
Gradient Boosting Machine with H2O

Michal Malohlava Arno Candel

Edited by: Angela Bartz

http://h2o.ai/resources/

March 2024: Seventh Edition

http://h2o.ai/resources/

Gradient Boosting Machine with H2O
by Michal Malohlava & Arno Candel
with assitance from Cliff Click, Hank Roark, & Viraj Parmar
Edited by: Angela Bartz

Published by H2O.ai, Inc.
2307 Leghorn St.
Mountain View, CA 94043

©2016-2024 H2O.ai, Inc. All Rights Reserved.

March 2024: Seventh Edition

Photos by ©H2O.ai, Inc.

All copyrights belong to their respective owners.
While every precaution has been taken in the
preparation of this book, the publisher and
authors assume no responsibility for errors or
omissions, or for damages resulting from the
use of the information contained herein.

Printed in the United States of America.

Contents
1 Introduction 4

2 What is H2O? 4

3 Installation 5
3.1 Installation in R . 5
3.2 Installation in Python . 6
3.3 Pointing to a Different H2O Cluster 7
3.4 Example Code . 7
3.5 Citation . 7

4 Overview 8
4.1 Summary of Features . 8
4.2 Theory and Framework . 9
4.3 Distributed Trees . 10
4.4 Treatment of Factors . 11
4.5 Key Parameters . 12

4.5.1 Convergence-based Early Stopping 13
4.5.2 Time-based Early Stopping 13
4.5.3 Stochastic GBM . 13
4.5.4 Distributions and Loss Functions 14

5 Use Case: Airline Data Classification 15
5.1 Loading Data . 15
5.2 Performing a Trial Run . 16
5.3 Extracting and Handling the Results 19
5.4 Web Interface . 20
5.5 Variable Importances . 20
5.6 Supported Output . 20
5.7 Java Models . 21
5.8 Grid Search for Model Comparison 21

5.8.1 Cartesian Grid Search 21
5.8.2 Random Grid Search 23

6 Model Parameters 24

7 Acknowledgments 28

8 References 29

9 Authors 30

4 | What is H2O?

1 Introduction
This document describes how to use Gradient Boosting Machine (GBM) with
H2O. Examples are written in R and Python. Topics include:

� installation of H2O

� basic GBM concepts

� building GBM models in H2O

� interpreting model output

� making predictions

2 What is H2O?
H2O.ai is focused on bringing AI to businesses through software. Its flagship
product is H2O, the leading open source platform that makes it easy for
financial services, insurance companies, and healthcare companies to deploy AI
and deep learning to solve complex problems. More than 9,000 organizations and
80,000+ data scientists depend on H2O for critical applications like predictive
maintenance and operational intelligence. The company – which was recently
named to the CB Insights AI 100 – is used by 169 Fortune 500 enterprises,
including 8 of the world’s 10 largest banks, 7 of the 10 largest insurance
companies, and 4 of the top 10 healthcare companies. Notable customers
include Capital One, Progressive Insurance, Transamerica, Comcast, Nielsen
Catalina Solutions, Macy’s, Walgreens, and Kaiser Permanente.

Using in-memory compression, H2O handles billions of data rows in-memory,
even with a small cluster. To make it easier for non-engineers to create complete
analytic workflows, H2O’s platform includes interfaces for R, Python, Scala,
Java, JSON, and CoffeeScript/JavaScript, as well as a built-in web interface,
Flow. H2O is designed to run in standalone mode, on Hadoop, or within a
Spark Cluster, and typically deploys within minutes.

H2O includes many common machine learning algorithms, such as generalized
linear modeling (linear regression, logistic regression, etc.), Näıve Bayes, principal
components analysis, k-means clustering, and word2vec. H2O implements best-
in-class algorithms at scale, such as distributed random forest, gradient boosting,
and deep learning. H2O also includes a Stacked Ensembles method, which finds
the optimal combination of a collection of prediction algorithms using a process
known as ”stacking.” With H2O, customers can build thousands of models and
compare the results to get the best predictions.

Installation | 5

H2O is nurturing a grassroots movement of physicists, mathematicians, and
computer scientists to herald the new wave of discovery with data science by
collaborating closely with academic researchers and industrial data scientists.
Stanford university giants Stephen Boyd, Trevor Hastie, and Rob Tibshirani
advise the H2O team on building scalable machine learning algorithms. And
with hundreds of meetups over the past several years, H2O continues to remain
a word-of-mouth phenomenon.

Try it out

� Download H2O directly at http://h2o.ai/download.

� Install H2O’s R package from CRAN at https://cran.r-project.
org/web/packages/h2o/.

� Install the Python package from PyPI at https://pypi.python.
org/pypi/h2o/.

Join the community

� To learn about our training sessions, hackathons, and product updates,
visit http://h2o.ai.

� To learn about our meetups, visit https://www.meetup.com/
topics/h2o/all/.

� Have questions? Post them on Stack Overflow using the h2o tag at
http://stackoverflow.com/questions/tagged/h2o.

� Have a Google account (such as Gmail or Google+)? Join the open source
community forum at https://groups.google.com/d/forum/
h2ostream.

� Join the chat at https://gitter.im/h2oai/h2o-3.

3 Installation
H2O requires Java; if you do not already have Java installed, install it from
https://java.com/en/download/ before installing H2O.

The easiest way to directly install H2O is via an R or Python package.

3.1 Installation in R
To load a recent H2O package from CRAN, run:

1 install.packages("h2o")

http://h2o.ai/download
https://cran.r-project.org/web/packages/h2o/
https://cran.r-project.org/web/packages/h2o/
https://pypi.python.org/pypi/h2o/
https://pypi.python.org/pypi/h2o/
http://h2o.ai
https://www.meetup.com/topics/h2o/all/
https://www.meetup.com/topics/h2o/all/
http://stackoverflow.com/questions/tagged/h2o
https://groups.google.com/d/forum/h2ostream
https://groups.google.com/d/forum/h2ostream
https://gitter.im/h2oai/h2o-3
https://java.com/en/download/

6 | Installation

Note: The version of H2O in CRAN may be one release behind the current
version.

