predict.DAIModel.Rd
Predicts the target on new data using the DAIModel. The predictions can be also obtained using the scoring pipelines independently of the Driverless server.
# S3 method for DAIModel predict( object, newdata, output_margin = FALSE, pred_contribs = FALSE, pred_contribs_original = FALSE, enable_mojo = TRUE, fast_approx = FALSE, fast_approx_contribs = FALSE, include_columns = NULL, pred_labels = FALSE, return_df = TRUE, progress = getOption("dai.progress", TRUE), ... )
object | Model for the prediction. |
---|---|
newdata | DAIFrame with the new data. |
output_margin | Whether to return predictions as margins (in link space). |
pred_contribs | Whether to return prediction contributions. |
pred_contribs_original | Whether to return prediction contributions in original feature space. |
enable_mojo | Whether to use MOJO (if available) to make predictions. |
fast_approx | Whether to speed up prediction with approximation |
fast_approx_contribs | Whether to speed up prediction contributions with approximation |
include_columns | Vector of column names to be included in the output. |
return_df | Whether to return the predictions as data.frame or a file path. |
progress | Whether to display a progress bar. |
... | Additional parameters to pass. |
Either a data-frame or a path of the resulting CSV on the server.
dai.connect(uri = 'http://127.0.0.1:12345', username = 'h2oai', password = 'h2oai') iris_dai <- as.DAIFrame(iris, progress = FALSE) model <- dai.train(training_frame = iris_dai, target_col = 'Species', is_classification = TRUE, is_timeseries = FALSE, progress = FALSE) predictions <- predict(model, newdata = iris_dai, progress = FALSE) print(predictions)