dai.preview_experiment.Rd
Prints a textual description of experimental settings given the specified parameters.
dai.preview_experiment( training_frame, target_col, is_classification, is_timeseries, accuracy, time, interpretability, enable_gpus = TRUE, reproducible = FALSE, validation_frame = NULL, cols_to_drop = NULL, time_col = NULL, resumed_model = NULL, fold_col = NULL, weight_col = NULL, config_overrides = "", progress = getOption("dai.progress", TRUE) )
training_frame | DAIFrame to be used for the model training. |
---|---|
target_col | The name of the target variable. |
is_classification | Whether the predicted variable is categorical (true) or numerical (false). |
is_timeseries | Whether the target variable is a time-series or not. |
accuracy | Accuracy setting [1-10] (optional). |
time | Time setting [1-10] (optional). |
interpretability | Interpretability setting [1-10] (optional). |
enable_gpus | Whether to use GPUs (optional). |
reproducible | Whether to set the experiment to be reproducible or not. |
validation_frame | DAIFrame to use for the model validation during the model training (optional). |
cols_to_drop | A character vector of column names to be dropped from the data (optional). |
time_col | Time column name, containing time ordering for timeseries problems (optional). |
resumed_model | Model used for retraining/re-ensembling/starting from checkpoint (optional). You may want to also set the |
fold_col | Fold column name (optional). |
weight_col | Weight column name (optional). |
config_overrides | Raw config.toml file content (UTF8-encoded string) or a list/vector of config variables. |
progress | Whether to display a progress bar. |
A character vector of the lines of the experiment preview (invisibly).