For the latest recommended version, download the latest stable H2O-3 build
from the H2O download page:

1. Go to http://h2o.ai/download.
2. Choose the latest stable H2O-3 build.
3. Click the “Install in R” tab.
4. Copy and paste the commands into your R session.

After H2O is installed on your system, verify the installation:

1 library(h2o)
2

3 #Start H2O on your local machine using all available
cores.

4 #By default, CRAN policies limit use to only 2 cores.
5 h2o.init(nthreads = -1)
6

7 #Get help
8 ?h2o.glm
9 ?h2o.gbm

10 ?h2o.deeplearning
11

12 #Show a demo
13 demo(h2o.glm)
14 demo(h2o.gbm)
15 demo(h2o.deeplearning)

3.2 Installation in Python
To load a recent H2O package from PyPI, run:

1 pip install h2o

To download the latest stable H2O-3 build from the H2O download page:

1. Go to http://h2o.ai/download.
2. Choose the latest stable H2O-3 build.
3. Click the “Install in Python” tab.
4. Copy and paste the commands into your Python session.

After H2O is installed, verify the installation:

http://h2o.ai/download
http://h2o.ai/download

Installation | 7

1 import h2o
2

3 # Start H2O on your local machine
4 h2o.init()
5

6 # Get help
7 help(h2o.estimators.glm.H2OGeneralizedLinearEstimator)
8 help(h2o.estimators.gbm.H2OGradientBoostingEstimator)
9 help(h2o.estimators.deeplearning.

H2ODeepLearningEstimator)
10

11 # Show a demo
12 h2o.demo("glm")
13 h2o.demo("gbm")
14 h2o.demo("deeplearning")

3.3 Pointing to a Different H2O Cluster
The instructions in the previous sections create a one-node H2O cluster on your
local machine.

To connect to an established H2O cluster (in a multi-node Hadoop environment,
for example) specify the IP address and port number for the established cluster
using the ip and port parameters in the h2o.init() command. The syntax
for this function is identical for R and Python:

1 h2o.init(ip = "123.45.67.89", port = 54321)

3.4 Example Code
R and Python code for the examples in this document are available here:
https://github.com/h2oai/h2o-3/tree/master/h2o-docs/
src/booklets/v2_2015/source/GBM_Vignette_code_examples

3.5 Citation
To cite this booklet, use the following:

Click, C., Malohlava, M., Parmar, V., Roark, H., and Candel, A. (Mar 2024).
Gradient Boosting Machine with H2O. http://h2o.ai/resources/.

https://github.com/h2oai/h2o-3/tree/master/h2o-docs/src/booklets/v2_2015/source/GBM_Vignette_code_examples
https://github.com/h2oai/h2o-3/tree/master/h2o-docs/src/booklets/v2_2015/source/GBM_Vignette_code_examples
http://h2o.ai/resources/

8 | Overview

4 Overview
A GBM is an ensemble of either regression or classification tree models. Both
are forward-learning ensemble methods that obtain predictive results using
gradually improved estimations.

Boosting is a flexible nonlinear regression procedure that helps improve the
accuracy of trees. Weak classification algorithms are sequentially applied to the
incrementally changed data to create a series of decision trees, producing an
ensemble of weak prediction models.

While boosting trees increases their accuracy, it also decreases speed and user
interpretability. The gradient boosting method generalizes tree boosting to
minimize these drawbacks.

4.1 Summary of Features
H2O’s GBM functionalities include:

� supervised learning for regression and classification tasks

� distributed and parallelized computation on either a single node or a
multi-node cluster

� fast and memory-efficient Java implementations of the algorithms

� the ability to run H2O from R, Python, Scala, or the intuitive web UI
(Flow)

� automatic early stopping based on convergence of user-specified metrics
to user-specified relative tolerance

� stochastic gradient boosting with column and row sampling (per split
and per tree) for better generalization

� support for exponential families (Poisson, Gamma, Tweedie) and loss
functions in addition to binomial (Bernoulli), Gaussian and multinomial
distributions, such as Quantile regression (including Laplace)

� grid search for hyperparameter optimization and model selection

� model export in plain Java code for deployment in production environments

� additional parameters for model tuning (for a complete listing of parame-
ters, refer to the Model Parameters section.)

Gradient Boosting Machine (also known as gradient boosted models) sequentially
fit new models to provide a more accurate estimate of a response variable in
supervised learning tasks such as regression and classification. Although GBM

Overview | 9

is known to be difficult to distribute and parallelize, H2O provides an easily
distributable and parallelizable version of GBM in its framework, as well as an
effortless environment for model tuning and selection.

4.2 Theory and Framework
Gradient boosting is a machine learning technique that combines two powerful
tools: gradient-based optimization and boosting. Gradient-based optimization
uses gradient computations to minimize a model’s loss function in terms of the
training data.

Boosting additively collects an ensemble of weak models to create a robust
learning system for predictive tasks. The following example considers gradient
boosting in the example of K-class classification; the model for regression
follows a similar logic. The following analysis follows from the discussion
in Hastie et al (2010) at http://statweb.stanford.edu/˜tibs/
ElemStatLearn/.

