.predict(ecology_model, ecology_calib)

# View the predictions
predicted
  predict        p0         p1    cal_p0     cal_p1
1       0 0.9201473 0.07985267 0.9415007 0.05849932
2       0 0.9304295 0.06957048 0.9461329 0.05386715
3       0 0.8742164 0.12578357 0.9159100 0.08408999
4       1 0.4877726 0.51222745 0.2896916 0.71030837
5       1 0.4104012 0.58959878 0.1744277 0.82557230
6       1 0.3476665 0.65233355 0.1102849 0.88971514

[256 rows x 5 columns]
import h2o
from h2o.estimators.gbm import H2OGradientBoostingEstimator
h2o.init()

# Import the ecology dataset
ecology = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/gbm_test/ecology_model.csv")

# Convert response column to a factor
ecology['Angaus'] = ecology['Angaus'].asfactor()

# Set the predictors and the response column name
response = 'Angaus'
predictors = ecology.columns[3:13]

# Split into train and calibration sets
train, calib = ecology.split_frame(seed = 12354)

# Introduce a weight column (artificial non-constant) ONLY to the train set (NOT the calibration one)
w = h2o.create_frame(binary_fraction=1, binary_ones_fraction=0.5, missing_fraction=0, rows=744, cols=1)
w.set_names(["weight"])
train = train.cbind(w)

# Train an H2O GBM Model with Calibration
ecology_gbm = H2OGradientBoostingEstimator(ntrees = 10, max_depth = 5, min_rows = 10,
                                           learn_rate = 0.1, distribution = "multinomial",
                                           calibrate_model = True, calibration_frame = calib)
ecology_gbm.train(x = predictors, y = "Angaus", training_frame = train, weights_column = "weight")

predicted = ecology_gbm.predict(train)

# View the calibrated predictions appended to the original predictions
predicted
  predict        p0         p1     cal_p0     cal_p1
---------  --------  ---------  ---------  ---------
        1  0.319428  0.680572   0.185613   0.814387
        0  0         0          0.0274573  0.972543
        0  0.90577   0.0942296  0.913323   0.0866773
        0  0.783394  0.216606   0.825601   0.174399
        0  0.899183  0.100817   0.909852   0.0901482
        0  0         0          0.0274573  0.972543
        0  0.909846  0.090154   0.915409   0.0845909
        1  0.456384  0.543616   0.358169   0.641831
        0  0         0          0.0274573  0.972543
        0  0.918923  0.0810765  0.919893   0.0801069

[744 rows x 5 columns]