Client Class¶
-
class
h2oai_client.protocol.
Client
(address: str, username: Optional[str] = None, password: Optional[str] = None, verify=True, cert=None, use_tls_authentication: bool = False) Bases:
object
-
__init__
(address: str, username: Optional[str] = None, password: Optional[str] = None, verify=True, cert=None, use_tls_authentication: bool = False) → None Initialize self. See help(type(self)) for accurate signature.
-
abort_autoreport
(key: str) → None
-
abort_custom_recipe_job
(key: str) → None
-
abort_experiment
(key: str) → None Abort the experiment.
- Parameters
key – The experiment’s key.
-
abort_interpretation
(key: str) → None Abort MLI experiment
- Parameters
key – The interpretation key.
-
abort_sa_action
(sa_key: str) → bool
-
property
autoviz
-
build_mojo_pipeline
(model_key: str) → str
-
build_mojo_pipeline_sync
(model_key: str) → h2oai_client.messages.MojoPipeline Build MOJO pipeline.
- Parameters
model_key – Model key.
- Returns
a new
ScoringPipeline
instance.
-
build_scoring_pipeline
(model_key: str) → str
-
build_scoring_pipeline_sync
(model_key: str) → h2oai_client.messages.ScoringPipeline Build scoring pipeline.
- Parameters
model_key – Model key.
- Returns
a new
ScoringPipeline
instance.
-
change_sa_ws
(sa_key: str, action: str, target_col: str, target_row: int, value: str) → h2oai_client.messages.SaShape
-
check_rest_scorer_deployment_health
() → bool
-
clear_sa_history
(sa_key: str) → bool
-
copy_azr_blob_store_to_local
(src: str, dst: str) → bool
-
copy_dtap_to_local
(src: str, dst: str) → bool
-
copy_gcs_to_local
(src: str, dst: str) → bool
-
copy_hdfs_to_local
(src: str, dst: str) → bool
-
copy_minio_to_local
(src: str, dst: str) → bool
-
copy_s3_to_local
(src: str, dst: str) → bool
-
create_and_download_autoreport
(model_key: str, template_path: str = '', config_overrides: str = '', dest_dir: str = '.', **kwargs) Make and download an autoreport from a Driverless AI experiment.
- Parameters
model_key – Model key.
template_path – Path to custom autoreport template, which will be uploaded and used during rendering
config_overrides – TOML string format with configurations overrides for AutoDoc
dest_dir – The directory where the AutoReport should be saved.
**kwargs – See below
- Keyword Arguments
- mli_key (
str
) – MLI instance key
- mli_key (
- autoviz_key (
str
) – Visualization key
- autoviz_key (
- individual_rows (
list
) – List of row indices for rows of interest in training dataset, for which additional information can be shown (ICE, LOCO, KLIME)
- individual_rows (
- placeholders (
dict
) – Additional text to be added to documentation in dict format, key is the name of the placeholder in template, value is the text content to be added in place of placeholder
- placeholders (
- external_dataset_keys (
list
) – List of additional dataset keys, to be used for computing different statistics and generating plots.
- external_dataset_keys (
- Returns
str: the path to the saved AutoReport
-
create_aws_lambda
(model_key: str, aws_credentials: h2oai_client.messages.AwsCredentials, aws_lambda_parameters: h2oai_client.messages.AwsLambdaParameters) → str Creates a new AWS lambda deployment for the specified model using the given AWS credentials.
-
create_csv_from_dataset
(key: str) → str Create csv version of dataset in it’s folder. Returns url to created file.
-
create_custom_recipe_from_url
(url: str) → str
-
create_dataset
(filepath: str) → str
-
create_dataset_from_azr_blob
(filepath: str) → str
-
create_dataset_from_azure_blob_store_sync
(filepath: str) → h2oai_client.messages.Dataset Import a dataset from Azure Blob Storage
- Param
filepath: A path specifying the location of the data to upload.
- Returns
a new :class: Dataset instance.
-
create_dataset_from_bigquery_sync
(datasetid: str, dst: str, query: str) → h2oai_client.messages.Dataset Import a dataset using BigQuery Query
- Parameters
datasetid – Name of BQ Dataset to use for tmp tables
dst – destination filepath within GCS (gs://<bucket>/<file.csv>)
query – SQL query to pass to BQ
:returns a new
Dataset
instance.
-
create_dataset_from_dtap
(filepath: str) → str
-
create_dataset_from_dtap_sync
(filepath: str) → h2oai_client.messages.Dataset Import a dataset.
- Parameters
filepath – A path specifying the location of the data to upload.
- Returns
a new
Dataset
instance.
-
create_dataset_from_file
(filepath: str) → str
-
create_dataset_from_gbq
(args: h2oai_client.messages.GbqCreateDatasetArgs) → str
-
create_dataset_from_gcs
(filepath: str) → str
-
create_dataset_from_gcs_sync
(filepath: str) → h2oai_client.messages.Dataset Import a dataset from Google Cloud Storage.
- Parameters
filepath – A path specifying the location of the data to upload.
- Returns
a new
Dataset
instance.
-
create_dataset_from_hadoop
(filepath: str) → str
-
create_dataset_from_hadoop_sync
(filepath: str) → h2oai_client.messages.Dataset Import a dataset.
- Parameters
filepath – A path specifying the location of the data to upload.
- Returns
a new
Dataset
instance.