GBM for classification

1. Initialize fk0 = 0, k = 1, 2, . . . ,K
2. For m = 1 to M

a. Set pk(x) =
efk(x)∑K
l=1 efl(x) for all k = 1, 2 . . . ,K

b. For k = 1 to K

i. Compute rikm = yik − pk(xi), i = 1, 2, . . . , N

ii. Fit a regression tree to the targets rikm, i = 1, 2, . . . , N ,

giving terminal regions Rjkm, 1, 2, . . . , Jm

iii. Compute

γjkm =
K − 1

K

∑
xi∈Rjkm

(rikm)∑
xi∈Rjkm

|rikm|(1− |rikm|)
, j = 1, 2, . . . , Jm

iv. Update fkm(x) = fk,m−1(x) +
∑Jm

j=1 γjkmI(x ∈ Rjkm)

3. Output fˆk(x) = fkM (x), k = 1, 2, . . . ,K

In the above algorithm for multi-class classification, H2O builds k-regression
trees: one tree represents each target class. The index, m, tracks the number
of weak learners added to the current ensemble. Within this outer loop, there
is an inner loop across each of the K classes.

http://statweb.stanford.edu/~tibs/ElemStatLearn/
http://statweb.stanford.edu/~tibs/ElemStatLearn/

10 | Overview

Within this inner loop, the first step is to compute the residuals, rikm, which
are actually the gradient values, for each of the N bins in the CART model. A
regression tree is then fit to these gradient computations. This fitting process
is distributed and parallelized. Details on this framework are available at http:
//h2o.ai/blog/2013/10/building-distributed-gbm-h2o/.

The final procedure in the inner loop is to add the current model to the fitted
regression tree to improve the accuracy of the model during the inherent gradient
descent step. After M iterations, the final “boosted” model can be tested out
on new data.

4.3 Distributed Trees
H2O’s implementation of GBM uses distributed trees. H2O overlays trees on
the data by assigning a tree node to each row. The nodes are numbered and
the number of each node is stored as Node ID in a temporary vector for each
row. H2O makes a pass over all the rows using the most efficient method (not
necessarily numerical order).

A local histogram using only local data is created in parallel for each row on
each node. The histograms are then assembled and a split column is selected
to make the decision. The rows are re-assigned to nodes and the entire process
is repeated.

With an initial tree, all rows start on node 0. An in-memory MapReduce (MR)
task computes the statistics and uses them to make an algorithmically-based
decision, such as lowest mean squared error (MSE). In the next layer in the tree
(and the next MR task), a decision is made for each row: if X < 1.5, go right
in the tree; otherwise, go left. H2O computes the stats for each new leaf in the
tree, and each pass across all the rows builds the entire layer.

Each bin is inspected as a potential split point. The best split point is selected
after evaluating all bins. For example, for a hundred-column dataset that uses
twenty bins, there are 2000 (20x100) possible split points.

Each layer is computed using another MR task: a tree that is five layers deep
requires five passes. Each tree level is fully data-parallelized. Each pass builds a
per-node histogram in the MR call over one layer in the tree. During each pass,
H2O analyzes the tree level and decides how to build the next level. In another
pass, H2O reassigns rows to new levels by merging the two passes and then
builds a histogram for each node. Each per-level histogram is done in parallel.

Scoring and building is done in the same pass. Each row is tested against the
decision from the previous pass and assigned to a new leaf, where a histogram
is built. To score, H2O traverses the tree and obtains the results. The tree is
compressed to a smaller object that can still be traversed, scored, and printed.

http://h2o.ai/blog/2013/10/building-distributed-gbm-h2o/
http://h2o.ai/blog/2013/10/building-distributed-gbm-h2o/

Overview | 11

Since the GBM algorithm builds each tree one level at a time, H2O is able to
quickly run the entire level in parallel and distributed. Model building for large
datasets can be sped up significantly by adding more CPUs or more compute
nodes. Note that the communication requirements can be large for deep trees
(not common for GBMs though) and can lead to slow model build times. The
computing cost is based on a number of factors, including the final count of
leaves in all trees. Depending on the dataset, the number of leaves can be
difficult to predict. The maximum number of leaves is 2d, where d represents
the tree depth.

4.4 Treatment of Factors
If the training data contains columns with categorical levels (factors), then
these factors are split by assigning an integer to each distinct categorical level,
then binning the ordered integers according to the user-specified number of
bins nbins cats (which defaults to 1024 bins), and then picking the optimal
split point among the bins.

To specify a model that considers all factors individually (and perform an optimal
group split, where every level goes in the right direction based on the training
response), specify nbins cats to be at least as large as the number of factors.
For users familiar with R, values greater than 1024 are supported, but might
increase model training time. (Note that 1024 represents the maximum number
of levels supported in R; H2O has a limit of 10 million levels.)

The value of nbins cats for categorical factors has a much greater impact
on the generalization error rate than nbins for real- or integer-valued columns
(where higher values mainly lead to more accurate numerical split points). For
columns with many factors, a small nbins cats value can add randomness
to the split decisions (since the factor levels get grouped together somewhat
arbitrarily), while large values can lead to perfect splits, resulting in overfitting.

12 | Overview

4.5 Key Parameters
In the above example, an important user-specified value is N , which represents
the number of bins used to partition the data before the tree’s best split point
is determined. To model all factors individually, specify high N values, but this
will slow down the modeling process. For shallow trees, the total count of bins
across all splits is kept at 1024 for numerical columns (so that a top-level split
uses 1024, but a second-level split uses 512 bins, and so forth). This value is
then maxed with the input bin count.

Specify the depth of the trees (J) to avoid overfitting. Increasing J results
in larger variable interaction effects. Large values of J have also been found
to have an excessive computational cost, since Cost = #columns ·N ·K · 2J .
Lower values generally have the highest performance.

Models with 4 ≤ J ≤ 8 and a larger number of treesM reflect this generalization.
Grid search models can be used to tune these parameters in the model selection
process. For more information, refer to Grid Search for Model Comparison.

To control the learning rate of the model, specify the learn rate constant,
which is actually a form of regularization. Shrinkage modifies the algorithm’s
update of fkm(x) with the scaled addition ν ·

∑Jm

j=1 γjkmI(x ∈ Rjkm), where
the constant ν is between 0 and 1.

Smaller values of ν learn more slowly and need more trees to reach the same
overall error rate but typically result in a better model, assuming that M is
constant. In general, ν and M are inversely related when the error rate is
constant. However, despite the greater rate of training error with small values
of ν, very small (ν < 0.1) values typically lead to better generalization and
performance on test data.

