dai.preview_experiment.RdPrints a textual description of experimental settings given the specified parameters.
dai.preview_experiment( training_frame, target_col, is_classification, is_timeseries, accuracy, time, interpretability, enable_gpus = TRUE, reproducible = FALSE, validation_frame = NULL, cols_to_drop = NULL, time_col = NULL, resumed_model = NULL, config_overrides = "", progress = getOption("dai.progress", TRUE) )
| training_frame | DAIFrame to be used for the model training. |
|---|---|
| target_col | The name of the target variable. |
| is_classification | Whether the predicted variable is categorical (true) or numerical (false). |
| is_timeseries | Whether the target variable is a time-series or not. |
| accuracy | Accuracy setting [1-10] (optional). |
| time | Time setting [1-10] (optional). |
| interpretability | Interpretability setting [1-10] (optional). |
| enable_gpus | Whether to use GPUs (optional). |
| reproducible | Whether to set the experiment to be reproducible or not. |
| validation_frame | DAIFrame to use for the model validation during the model training (optional). |
| cols_to_drop | A character vector of column names to be dropped from the data (optional). |
| time_col | Time column name, containing time ordering for timeseries problems (optional). |
| resumed_model | Model used for retraining/re-ensembling/starting from checkpoint (optional). You may want to also set the |
| config_overrides | Raw config.toml file content (UTF8-encoded string) or a list/vector of config variables. |
| progress | Whether to display a progress bar. |
A character vector of the lines of the experiment preview (invisibly).