-
create_dataset_from_hive_sync
(destination: str, query: str, hadoop_conf_path: str = '', auth_type: str = '', keytab_path: str = '', principal_user: str = '', db_name: str = '') Import a dataset from Hive using a Hive Query
- Parameters
hadoop_conf_path – (String) local path to hadoop configuration directory. Ex. /home/ubuntu/hadoop/conf
auth_type – (String) type of authentication to use, can be [noauth, keytab, keytabimpersonation]
destination – (String) name for resultant dataset, Ex. ‘my_hive_query_result’
query – (String) SQL hive query
keytab_path – Optional (String) path to keytab if using keytab authentication. Ex. /home/ubuntu/hive.keytab
principal_user – Optional (String) user id authorized by keytab to make queries. Ex. hive/localhost@H2O.AI
db_name –
Optional (String) name of database configuration in config.toml to use. ex. {“hive_1”: {configurations for hive #1},
”hive_config_2”: {configurations for alternative hive db #2}}
db_name could be “hive_1” or “hive_config_2” if provided will ignore all other optional arguments, and will take them directly from config.toml
- Returns
(Dataset) dataset object containing information regarding resultant dataset
-
create_dataset_from_jdbc_sync
(jdbc_user: str, password: str, query: str, id_column: str, destination: str, db_name: str = '', jdbc_jar: str = '', jdbc_url: str = '', jdbc_driver: str = '') → h2oai_client.messages.Dataset Import a dataset using JDBC drivers and SQL Query
- Parameters
jdbc_user – (String) username to authenticate query with
password – (String) password of user to authenticate query with
query – (String) SQL query
id_column – (String) name of id column in dataset
destination – (String) name for resulting dataset. ex. my_dataset or credit_fraud_data_train
db_name –
Optional (String) name of database configuration in config.toml to use. ex. {“postgres”: {configurations for postgres jdbc connection},
”sqlite”: {configurations for sqlite jdbc connection}}
db_name could be “postgres” or “sqlite” If provided will ignore jdbc_jar, jdbc_url, jdbc_driver arguments. Takes these parameters directly from config.toml configuration
jdbc_jar – Optional (String) path to JDBC driver jar. Uses this if db_name parameter not provided. Requires jdbc_url and jdbc_driver to be provided, in addition to this parameter
jdbc_url – Optional (String) JDBC connection url. Uses this if db_name parameter not provided Requires jdbc_jar and jdbc_driver to be provided, in addition to this parameter
jdbc_driver – Optional (String) classpath of JDBC driver. Uses this if db_name not provided Requires jdbc_jar and jdbc_url to be provided, in addition to this parameter
- Returns
(Dataset) dataset object containing information regarding resultant dataset
-
create_dataset_from_kdb
(args: h2oai_client.messages.KdbCreateDatasetArgs) → str
-
create_dataset_from_kdb_sync
(destination: str, query: str) Import a dataset using KDB+ Query.
- Parameters
destination – Destination for KDB+ Query to be stored on the local filesystem
query – KDB query. Use standard q queries.
-
create_dataset_from_minio
(filepath: str) → str
-
create_dataset_from_minio_sync
(filepath: str) → h2oai_client.messages.Dataset Import a dataset from Minio.
- Parameters
filepath – A path specifying the location of the data to upload.
- Returns
a new
Dataset
instance.
-
create_dataset_from_recipe
(recipe_path: str) → str
-
create_dataset_from_s3
(filepath: str) → str
-
create_dataset_from_s3_sync
(filepath: str) → h2oai_client.messages.Dataset Import a dataset.
- Parameters
filepath – A path specifying the location of the data to upload.
- Returns
a new
Dataset
instance.
-
create_dataset_from_snowflake
(args: h2oai_client.messages.SnowCreateDatasetArgs) → str
-
create_dataset_from_snowflake_sync
(region: str, database: str, warehouse: str, schema: str, role: str, optional_file_formatting: str, dst: str, query: str) → h2oai_client.messages.Dataset Import a dataset using Snowflake Query.
- Parameters
region – (Optional) Region where Snowflake warehouse exists
database – Name of Snowflake database to query
warehouse – Name of Snowflake warehouse to query
schema – Schema to use during query
role – (Optional) Snowflake role to be used for query
optional_file_formatting – (Optional) Additional arguments for formatting the output SQL query to csv file. See snowflake documentation for “Create File Format”
dst – Destination within local file system for resulting dataset
query – SQL query to pass to Snowflake
-
create_dataset_from_spark_hive
(args: h2oai_client.messages.HiveCreateDatasetArgs) → str
-
create_dataset_from_spark_jdbc
(args: h2oai_client.messages.JdbcCreateDatasetArgs) → str
-
create_dataset_from_upload
(filepath: str) → str
-
create_dataset_sync
(filepath: str) → h2oai_client.messages.Dataset Import a dataset.
- Parameters
filepath – A path specifying the location of the data to upload.
- Returns
a new
Dataset
instance.
-
create_entity_permission
(permission: h2oai_client.messages.Permission) → h2oai_client.messages.Permission Grant an access to an entity.
- Parameters
permission – New access permission to grant to an entity within.
-
create_local_rest_scorer
(model_key: str, local_rest_scorer_parameters: h2oai_client.messages.LocalRestScorerParameters) → str Creates new local rest scorer deployment for specified model
-
create_local_rest_scorer_sync
(model_key: str, deployment_name: str, port_number: int, max_heap_size: int = None) Deploy REST server locally on Driverless AI server. NOTE: This function is primarily for testing & ci purposes.
- Parameters
model_key – Name of model generated by experiment
deployment_name – Name to apply to deployment
port_number – port number on which the deployment REST service will be exposed
- Param
max_heap_size: maximum heap size (Gb) for rest server deployment. Used to set Xmx_g
- Return Deployment
Class Deployment with attributes associated with the successful deployment of
local rest scorer to Driverless AI server
-
create_project
(name: str, description: str) → str
-
create_sa
(mli_key: str) → str
-
delete_autoviz_job
(key: str) → None
-
delete_dataset
(key: str) → None
-
delete_entity_permission
(permission_id: str) → None Revoke an access to an entity. An async job returning key of JobStatus.