Overview | 13

4.5.1 Convergence-based Early Stopping

One nice feature for finding the optimal number of trees is early stopping based
on convergence of a user-specified metric. By default, it uses the metrics on
the validation dataset, if provided. Otherwise, training metrics are used.

� To stop model building if misclassification improves (goes down) by less
than one percent between individual scoring events, specify
stopping rounds=1, stopping tolerance=0.01 and
stopping metric="misclassification".

� To stop model building if the logloss on the validation set does not improve
at all for 3 consecutive scoring events, specify a validation frame,
stopping rounds=3, stopping tolerance=0 and
stopping metric="logloss".

� To stop model building if the simple moving average (window length 5) of
the AUC improves (goes up) by less than 0.1 percent for 5 consecutive scor-
ing events, specify stopping rounds=5, stopping tolerance=0.001
and stopping metric="AUC".

� To not stop model building even after metrics have converged, disable
this feature with stopping rounds=0.

� To compute the best number of trees with cross-validation, simply specify
stopping rounds>0 as in the examples above, in combination with
nfolds>1, and the main model will pick the ideal number of trees from
the convergence behavior of the nfolds cross-validation models.

4.5.2 Time-based Early Stopping

To stop model training after a given amount of seconds, specify max runtime secs
> 0. This option is also available for grid searches and models with cross-
validation. Note: The model(s) will likely end up with fewer trees than specified
by ntrees.

4.5.3 Stochastic GBM

Stochastic GBM is a way to improve generalization by sampling columns (per
split) and rows (per tree) during the model building process. To control the sam-
pling ratios use sample rate for rows (per tree), col sample rate per tree
for columns per tree and col sample rate for columns per split. All three
parameters must range from 0 to 1, and default to 1.

14 | Overview

4.5.4 Distributions and Loss Functions

Distributions and loss functions are tightly coupled. By specifying the distribu-
tion, the loss function is automatically selected as well. For exponential families
such as Poisson, Gamma, Tweedie, the canonical logarithmic link function is
used.

For example, to predict the 80-th percentile of the petal length of the Iris
dataset in R, use the following:

Example in R

1 library(h2o)
2 h2o.init(nthreads = -1)
3 train.hex <- h2o.importFile("https://h2o-public-test-

data.s3.amazonaws.com/smalldata/iris/iris_wheader.
csv")

4 splits <- h2o.splitFrame(train.hex, 0.75, seed=1234)
5 gbm <- h2o.gbm(x=1:3, y="petal_len",
6 training_frame=splits[[1]],
7 distribution="quantile", quantile_alpha=0.8)
8 h2o.predict(gbm, splits[[2]])

To predict the 80-th percentile of the petal length of the Iris dataset in Python,
use the following:

Example in Python

1 import h2o
2 from h2o.estimators.gbm import

H2OGradientBoostingEstimator
3 h2o.init()
4 train = h2o.import_file("https://h2o-public-test-data.

s3.amazonaws.com/smalldata/iris/iris_wheader.csv")
5 splits = train.split_frame(ratios=[0.75], seed=1234)
6 gbm = H2OGradientBoostingEstimator(distribution="

quantile", quantile_alpha=0.8)
7 gbm.train(x=list(range(0,2)), y="petal_len",

training_frame=splits[0])
8 print(gbm.predict(splits[1]))

Use Case: Airline Data Classification | 15

5 Use Case: Airline Data Classification
Download the Airline dataset from: https://github.com/h2oai/h2o-
2/blob/master/smalldata/airlines/allyears2k_headers.zip
and save the .csv file to your working directory.

5.1 Loading Data
Loading a dataset in R or Python for use with H2O is slightly different
from the usual methodology because the datasets must be converted into
H2OParsedData objects. For this example, download the toy weather
dataset from https://github.com/h2oai/h2o-2/blob/master/
smalldata/weather.csv.

Load the data to your current working directory in your R Console (do this for
any future dataset downloads), and then run the following command.

Example in R

1 library(h2o)
2 h2o.init()
3 weather.hex <- h2o.uploadFile(path = h2o:::.h2o.

locate("smalldata/junit/weather.csv"), header =
TRUE, sep = ",", destination_frame = "weather.hex"
)

4

5 # Get a summary of the data
6 summary(weather.hex)

Load the data to your current working directory in Python (do this for any
future dataset downloads), and then run the following command.

Example in Python

1 import h2o
2 h2o.init()
3 weather_hex = h2o.import_file("http://h2o-public-test-

data.s3.amazonaws.com/smalldata/junit/weather.csv"
)

4

5 # Get a summary of the data
6 weather_hex.describe()

https://github.com/h2oai/h2o-2/blob/master/smalldata/airlines/allyears2k_headers.zip
https://github.com/h2oai/h2o-2/blob/master/smalldata/airlines/allyears2k_headers.zip
https://github.com/h2oai/h2o-2/blob/master/smalldata/weather.csv
https://github.com/h2oai/h2o-2/blob/master/smalldata/weather.csv

16 | Use Case: Airline Data Classification

5.2 Performing a Trial Run
Load the Airline dataset into H2O and select the variables to use to predict the
response. The following example models delayed flights based on the departure’s
scheduled day of the week and day of the month.

