dai.autoreport.Rd
Creates and (optionally) downloads the autoreport for the experiment.
dai.autoreport( model, path = getwd(), download = TRUE, template_path = NULL, force = FALSE, config_overrides = "", mli_key = NULL, autoviz_key = NULL, individual_rows = NULL, placeholders = NULL, external_datasets = NULL, progress = getOption("dai.progress", TRUE) )
model | DAIModel instance. |
---|---|
path | Destination path - either a directory or a full file path. |
download | Whether to directly download the report or not. |
template_path | Path to a custom autoreport template, which will be uploaded and used for the rendering. |
force | Whether to overwrite the file at |
config_overrides | Raw config.toml file content (UTF8-encoded string) or a list/vector of config variables (optional). |
mli_key | MLI instance key (optional). |
autoviz_key | Visualization key (optional). |
individual_rows | A vector of row indices for rows of interest in the training dataset for which additional information can be shown (ICE, LOCO, KLIME), optional. |
placeholders | Additional text to be added to the report as a named list, where the name corresponds to the placeholder in the template, and value is the text to be used instead of the placeholder (optional). |
external_datasets | Either a list of DAIFrame objects or a character vector of keys of the datasets to be used for producing additional statistics and plots (optional). |
progress | Whether to display a progress bar. |
The path of the report.
dai.download_file
if (FALSE) { dai.connect(uri = 'http://127.0.0.1:12345', username = 'h2oai', password = 'h2oai') iris_dai <- as.DAIFrame(iris, progress = FALSE) # Simple model with minimal parameters simple_model <- dai.train(training_frame = iris_dai, target_col = 'Species', is_classification = TRUE, is_timeseries = FALSE, time = 1, accuracy = 1, interpretability = 10, progress = FALSE) # Create and download the report to the current working directory dai.autoreport(simple_model) }