- Parameters
permission_id – The h2oai-storage ID of a permission to revoke.
-
delete_interpretation
(key: str) → None
-
delete_model
(key: str) → None
-
delete_model_diagnostic_job
(key: str) → None
-
delete_project
(key: str) → None
-
delete_storage_dataset
(dataset_id: str) → None - Parameters
dataset_id – The h2oai-storage ID of a dataset to delete remotely.
-
delete_storage_model
(model_id: str) → None - Parameters
model_id – The h2oai-storage ID of a model to delete remotely.
-
destroy_aws_lambda
(deployment_key: str) → str Shuts down an AWS lambda deployment removing it entirely from the associated AWS account. Any new deployment will result in a different endpoint URL using a different api_key.
-
destroy_local_rest_scorer
(deployment_key: str) → str
-
destroy_local_rest_scorer_sync
(deployment_key) Function to take down REST server that was deployed locally on Driverless AI server
- Parameters
deployment_key – Name of deployment as generated by function create_local_rest_scorer_sync
- Returns
job status, should be 0
-
do_tornado_upload
(filename, skip_parse=False)
-
download
(src_path: str, dest_dir: str) → str
-
download_prediction
(model_key: str, dataset_type: str, include_columns: List[str]) → str - Parameters
model_key – Model Key
dataset_type – Type of dataset [train/valid/test]
include_columns – List of columns, which should be included in predictions csv
-
download_prediction_sync
(dest_dir: str, model_key: str, dataset_type: str, include_columns: list) Downloads train/valid/test set predictions into csv file
- Parameters
dest_dir – Destination directory, where csv will be downloaded
model_key – Model key for which predictions will be downloaded
dataset_type – Type of dataset for which predictions will be downloaded. Available options are “train”, “valid” or “test”
include_columns – List of columns from dataset, which will be included in predictions csv
- Returns
Local path to csv
-
drop_local_rest_scorer_from_database
(key: str) → None
-
export_dataset_to_storage
(key: str, location: h2oai_client.messages.Location) → str Export a local dataset to the h2oai-storage location. An async job returning key of ExportEntityJob.
- Parameters
key – Key of the dataset to export.
-
export_model_to_storage
(key: str, location: h2oai_client.messages.Location) → str Export a local model to the h2oai-storage location. An async job returning key of ExportEntityJob.
- Parameters
key – Key of the model to export.
-
filter_sa_ws
(sa_key: str, row_from: int, row_to: int, expr_feature: str, expr_op: str, expr_value: str, f_expr: str) → h2oai_client.messages.SaShape filter the last history entry
-
fit_transform_batch
(model_key: str, training_dataset_key: str, validation_dataset_key: str, test_dataset_key: str, validation_split_fraction: float, seed: int, fold_column: str) → str
-
fit_transform_batch_sync
(model_key, training_dataset_key, validation_dataset_key, test_dataset_key, validation_split_fraction, seed, fold_column) → h2oai_client.messages.Transformation Use model feature engineering to transform provided dataset and get engineered feature in output CSV
- Parameters
model_key – Key of the model to use for transformation
training_dataset_key – Dataset key which will be used for training
validation_dataset_key – Dataset key which will be used for validation
test_dataset_key – Dataset key which will be used for testing
validation_split_fraction – If not having valid dataset, split ratio for splitting training dataset
seed – Random seed for splitting
fold_column – Fold column used for splitting
-
generate_local_rest_scorer_sample_data
(model_key: str) → str
-
get_1d_vega_plot
(dataset_key: str, plot_type: str, x_variable_name: str, kwargs: Any) → str
-
get_2d_vega_plot
(dataset_key: str, plot_type: str, x_variable_name: str, y_variable_name: str, kwargs: Any) → str
-
get_all_config_options
() → List[h2oai_client.messages.ConfigItem] Get metadata and current value for all exposed options
-
get_all_dia_parity_ui
(dia_key: str, dia_variable: str, low_threshold: float, high_threshold: float, offset: int, count: int, sort_column: str, sort_order: str) → List[h2oai_client.messages.DiaNamedMatrix]
-
get_app_version
() → h2oai_client.messages.AppVersion Returns the application version.
- Returns
The application version.