Example in R

1 # Load the data and prepare for modeling
2 airlines.hex <- h2o.uploadFile(path = h2o:::.h2o.

locate("smalldata/airlines/allyears2k_headers.zip"
), header = TRUE, sep = ",", destination_frame = "
airlines.hex")

3

4 # Generate random numbers and create training,
validation, testing splits

5 r <- h2o.runif(airlines.hex)
6 air_train.hex <- airlines.hex[r < 0.6,]
7 air_valid.hex <- airlines.hex[(r >= 0.6) & (r < 0.9),]
8 air_test.hex <- airlines.hex[r >= 0.9,]
9

10 myX <- c("DayofMonth", "DayOfWeek")
11

12 # Now, train the GBM model:
13 air.model <- h2o.gbm(y = "IsDepDelayed", x = myX,
14 distribution="bernoulli",
15 training_frame = air_train.hex,
16 validation_frame = air_valid.hex,
17 ntrees=100, max_depth=4, learn_rate=0.1)

Example in Python

1 # Now, train the GBM model:
2 from h2o.estimators.gbm import

H2OGradientBoostingEstimator
3

4 # Load the data and prepare for modeling
5 airlines_hex = h2o.import_file("http://h2o-public-test

-data.s3.amazonaws.com/smalldata/airlines/
allyears2k_headers.zip")

6

Use Case: Airline Data Classification | 17

7 # Generate random numbers and create training,
validation, testing splits

8 r = airlines_hex.runif() # Random UNIForm numbers,
one per row

9 air_train_hex = airlines_hex[r < 0.6]
10 air_valid_hex = airlines_hex[(r >= 0.6) & (r < 0.9)]
11 air_test_hex = airlines_hex[r >= 0.9]
12

13 myX = ["DayofMonth", "DayOfWeek"]
14

15 air_model = H2OGradientBoostingEstimator(
16 distribution=’bernoulli’, ntrees=100,
17 max_depth=4, learn_rate=0.1)
18 air_model.train(x=myX, y="IsDepDelayed",
19 training_frame=air_train_hex)

Since it is meant just as a trial run, the model contains only 100 trees. In this
trial run, no validation set was specified, so by default, the model evaluates
the entire training set. To use n-fold validation, specify an n-folds value (for
example, nfolds=5).

Let’s run again with row and column sampling:

Example in R

1 # Load the data and prepare for modeling
2 airlines.hex <- h2o.uploadFile(path = h2o:::.h2o.

locate("smalldata/airlines/allyears2k_headers.zip"
), header = TRUE, sep = ",", destination_frame = "
airlines.hex")

3

4 # Generate random numbers and create training,
validation, testing splits

5 r <- h2o.runif(airlines.hex)
6 air_train.hex <- airlines.hex[r < 0.6,]
7 air_valid.hex <- airlines.hex[(r >= 0.6) & (r < 0.9),]
8 air_test.hex <- airlines.hex[r >= 0.9,]
9

10 myX <- c("DayofMonth", "DayOfWeek")
11

12 # Now, train the GBM model:
13 air.model <- h2o.gbm(

18 | Use Case: Airline Data Classification

14 y = "IsDepDelayed", x = myX,
15 distribution="bernoulli",
16 training_frame = air_train.hex,
17 validation_frame = air_valid.hex,
18 ntrees=100, max_depth=4, learn_rate=0.1,
19 sample_rate=0.6, col_sample_rate=0.7)

Example in Python

1 # Now, train the GBM model:
2 from h2o.estimators.gbm import

H2OGradientBoostingEstimator
3

4 # Load the data and prepare for modeling
5 airlines_hex = h2o.import_file("http://h2o-public-test

-data.s3.amazonaws.com/smalldata/airlines/
allyears2k_headers.zip")

6

7 # Generate random numbers and create training,
validation, testing splits

8 r = airlines_hex.runif() # Random UNIForm numbers,
one per row

9 air_train_hex = airlines_hex[r < 0.6]
10 air_valid_hex = airlines_hex[(r >= 0.6) & (r < 0.9)]
11 air_test_hex = airlines_hex[r >= 0.9]
12

13 myX = ["DayofMonth", "DayOfWeek"]
14

15 air_model = H2OGradientBoostingEstimator(
16 distribution=’bernoulli’, ntrees=100,
17 max_depth=4, learn_rate=0.1,
18 sample_rate=0.6, col_sample_rate=0.7)
19 air_model.train(x=myX, y="IsDepDelayed",
20 training_frame=air_train_hex)

Use Case: Airline Data Classification | 19

5.3 Extracting and Handling the Results
Now, extract the parameters of the model, examine the scoring process, and
make predictions on the new data.

Example in R

1 # Examine the performance of the trained model
2 air.model
3

4 # View the specified parameters of your GBM model
5 air.model@parameters

Example in Python

1 # View the specified parameters of your GBM model
2 air_model.params
3

4 # Examine the performance of the trained model
5 air_model

The first command (air.model) returns the trained model’s training and vali-
dation errors. After generating a satisfactory model, use the h2o.predict()
command to compute and store predictions on the new data, which can then
be used for further tasks in the interactive modeling process.

Example in R

1 # Perform classification on the held out data
2 prediction = h2o.predict(air.model, newdata=air_test.

hex)
3

4 # Copy predictions from H2O to R
5 pred = as.data.frame(prediction)
6

7 head(pred)

20 | Use Case: Airline Data Classification

Example in Python

1 # Perform classification on the held out data
2 pred = air_model.predict(air_test_hex)
3

4 pred.head()

5.4 Web Interface
H2O users have the option of using an intuitive web interface for H2O, Flow.
After loading data or training a model, point your browser to your IP address
and port number (e.g., localhost:12345) to launch the web interface. In the
web UI, click Admin > Jobs to view specific details about your model or click
Data > List All Frames to view all current H2O frames.

5.5 Variable Importances
The GBM algorithm automatically calculates variable importances. The model
output includes the absolute and relative predictive strength of each feature in
the prediction task. To extract the variable importances from the model:

� In R: Use h2o.varimp(air.model)

� In Python: Use air model.varimp(return list=True)

To view a visualization of the variable importances using the web interface, click
the Model menu, then select List All Models. Click the Inspect button
next to the model, then select output - Variable Importances.

5.6 Supported Output
The following algorithm outputs are supported:
� Regression: Mean Squared Error (MSE), with an option to output
variable importances or a Plain Old Java Object (POJO) model

� Binary Classification: Confusion Matrix or Area Under Curve (AUC),
with an option to output variable importances or a Java POJO model

� Classification: Confusion Matrix (with an option to output variable
importances or a Java POJO model)

Use Case: Airline Data Classification | 21

5.7 Java Models
To access Java code to use to build the current model in Java, click the
Preview POJO button at the bottom of the model results. This button
generates a POJO model that can be used in a Java application independently
of H2O. If the model is small enough, the code for the model displays within
the GUI; larger models can be inspected after downloading the model.

To download the model:

1. Open the terminal window.

2. Create a directory where the model will be saved.

3. Set the new directory as the working directory.

4. Follow the curl and java compile commands displayed in the in-
structions at the top of the Java model.

For more information on how to use an H2O POJO, refer to the POJO Quick
Start Guide at https://github.com/h2oai/h2o-3/blob/master/
h2o-docs/src/product/pojo-quickstart.rst.

5.8 Grid Search for Model Comparison
5.8.1 Cartesian Grid Search

To run a Cartesian hyper-parameter grid search in R, use the following:

Example in R

1 ntrees_opt <- c(5,10,15)
2 maxdepth_opt <- c(2,3,4)
3 learnrate_opt <- c(0.1,0.2)
4 hyper_parameters <- list(ntrees=ntrees_opt,
5 max_depth=maxdepth_opt, learn_rate=learnrate_opt)
6

7 grid <- h2o.grid("gbm", hyper_params = hyper_
parameters,

8 y = "IsDepDelayed", x = myX, distribution="
bernoulli",

9 training_frame = air_train.hex, validation_frame =
air_valid.hex)

To run a Cartesian hyper-parameter grid search in Python, use the following:

https://github.com/h2oai/h2o-3/blob/master/h2o-docs/src/product/pojo-quickstart.rst
https://github.com/h2oai/h2o-3/blob/master/h2o-docs/src/product/pojo-quickstart.rst

22 | Use Case: Airline Data Classification

Example in Python

1 #Define parameters for gridsearch
2 ntrees_opt = [5,10,15]
3 max_depth_opt = [2,3,4]
4 learn_rate_opt = [0.1,0.2]
5 hyper_parameters = {"ntrees": ntrees_opt, "max_depth":

max_depth_opt,
6 "learn_rate":learn_rate_opt}
7

8 from h2o.grid.grid_search import H2OGridSearch
9 gs = H2OGridSearch(H2OGradientBoostingEstimator,

10 hyper_params=hyper_parameters)
11 gs.train(x=myX, y="IsDepDelayed", training_frame=

air_train_hex,
12 validation_frame=air_valid_hex)

This example specifies three different tree numbers, three different tree sizes,
and two different shrinkage values. This grid search model effectively trains
eighteen different models over the possible combinations of these parameters.

Of course, sets of other parameters can be specified for a larger space of models.
This allows for more subtle insights in the model tuning and selection process,
especially during inspection and comparison of the trained models after the
grid search process is complete. To decide how and when to choose different
parameter configurations in a grid search, refer to Model Parameters for
parameter descriptions and suggested values.

To view the results of the grid search, use the following:

Example in R

1 # print out all prediction errors and run times of the
models

2 grid
3 # print out the auc for all of the models
4 grid_models <- lapply(grid@model_ids, function(model_

id) { model = h2o.getModel(model_id) })
5 for (i in 1:length(grid_models)) {
6 print(sprintf("auc: %f", h2o.auc(grid_models[[i]])))
7 }

Use Case: Airline Data Classification | 23

Example in Python

1 # print out all prediction errors and run times of the
models

2 gs
3

4 # print out the auc for all of the models
5 for g in gs:
6 print(g.model_id + " auc: " + str(g.auc()))

5.8.2 Random Grid Search

If the search space is too large (i.e., you don’t want to restrict the parameters
too much), you can also let the Grid Search make random model selections for
you. Just specify how many models (and/or how much training time) you want,
and a seed to make the random selection deterministic:

Example in R

1 ntrees_opt <- seq(1,100)
2 maxdepth_opt <- seq(1,10)
3 learnrate_opt <- seq(0.001,0.1,0.001)
4 hyper_parameters <- list(ntrees=ntrees_opt,
5 max_depth=maxdepth_opt, learn_rate=learnrate_opt)
6 search_criteria = list(strategy = "RandomDiscrete",
7 max_models = 10, max_runtime_secs=100, seed

=123456)
8

9 grid <- h2o.grid("gbm", hyper_params = hyper_
parameters,

10 search_criteria = search_criteria,
11 y = "IsDepDelayed", x = myX, distribution="

bernoulli",
12 training_frame = air_train.hex, validation_frame =

air_valid.hex)

24 | Model Parameters

Example in Python

1 #Define parameters for gridsearch
2 ntrees_opt = list(range(0,100,1))
3 max_depth_opt = list(range(1,20,1))
4 learn_rate_opt = [s/float(1000) for s in range(1,101)]
5 hyper_parameters = {"ntrees": ntrees_opt,
6 "max_depth":max_depth_opt, "learn_rate":

learn_rate_opt}
7 search_criteria = {"strategy":"RandomDiscrete",
8 "max_models":10, "max_runtime_secs":100, "seed"

:123456}
9

10 from h2o.grid.grid_search import H2OGridSearch
11 gs = H2OGridSearch(H2OGradientBoostingEstimator,
12 hyper_params=hyper_parameters, search_criteria=

search_criteria)
13 gs.train(x=myX, y="IsDepDelayed", training_frame=

air_train_hex,
14 validation_frame=air_valid_hex)

6 Model Parameters
This section describes the functions of the parameters for GBM.

� x: A vector containing the names of the predictors to use while building
the GBM model.

� y: A character string or index that represents the response variable in the
model.

� training frame: An H2OFrame object containing the variables in
the model.

� validation frame: An H2OFrame object containing the validation
dataset used to construct confusion matrix. If blank, the training data is
used by default.