-
get_artifact_upload_job
(key: str, artifact_path: str) → h2oai_client.messages.ArtifactsExportJob
-
get_autoreport_job
(key: str) → h2oai_client.messages.AutoReportJob
-
get_autoviz
(dataset_key: str, maximum_number_of_plots: int) → str
-
get_autoviz_job
(key: str) → h2oai_client.messages.AutoVizJob
-
get_autoviz_summary
(key: str) → h2oai_client.messages.AutoVizSummary
-
get_barchart
(dataset_key: str, variable_name: str) → str
-
get_barchart_job
(key: str) → h2oai_client.messages.BarchartJob
-
get_boxplot
(dataset_key: str, variable_name: str) → str
-
get_boxplot_job
(key: str) → h2oai_client.messages.BoxplotJob
-
get_column_stat
(dataset_key: str, column_name: str, stat_type: str, meta: Any) → str Gets column statistics like mean, median or specific percentile
- Parameters
stat_type – Statistics type ref. h2oaicore/imputation_utils.py:ImputationType
meta – Can be e.g. percentile rank
-
get_config_options
(keys: List[str]) → List[h2oai_client.messages.ConfigItem] Get metadata and current value for specified options
-
get_configurable_options
() → List[h2oai_client.messages.ConfigItem] Get all config options configurable through expert settings
-
get_connector_config_options
(connector_type: str) → List[str]
-
get_connector_ui_config
(connector_type: str) → h2oai_client.messages.ConnectorProperties
-
get_create_csv_job
(key: str) → h2oai_client.messages.CreateCsvJob
-
get_create_deployment_job
(key: str) → h2oai_client.messages.CreateDeploymentJob
-
get_current_user_info
() → h2oai_client.messages.UserInfo
-
get_custom_recipe_job
(key: str) → h2oai_client.messages.CustomRecipeJob
-
get_custom_recipes_acceptance_jobs
() → List[h2oai_client.messages.CustomRecipeJob]
-
get_dai_feat_imp_status
(importance_type: str, mli_key: str) → h2oai_client.messages.JobStatus
-
get_data_preview_job
(key: str) → h2oai_client.messages.DataPreviewJob
-
get_data_recipe_preview
(dataset_key: str, code: str) → str Gets the preview of recipe on subset of data Returns DataPreviewJob
- Parameters
dataset_key – Dataset key on which recipe is run
code – Raw code of the recipe
-
get_dataset_job
(key: str) → h2oai_client.messages.DatasetJob
-
get_dataset_split_job
(key: str) → h2oai_client.messages.DatasetSplitJob
-
get_dataset_summary
(key: str) → h2oai_client.messages.DatasetSummary
-
get_datasets_for_project
(project_key: str, dataset_type: str) → List[h2oai_client.messages.DatasetSummary]
-
get_deployment
(key: str) → h2oai_client.messages.Deployment
-
get_destroy_deployment_job
(key: str) → h2oai_client.messages.DestroyDeploymentJob
-
get_dia
(dia_key: str, dia_variable: str, dia_ref_levels: List[str], offset: int, count: int, sort_column: str, sort_order: str) → h2oai_client.messages.Dia
-
get_dia_avp
(key: str, dia_variable: str) → h2oai_client.messages.DiaAvp
-
get_dia_parity_ui
(dia_key: str, dia_variable: str, ref_level: str, low_threshold: float, high_threshold: float, offset: int, count: int, sort_column: str, sort_order: str) → h2oai_client.messages.DiaMatrix
-
get_dia_status
(key: str) → h2oai_client.messages.JobStatus
-
get_dia_summary
(key: str) → h2oai_client.messages.DiaSummary
-
get_diagnostic_cm_for_threshold
(diagnostic_key: str, threshold: float) → str Returns Model diagnostic Job, where only argmax_cm will be populated
-
get_disk_stats
() → h2oai_client.messages.DiskStats Returns the server’s disk usage as if called by diskinfo (systemutils)
-
get_dotplot
(key: str, variable_name: str, digits: int) → str
-
get_dotplot_job
(key: str) → h2oai_client.messages.DotplotJob
-
get_exemplar_rows
(key: str, exemplar_id: int, offset: int, limit: int, variable_id: int) → h2oai_client.messages.ExemplarRowsResponse
-
get_experiment_preview
(dataset_key: str, validset_key: str, classification: bool, dropped_cols: List[str], target_col: str, is_time_series: bool, time_col: str, enable_gpus: bool, accuracy: int, time: int, interpretability: int, config_overrides: str, reproducible: bool, resumed_experiment_id: str) → str
-
get_experiment_preview_job
(key: str) → h2oai_client.messages.ExperimentPreviewJob
-
get_experiment_preview_sync
(dataset_key: str, validset_key: str, classification: bool, dropped_cols: List[str], target_col: str, is_time_series: bool, time_col: str, enable_gpus: bool, accuracy: int, time: int, interpretability: int, reproducible: bool, resumed_experiment_id: str, config_overrides: str) Get explanation text for experiment settings
- Parameters
dataset_key (str) – Training dataset key
validset_key (str) – Validation dataset key if any
classification (bool) – Indicating whether problem is classification or regression. Pass True for classification
dropped_cols (list of strings) – List of column names, which won’t be used in training
target_col (str) – Name of the target column for training
is_time_series (bool) – Whether it’s a time-series problem
enable_gpus (bool) – Specifies whether experiment will use GPUs for training
accuracy (int) – Accuracy parameter value
time (int) – Time parameter value
interpretability (int) – Interpretability parameter value
reproducbile (bool) – Set experiment to be reproducible
resumed_experiment_id (str) – Name of resumed experiment
config_overrides (str) – Raw config.toml file content (UTF8-encoded string)
- Returns
List of strings describing the experiment properties
- Return type
list of strings
-
get_experiment_summary_for_mli_key
(mli_job_key: str) → str
-
get_experiment_tuning_suggestion
(dataset_key: str, target_col: str, is_classification: bool, is_time_series: bool, config_overrides: str, cols_to_drop: List[str]) → h2oai_client.messages.ModelParameters
-
get_experiments_for_project
(project_key: str) → List[h2oai_client.messages.ModelSummaryWithDiagnostics]
-
get_experiments_stats
() → h2oai_client.messages.ExperimentsStats Returns stats about experiments
-
get_export_entity_job
(key: str) → h2oai_client.messages.ExportEntityJob
-
get_frame_row_by_value
(frame_name: str, feature_name: str, feature_value: str, num_rows: int, mli_job_key: str) → str
-
get_frame_row_offset_by_value
(feature_name: str, feature_value: str, mli_job_key: str) → int
-
get_frame_rows
(frame_name: str, row_offset: int, num_rows: int, mli_job_key: str, orig_feat_shapley: bool) → str
-
get_gpu_stats
() → h2oai_client.messages.GPUStats Returns gpu stats as if called by get_gpu_info_safe (systemutils)
-
get_grouped_boxplot
(datset_key: str, variable_name: str, group_variable_name: str) → str
-
get_grouped_boxplot_job
(key: str) → h2oai_client.messages.BoxplotJob
-
get_heatmap
(key: str, variable_names: List[str], matrix_type: str, normalize: bool, permute: bool, missing: bool) → str
-
get_heatmap_job
(key: str) → h2oai_client.messages.HeatMapJob
-
get_histogram
(dataset_key: str, variable_name: str, number_of_bars: Any, transform: str) → str
-
get_histogram_job
(key: str) → h2oai_client.messages.HistogramJob
-
get_hive_config
(db_name: str) → h2oai_client.messages.HiveConfig
-
get_import_entity_job
(key: str) → h2oai_client.messages.ImportEntityJob
-
get_importmodel_job
(key: str) → h2oai_client.messages.ImportModelJob
-
get_individual_conditional_expectation
(row_offset: int, mli_job_key: str) → str
-
get_interpret_timeseries_job
(key: str) → h2oai_client.messages.InterpretTimeSeriesJob
-
get_interpret_timeseries_summary
(key: str) → h2oai_client.messages.InterpretTimeSeriesSummary
-
get_interpretation_job
(key: str) → h2oai_client.messages.InterpretationJob
-
get_interpretation_summary
(key: str) → h2oai_client.messages.InterpretSummary
-
get_iteration_data
(key: str) → h2oai_client.messages.AutoDLProgress
-
get_jdbc_config
(db_name: str) → h2oai_client.messages.SparkJDBCConfig
-
get_json
(json_name: str, job_key: str) → str
-
get_mli_importance
(model_type: str, importance_type: str, mli_key: str, row_idx: int, code_offset: int, number_of_codes: int) → List[h2oai_client.messages.MliVarImpTable]
-
get_mli_nlp_status
(key: str) → h2oai_client.messages.JobStatus
-
get_mli_nlp_tokens_status
(key: str) → h2oai_client.messages.JobStatus
-
get_mli_variable_importance
(key: str, mli_job_key: str, original: bool) → h2oai_client.messages.VarImpTable
-
get_model_diagnostic
(model_key: str, dataset_key: str) → str Makes model diagnostic from DAI model, containing logic for creating the predictions
-
get_model_diagnostic_job
(key: str) → h2oai_client.messages.ModelDiagnosticJob
-
get_model_job
(key: str) → h2oai_client.messages.ModelJob
-
get_model_job_partial
(key: str, from_iteration: int) → h2oai_client.messages.ModelJob
-
get_model_summary
(key: str) → h2oai_client.messages.ModelSummary
-
get_model_summary_with_diagnostics
(key: str) → h2oai_client.messages.ModelSummaryWithDiagnostics
-
get_model_trace
(key: str, offset: int, limit: int) → h2oai_client.messages.ModelTraceEvents
-
get_mojo_pipeline_job
(key: str) → h2oai_client.messages.MojoPipelineJob
-
get_multinode_stats
() → h2oai_client.messages.MultinodeStats Return stats about multinode
-
get_network
(dataset_key: str, matrix_type: str, normalize: bool) → str
-
get_network_job
(key: str) → h2oai_client.messages.NetworkJob
-
get_original_mli_frame_rows
(row_offset: int, num_rows: int, mli_job_key: str) → str
-
get_original_model_ice
(row_offset: int, mli_job_key: str) → str
-
get_outliers
(dataset_key: str, variable_names: List[str], alpha: float) → str
-
get_outliers_job
(key: str) → h2oai_client.messages.OutliersJob
-
get_parallel_coordinates_plot
(key: str, variable_names: List[str]) → str
-
get_parallel_coordinates_plot_job
(key: str) → h2oai_client.messages.ParallelCoordinatesPlotJob
-
get_prediction_job
(key: str) → h2oai_client.messages.PredictionJob
-
get_project
(key: str) → h2oai_client.messages.Project
-
get_raw_data
(key: str, offset: int, limit: int) → h2oai_client.messages.ExemplarRowsResponse
-
get_sa
(sa_key: str, hist_entry: int, ws_features: List[str], main_chart_feature: str) → h2oai_client.messages.Sa
-
get_sa_create_progress
(sa_key: str) → int
-
get_sa_dataset_summary
(sa_key: str) → h2oai_client.messages.SaDatasetSummary
-
get_sa_history
(sa_key: str) → h2oai_client.messages.SaHistory
-
get_sa_history_entry
(sa_key: str, hist_entry: int) → h2oai_client.messages.SaHistoryItem
-
get_sa_main_chart_data
(sa_key: str, hist_entry: int, feature: str, page_offset: int, page_size: int, aggregate: bool) → h2oai_client.messages.SaMainChartData
-
get_sa_predictions
(sa_key: str, hist_entry: int) → h2oai_client.messages.SaWorkingSetPreds
-
get_sa_preds_history_chart_data
(sa_key: str) → h2oai_client.messages.SaPredsHistoryChartData
-
get_sa_score_progress
(sa_key: str, hist_entry: int) → int
-
get_sa_statistics
(sa_key: str, hist_entry: int) → h2oai_client.messages.SaStatistics
-
get_sa_ws
(sa_key: str, hist_entry: int, features: List[str], page_offset: int, page_size: int) → h2oai_client.messages.SaWorkingSet
-
get_sa_ws_summary
(sa_key: str, hist_entry: int) → h2oai_client.messages.SaWorkingSetSummary
-
get_sa_ws_summary_for_column
(sa_key: str, hist_entry: int, column: str) → h2oai_client.messages.SaFeatureMeta
-
get_sa_ws_summary_for_row
(sa_key: str, hist_entry: int, row: int) → h2oai_client.messages.SaWorkingSetRow
-
get_sa_ws_summary_row
(sa_key: str, hist_entry: int, features: List[str]) → h2oai_client.messages.SaWorkingSetRow
-
get_sas_for_mli
(mli_key: str) → List[str]
-
get_scale
(dataset_key: str, data_min: float, data_max: float) → h2oai_client.messages.H2OScale
-
get_scatterplot
(dataset_key: str, x_variable_name: str, y_variable_name: str) → str
-
get_scatterplot_job
(key: str) → h2oai_client.messages.ScatterPlotJob
-
get_scoring_pipeline_job
(key: str) → h2oai_client.messages.ScoringPipelineJob
-
get_timeseries_split_suggestion
(train_key: str, time_col: str, time_groups_columns: List[str], test_key: str, config_overrides: str) → str
-
get_timeseries_split_suggestion_job
(key: str) → h2oai_client.messages.TimeSeriesSplitSuggestionJob
-
get_transformation_job
(key: str) → h2oai_client.messages.TransformationJob
-
get_users
() → List[str]
-
get_variable_importance
(key: str) → h2oai_client.messages.VarImpTable
-
get_vega_plot
(dataset_key: str, plot_type: str, variable_names: List[str], kwargs: Any) → str
-
get_vega_plot_job
(key: str) → h2oai_client.messages.VegaPlotJob
-
get_vis_stats
(dataset_key: str) → str
-
get_vis_stats_job
(key: str) → h2oai_client.messages.VisStatsJob
-
have_valid_license
() → h2oai_client.messages.License
-
import_model
(filepath: str) → str
-
import_storage_dataset
(dataset_id: str) → str Import dataset from the h2oai-storage locally. An async job returning key of ImportEntityJob.