� nfolds: Number of folds for cross-validation.

� ignore const cols: A boolean indicating if constant columns should
be ignored. The default is TRUE.

� ntrees: A non-negative integer that defines the number of trees. The
default is 50.

Model Parameters | 25

� max depth: The user-defined tree depth. The default is 5.

� min rows: The minimum number of rows to assign to the terminal
nodes. The default is 10.

� max abs leafnode pred: Limits the maximum absolute value of a
leaf node prediction. The default is Double.MAX VALUE.

� pred noise bandwidth: The bandwidth (sigma) of Gaussian multi-
plicative noise N(1,sigma) for tree node predictions. If this parameter is
specified with a value greater than 0, then every leaf node prediction is
randomly scaled by a number drawn from a Normal distribution centered
around 1 with a bandwidth given by this parameter. The default is 0
(disabled).

� categorical encoding: Specify one of the following encoding schemes
for handling categorical features:

– auto: Allow the algorithm to decide (default)

– enum: 1 column per categorical feature

– one hot explicit: N+1 new columns for categorical features
with N levels

– binary: No more than 32 columns per categorical feature

– eigen: k columns per categorical feature, keeping projections of
one-hot-encoded matrix onto k-dim eigen space only

� nbins: For numerical columns (real/int), build a histogram of at least
the specified number of bins, then split at the best point The default is
20.

� nbins cats: For categorical columns (enum), build a histogram of the
specified number of bins, then split at the best point. Higher values can
lead to more overfitting. The default is 1024.

� nbins top level: For numerical columns (real/int), build a histogram
of (at most) this many bins at the root level, then decrease by factor of
two per level.

� seed: Seed containing random numbers that affects sampling.

� sample rate: Row sample rate (from 0.0 to 1.0).

� sample rate per class: Specifies that each tree in the ensemble
should sample from the full training dataset using a per-class-specific

26 | Model Parameters

sampling rate rather than a global sample factor (as with sample rate.
(from 0.0 to 1.0).

� col sample rate: Column sample rate (per split) (from 0.0 to 1.0).

� col sample rate change per level: Specifies to change the col-
umn sampling rate as a function of the depth in the tree.

� min split improvement: The minimum relative improvement in
squared error reduction in order for a split to happen.

� col sample rate per tree: Column sample rate per tree (from 0.0
to 1.0).

� learn rate: An integer that defines the learning rate. The default is
0.1 and the range is 0.0 to 1.0.

� learn rate annealing: Reduces the learn rate by this factor
after every tree.

� distribution: The distribution function options: AUTO, bernoulli,
multinomial, gaussian, poisson, gamma, laplace,
quantile, huber, or tweedie. The default is AUTO.

� score each iteration: A boolean indicating whether to score dur-
ing each iteration of model training. The default is FALSE.

� score tree interval: Score the model after every so many trees.
Disabled if set to 0.

� fold assignment: Cross-validation fold assignment scheme, if
fold column is not specified. The following options are supported:
AUTO, Random, Stratified or Modulo.

� fold column: Column with cross-validation fold index assignment per
observation.

� offset column: Specify the offset column. Note: Offsets are per-
row “bias values” that are used during model training. For Gaussian
distributions, they can be seen as simple corrections to the response (y)
column. Instead of learning to predict the response (y-row), the model
learns to predict the (row) offset of the response column. For other
distributions, the offset corrections are applied in the linearized space
before applying the inverse link function to get the actual response values.

� weights column: Specify the weights column. Note: Weights are
per-row observation weights. This is typically the number of times a row
is repeated, but non-integer values are supported as well. During training,

Model Parameters | 27

rows with higher weights matter more, due to the larger loss function
pre-factor.

� balance classes: Balance training data class counts via over or
undersampling for imbalanced data. The default is FALSE.

� max hit ratio k: (for multi-class only) Maximum number (top K) of
predictions to use for hit ratio computation. To disable, enter 0. The
default is 10.

� r2 stopping:
r2 stopping is no longer supported and will be ignored if set. Please
use
stopping rounds,
stopping metric and
stopping tolerance instead.

� stopping rounds: Early stopping based on convergence of
stopping metric. Stop if simple moving average of length k of
the stopping metric does not improve for k:=stopping rounds
scoring events. Can only trigger after at least 2k scoring events. To
disable, specify 0.

� stopping metric: Metric to use for early stopping (AUTO: logloss
for classification, deviance for regression). Can be any of AUTO,
deviance, logloss, misclassification, lift top gain, MSE,
AUC, and mean per class error.

� stopping tolerance: Relative tolerance for metric-based stopping
criterion Relative tolerance for metric-based stopping criterion (stop if
relative improvement is not at least this much).

� max runtime secs: Maximum allowed runtime in seconds for model
training. Use 0 to disable.

� build tree one node: Specify if GBM should be run on one node
only; no network overhead but fewer CPUs used. Suitable for small
datasets. The default is FALSE.

� quantile alpha: Desired quantile for quantile regression (from 0.0
to 1.0) when distribution = "quantile". The default is 0.5
(median, same as distribution = "laplace").

� tweedie power: A numeric specifying the power for the Tweedie
function when distribution = "tweedie". The default is 1.5.

28 | Acknowledgments

� huber alpha: Specify the desired quantile for Huber/M-regression (the
threshold between quadratic and linear loss). This value must be between
0 and 1.

� checkpoint: Enter a model key associated with a previously-trained
model. Use this option to build a new model as a continuation of a
previously-generated model.

� keep cross validation predictions: Specify whether to keep
the predictions of the cross-validation models. The default is FALSE.

� keep cross validation fold assignment: Specify whether to
preserve the fold assignment. The default is FALSE.

� class sampling factors: Desired over/under-sampling ratios per
class (in lexicographic order). If not specified, sampling factors will be
automatically computed to obtain class balance during training. Requires
balance classes.