- Parameters
dataset_id – The h2oai-storage ID of the dataset to import.
-
import_storage_model
(model_id: str) → str Import model from the h2oai-storage locally. An async job returning key of ImportEntityJob.
- Parameters
model_id – The h2oai-storage ID of the model to import.
-
is_autoreport_active
(key: str) → bool Indicates whether there is some active autoreport job with such key
-
is_original_model_pd_available
(mli_job_key: str) → bool
-
is_original_shapley_available
(mli_job_key: str) → bool
-
is_sa_enabled
() → bool Sensitivity analysis: REST RPC
-
is_valid_license_key
(license_key: str) → h2oai_client.messages.License
-
link_dataset_to_project
(project_key: str, dataset_key: str, dataset_type: str) → bool
-
link_experiment_to_project
(project_key: str, experiment_key: str) → bool
-
list_allowed_file_systems
(offset: int, limit: int) → List[str]
-
list_aws_regions
(aws_credentials: h2oai_client.messages.AwsCredentials) → List[str] List supported AWS regions.
-
list_azr_blob_store_buckets
(offset: int, limit: int) → List[str]
-
list_datasets
(offset: int, limit: int, include_inactive: bool) → h2oai_client.messages.ListDatasetQueryResponse - Parameters
include_inactive – Whether to include datasets in failed, cancelled or in-progress state.
-
list_datasets_with_similar_name
(name: str) → List[str]
-
list_deployments
(offset: int, limit: int) → List[h2oai_client.messages.Deployment]
-
list_entity_permissions
(entity_id: str) → List[h2oai_client.messages.Permission] List permissions of a h2oai-storage entity.
- Parameters
entity_id – The h2oai-storage ID of the entity to list the permissions of.
-
list_experiment_artifacts
(model_key: str) → h2oai_client.messages.ExperimentArtifactSummary
-
list_gcs_buckets
(offset: int, limit: int) → List[str]
-
list_interpret_timeseries
(offset: int, limit: int) → List[h2oai_client.messages.InterpretTimeSeriesSummary]
-
list_interpretations
(offset: int, limit: int) → List[h2oai_client.messages.InterpretSummary]
-
list_keys_by_name
(kind: str, display_name: str) → List[str] List all keys of caller’s entities with the given display_name and kind. Note that display_names are not unique so this call returns a list of keys.
- Parameters
kind – Kind of entities to be listed.
display_name – Display name of the entities to be listed.
-
list_minio_buckets
(offset: int, limit: int) → List[str]
-
list_model_diagnostic
(offset: int, limit: int) → List[h2oai_client.messages.ModelDiagnosticJob]
-
list_model_estimators
() → List[h2oai_client.messages.ModelEstimatorWrapper]
-
list_model_iteration_data
(key: str, offset: int, limit: int) → List[h2oai_client.messages.AutoDLProgress]
-
list_models
(offset: int, limit: int) → h2oai_client.messages.ListModelQueryResponse
-
list_models_with_similar_name
(name: str) → List[str] List all model names with display_name similar as name, e.g. to prevent display_name collision :returns: List of similar model names
-
list_projects
(offset: int, limit: int) → List[h2oai_client.messages.Project]
-
list_s3_buckets
(offset: int, limit: int) → List[str]
-
list_scorers
() → List[h2oai_client.messages.Scorer]
-
list_storage_datasets
(offset: int, limit: int, location: h2oai_client.messages.Location) → h2oai_client.messages.ListDatasetQueryResponse List datasets based on the h2oai-storage location.
-
list_storage_models
(offset: int, limit: int, location: h2oai_client.messages.Location) → h2oai_client.messages.ListModelQueryResponse List models based on the h2oai-storage location.
-
list_storage_projects
(offset: int, limit: int) → h2oai_client.messages.ListProjectQueryResponse List h2oai-storage projects from USER_PROJECTS root location.
-
list_storage_users
(offset: int, limit: int) → List[h2oai_client.messages.StorageUser] List users known to h2oai-storage.
-
list_transformers
() → List[h2oai_client.messages.TransformerWrapper]
-
list_visualizations
(offset: int, limit: int) → List[h2oai_client.messages.AutoVizSummary]
-
make_autoreport
(model_key: str, mli_key: str, individual_rows: List[int], autoviz_key: str, template_path: str, placeholders: Any, external_dataset_keys: List[str], config_overrides: str) → str
-
make_autoreport_sync
(model_key: str, template_path: str = '', config_overrides: str = '', **kwargs) Make an autoreport from a Driverless AI experiment.