� max after balance size: Maximum relative size of the training
data after balancing class counts; can be less than 1.0. The default is 5.

� model id: The unique ID assigned to the generated model. If not
specified, an ID is generated automatically.

7 Acknowledgments
We would like to acknowledge the following individuals for their contributions
to this booklet: Cliff Click, Hank Roark, Viraj Parmar, and Jessica Lanford.

References | 29

8 References
Cliff Click. Building a Distributed GBM on H2O, 2013. URL http:
//h2o.ai/blog/2013/10/building-distributed-gbm-h2o/

Thomas Dietterich and Eun Bae Kong. Machine Learning Bias, Statistical
Bias, and Statistical Variance of Decision Tree Algorithms. 1995. URL
http://www.iiia.csic.es/˜vtorra/tr-bias.pdf

Jane Elith, John R. Leathwick, and Trevor Hastie. A Working Guide to
Boosted Regression Trees. Journal of Animal Ecology, 77(4):802–813, 2008.
URL http://onlinelibrary.wiley.com/doi/10.1111/j.1365-
2656.2008.01390.x/abstract

Jerome H. Friedman. Greedy Function Approximation: A Gradient Boosting
Machine. Annals of Statistics, 29:1189–1232, 1999. URL http://statweb.
stanford.edu/?jhf/ftp/trebst.pdf

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Discussion of Boost-
ing Papers. Annual Statistics, 32:102–107, 2004. URL http://web.
stanford.edu/?hastie/Papers/boost_discussion.pdf

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive Logistic Re-
gression: a Statistical View of Boosting. Annals of Statistics, 28:2000, 1998.
URL http://projecteuclid.org/DPubS?service=UI&version=
1.0&verb=Display&handle=euclid.aos/1016218223

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The Elements of
Statistical Learning. Springer, New York, 2001. URL http://statweb.
stanford.edu/?tibs/ElemStatLearn/printings/ESLII_print10.
pdf

H2O.ai Team. H2O website, 2024. URL http://h2o.ai

H2O.ai Team. H2O documentation, 2024. URL http://docs.h2o.ai

H2O.ai Team. H2O GitHub Repository, 2024. URL https://github.
com/h2oai

H2O.ai Team. H2O Datasets, 2024. URL http://data.h2o.ai

H2O.ai Team. H2O JIRA, 2024. URL https://jira.h2o.ai

H2O.ai Team. H2Ostream, 2024. URL https://groups.google.com/
d/forum/h2ostream

H2O.ai Team. H2O R Package Documentation, 2024. URL http://h2o-
release.s3.amazonaws.com/h2o/latest_stable_Rdoc.html

http://h2o.ai/blog/2013/10/building-distributed-gbm-h2o/
http://h2o.ai/blog/2013/10/building-distributed-gbm-h2o/
http://www.iiia.csic.es/~vtorra/tr-bias.pdf
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2656.2008.01390.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2656.2008.01390.x/abstract
http://statweb.stanford.edu/?jhf/ftp/trebst.pdf
http://statweb.stanford.edu/?jhf/ftp/trebst.pdf
http://web.stanford.edu/?hastie/Papers/boost_discussion.pdf
http://web.stanford.edu/?hastie/Papers/boost_discussion.pdf
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle= euclid.aos/1016218223
http://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle= euclid.aos/1016218223
http://statweb.stanford.edu/?tibs/ElemStatLearn/printings/ESLII_print10.pdf
http://statweb.stanford.edu/?tibs/ElemStatLearn/printings/ESLII_print10.pdf
http://statweb.stanford.edu/?tibs/ElemStatLearn/printings/ESLII_print10.pdf
http://h2o.ai
http://docs.h2o.ai
https://github.com/h2oai
https://github.com/h2oai
http://data.h2o.ai
https://jira.h2o.ai
https://groups.google.com/d/forum/h2ostream
https://groups.google.com/d/forum/h2ostream
http://h2o-release.s3.amazonaws.com/h2o/latest_stable_Rdoc.html
http://h2o-release.s3.amazonaws.com/h2o/latest_stable_Rdoc.html

30 | Authors

9 Authors
Michal Malohlava

Michal is a geek, developer, Java, Linux, programming languages enthusiast
developing software for over 10 years. He obtained PhD from the Charles
University in Prague in 2012 and post-doc at Purdue University. He participated
in design and development of various systems including SOFA and Fractal
component systems or jPapabench control system. Follow him on Twitter:
@MMalohlava

Arno Candel

Arno is the Chief Architect of H2O, a distributed and scalable open-source
machine learning platform and the main author of H2O Deep Learning. Arno
holds a PhD and Masters summa cum laude in Physics from ETH Zurich,
Switzerland. He has authored dozens of scientific papers and is a sought-after
conference speaker. Arno was named “2014 Big Data All-Star” by Fortune
Magazine. Follow him on Twitter: @ArnoCandel.

Angela Bartz

Angela is the doc whisperer at H2O.ai. With extensive experience in technical
communication, she brings our products to life by documenting the many
features and functionality of H2O. Having worked for companies both large and
small, she is an expert at understanding her audience and translating complex
ideas to user-friendly content. Follow her on Twitter: @abartztweet.

	Introduction
	What is H2O?
	Installation
	Installation in R
	Installation in Python
	Pointing to a Different H2O Cluster
	Example Code
	Citation

	Overview
	Summary of Features
	Theory and Framework
	Distributed Trees
	Treatment of Factors
	Key Parameters
	Convergence-based Early Stopping
	Time-based Early Stopping
	Stochastic GBM
	Distributions and Loss Functions

	Use Case: Airline Data Classification
	Loading Data
	Performing a Trial Run
	Extracting and Handling the Results
	Web Interface
	Variable Importances
	Supported Output
	Java Models
	Grid Search for Model Comparison
	Cartesian Grid Search
	Random Grid Search

	Model Parameters
	Acknowledgments
	References
	Authors