- Parameters
model_key – Model key.
template_path – Path to custom autoreport template, which will be uploaded and used during rendering
config_overrides – TOML string format with configurations overrides for AutoDoc
**kwargs – See below
- Keyword Arguments
- mli_key (
str
) – MLI instance key
- mli_key (
- autoviz_key (
str
) – Visualization key
- autoviz_key (
- individual_rows (
list
) – List of row indices for rows of interest in training dataset, for which additional information can be shown (ICE, LOCO, KLIME)
- individual_rows (
- placeholders (
dict
) – Additional text to be added to documentation in dict format, key is the name of the placeholder in template, value is the text content to be added in place of placeholder
- placeholders (
- external_dataset_keys (
list
) – List of additional dataset keys, to be used for computing different statistics and generating plots.
- external_dataset_keys (
- Returns
a new
AutoReport
instance.
-
make_dataset_split
(dataset_key: str, output_name1: str, output_name2: str, target: str, fold_col: str, time_col: str, ratio: float, seed: int) → str
-
make_dataset_split_sync
(dataset_key: str, output_name1: str, output_name2: str, target: str, fold_col: str, time_col: str, ratio: float, seed: int) → str
-
make_model_diagnostic_sync
(model_key: str, dataset_key: str) → h2oai_client.messages.Dataset Make model diagnostics from a model and dataset
- Parameters
model_key – Model key.
dataset_key – Dataset key
- Returns
a new
ModelDiagnostic
instance.
-
make_prediction
(model_key: str, dataset_key: str, output_margin: bool, pred_contribs: bool, keep_non_missing_actuals: bool, include_columns: List[str]) → str
-
make_prediction_sync
(model_key: str, dataset_key: str, output_margin: bool, pred_contribs: bool, keep_non_missing_actuals: bool = False, include_columns: list = []) Make a prediction from a model.
- Parameters
model_key – Model key.
dataset_key – Dataset key on which prediction will be made
output_margin – Whether to return predictions as margins (in link space)
pred_contribs – Whether to return prediction contributions
keep_non_missing_actuals –
include_columns – List of column names, which should be included in output csv
- Returns
a new
Predictions
instance.
-
modify_dataset_by_recipe_file
(key: str, recipe_path: str) → str Returns custom recipe job key
- Parameters
key – Dataset key
recipe_path – Recipe file path
-
modify_dataset_by_recipe_url
(key: str, recipe_url: str) → str Returns custom recipe job key
- Parameters
key – Dataset key
recipe_url – Url of the recipe
-
perform_chunked_upload
(file_path, skip_parse=False)
-
perform_stream_upload
(file_path, skip_parse=False)
-
perform_upload
(file_path, skip_parse=False)
-
pop_sa_history
(sa_key: str) → bool
-
query_datatable
(frame_name: str, query_str: str, job_key: str) → str
-
remove_sa_history_entry
(sa_key: str, hist_entry: int) → bool
-
reset_sa_ws
(sa_key: str) → h2oai_client.messages.SaShape
-
restart_deployment
(deployment_key: str) → str
-
run_custom_recipes_acceptance_checks
() → None
-
run_interpret_timeseries
(interpret_timeseries_params: h2oai_client.messages.InterpretTimeSeriesParameters) → str
-
run_interpret_timeseries_sync
(dai_model_key: str, **kwargs) Run Interpretation for Time Series
- Parameters
dai_model_key – Driverless AI Time Series Model key, which will be interpreted
**kwargs – See below
- :Keyword Arguments
- sample_num_rows (
int
) – Number of rows to sample to generate metrics. Default -1 (All rows)
- sample_num_rows (
- Returns
a new :class: InterpretTimeSeries instance.
-
run_interpretation
(interpret_params: h2oai_client.messages.InterpretParameters) → str
-
run_interpretation_sync
(dai_model_key: str, dataset_key: str, target_col: str, **kwargs) Run MLI.
- Parameters
dai_model_key – Driverless AI Model key, which will be interpreted
dataset_key – Dataset key
target_col – Target column name
**kwargs – See below
- Keyword Arguments
- use_raw_features (
bool
) – Show interpretation based on the original columns. Default True
- use_raw_features (
- weight_col (
str
) – Weight column used by Driverless AI experiment
- weight_col (
- drop_cols (
list
) – List of columns not used for interpretation
- drop_cols (
- klime_cluster_col (
str
) – Column used to split data into k-LIME clusters
- klime_cluster_col (
- nfolds (
int
) – Number of folds used by the surrogate models. Default 0
- nfolds (
- sample (
bool
) – Whether the training dataset should be sampled down for the interpretation
- sample (
- sample_num_rows (
int
) – Number of sampled rows. Default -1 == specified by config.toml
- sample_num_rows (
- qbin_cols (
list
) – List of numeric columns to convert to quantile bins (can help fit surrogate models)
- qbin_cols (
- qbin_count (
int
) – Number of quantile bins for the quantile bin columns. Default 0
- qbin_count (
- lime_method (
str
) – LIME method type from [‘k-LIME’, ‘LIME_SUP’]. Default ‘k-LIME’
- lime_method (
- dt_tree_depth (
int
) – Max depth of decision tree surrogate model. Default 3
- dt_tree_depth (
- config_overrides (
str
) – Driverless AI config overrides for separate experiment in TOML string format
- config_overrides (
- Returns
a new
Interpretation
instance.
-
save_license_key
(license_key: str) → h2oai_client.messages.License
-
score_sa
(sa_key: str, hist_entry: int) → int
-
search_azr_blob_store_files
(pattern: str) → h2oai_client.messages.FileSearchResults
-
search_dtap_files
(pattern: str) → h2oai_client.messages.FileSearchResults
-
search_files
(pattern: str) → h2oai_client.messages.FileSearchResults
-
search_gcs_files
(pattern: str) → h2oai_client.messages.FileSearchResults
-
search_hdfs_files
(pattern: str) → h2oai_client.messages.FileSearchResults
-
search_minio_files
(pattern: str) → h2oai_client.messages.FileSearchResults
-
search_s3_files
(pattern: str) → h2oai_client.messages.FileSearchResults
-
set_config_option
(key: str, value: Any) → List[h2oai_client.messages.ConfigItem] Set value for a given option Returns list of settings modified byt config rules application
-
set_config_option_dummy
(key: str, value: Any, config_overrides: str) → List[h2oai_client.messages.ConfigItem] Set value for a given option on local copy of config, without touching the global config Returns list of settings modified byt config rules application
- Parameters
config_overrides – Used to initialize local config
-
start_echo
(message: str, repeat: int) → str
-
start_experiment
(req: h2oai_client.messages.ModelParameters, experiment_name: str) → str Start a new experiment.
- Parameters
req – The experiment’s parameters.
experiment_name – Display name of newly started experiment
- Returns
The experiment’s key.
-
start_experiment_sync
(dataset_key: str, target_col: str, is_classification: bool, accuracy: int, time: int, interpretability: int, scorer=None, score_f_name: str = None, **kwargs) → h2oai_client.messages.Model Start an experiment.
- Parameters
dataset_key (
str
) – Training dataset keytarget_col (
str
) – Name of the targed columnis_classification (
bool
) – True for classification problem, False for regressionaccuracy – Accuracy setting [1-10]
time – Time setting [1-10]
interpretability – Interpretability setting [1-10]
score (
str
) – <same as score_f_name> for backwards compatibiiltyscore_f_name (
str
) – Name of one of the available scorers Default None - automatically decided**kwargs – See below
- Keyword Arguments
- validset_key (
str
) – Validation daset key
- validset_key (
- testset_key (
str
) – Test daset key
- testset_key (
- weight_col (
str
) – Weights column name
- weight_col (
- fold_col (
str
) – Fold column name
- fold_col (
- cols_to_drop (
list
) – List of column to be dropped
- cols_to_drop (
- enable_gpus (
bool
) – Allow GPU usage in experiment. Default True
- enable_gpus (
- seed (
int
) – Seed for PRNG. Default False
- seed (
- time_col (
str
) – Time column name, containing time ordering for timeseries problems
- time_col (
- is_timeseries (
bool
) – Specifies whether problem is timeseries. Default False
- is_timeseries (
- time_groups_columns (
list
) – List of column names, contributing to time ordering
- time_groups_columns (
- unavailable_columns_at_prediction_time (
list
) – List of column names, which won’t be present at prediction time in the testing dataset
- unavailable_columns_at_prediction_time (
- time_period_in_seconds (
int
) – The length of the time period in seconds, used in timeseries problems
- time_period_in_seconds (
- num_prediction_periods (
int
) – Timeseries forecast horizont in time period units
- num_prediction_periods (
- num_gap_periods (
int
) – Number of time periods after which forecast starts
- num_gap_periods (
- config_overrides (
str
) – Driverless AI config overrides for separate experiment in TOML string format
- config_overrides (
- resumed_model_key (
str
) – Experiment key, used for retraining/re-ensembling/starting from checkpoint
- resumed_model_key (
- force_skip_acceptance_tests (
bool
) – Force experiment to skip custom recipes acceptance tests to finish, which may lead to not having all expected custom recipes
- force_skip_acceptance_tests (
- experiment_name (
str
) – Display name of newly started experiment
- experiment_name (
- cols_imputation (
List[ColumnImputation]
) – List of column imputations for dataset. Ref messages::ColumnImputation
- cols_imputation (
- Returns
a new
Model
instance.
-
stop_echo
(key: str) → None
-
stop_experiment
(key: str) → None Stop the experiment.
- Parameters
key – The experiment’s key.
-
tornado_raw_producer
(filename, write)
-
track_subsystem_event
(subsystem_name: str, event_name: str) → None
-
type_of_mli
(mli_job_key: str) → str
-
unlink_dataset_from_project
(project_key: str, dataset_key: str, dataset_type: str) → bool
-
unlink_experiment_from_project
(project_key: str, experiment_key: str) → bool
-
update_dataset_col_format
(key: str, colname: str, datetime_format: str) → None
-
update_dataset_col_logical_types
(key: str, colname: str, logical_types: List[str]) → None
-
update_dataset_name
(key: str, new_name: str) → None
-
update_mli_description
(key: str, new_description: str) → None
-
update_model_description
(key: str, new_description: str) → None
-
update_project_name
(key: str, name: str) → bool
-
upload_custom_recipe_sync
(file_path: str) → h2oai_client.messages.CustomRecipe Upload a custom recipe
- Parameters
file_path – A path specifying the location of the python file containing custom transformer classes
- Returns
CustomRecipe: which contains models, transformers and scorers lists to see newly loaded recipes
-
upload_dataset
(file_path: str) → str Upload a dataset
- Parameters
file_path – A path specifying the location of the data to upload.
- Returns
str: REST response
-
upload_dataset_sync
(file_path) Upload a dataset and wait for the upload to complete.
- Parameters
file_path – A path specifying the location of the file to upload.
- Returns
a Dataset instance.
-
upload_experiment_artifacts
(model_key: str, user_note: str, artifact_path: str, name_override: str) → str
-
upload_file_sync
(file_path: str) Upload a file.
- Parameters
file_path – A path specifying the location of the file to upload.
- Returns
str: Absolute server-side path to the uploaded file.
-