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Introduction
This document introduces the reader to generalized linear modeling with H2O.
Examples are written in R and Python. Topics include:

� installation of H2O

� basic GLM concepts

� building GLM models in H2O

� interpreting model output

� making predictions

What is H2O?
H2O.ai is focused on bringing AI to businesses through software. Its flagship
product is H2O, the leading open source platform that makes it easy for
financial services, insurance companies, and healthcare companies to deploy AI
and deep learning to solve complex problems. More than 9,000 organizations and
80,000+ data scientists depend on H2O for critical applications like predictive
maintenance and operational intelligence. The company – which was recently
named to the CB Insights AI 100 – is used by 169 Fortune 500 enterprises,
including 8 of the world’s 10 largest banks, 7 of the 10 largest insurance
companies, and 4 of the top 10 healthcare companies. Notable customers
include Capital One, Progressive Insurance, Transamerica, Comcast, Nielsen
Catalina Solutions, Macy’s, Walgreens, and Kaiser Permanente.

Using in-memory compression, H2O handles billions of data rows in-memory,
even with a small cluster. To make it easier for non-engineers to create complete
analytic workflows, H2O’s platform includes interfaces for R, Python, Scala,
Java, JSON, and CoffeeScript/JavaScript, as well as a built-in web interface,
Flow. H2O is designed to run in standalone mode, on Hadoop, or within a
Spark Cluster, and typically deploys within minutes.

H2O includes many common machine learning algorithms, such as generalized
linear modeling (linear regression, logistic regression, etc.), Näıve Bayes, principal
components analysis, k-means clustering, and word2vec. H2O implements best-
in-class algorithms at scale, such as distributed random forest, gradient boosting,
and deep learning. H2O also includes a Stacked Ensembles method, which finds
the optimal combination of a collection of prediction algorithms using a process
known as ”stacking.” With H2O, customers can build thousands of models and
compare the results to get the best predictions.
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H2O is nurturing a grassroots movement of physicists, mathematicians, and
computer scientists to herald the new wave of discovery with data science by
collaborating closely with academic researchers and industrial data scientists.
Stanford university giants Stephen Boyd, Trevor Hastie, and Rob Tibshirani
advise the H2O team on building scalable machine learning algorithms. And
with hundreds of meetups over the past several years, H2O continues to remain
a word-of-mouth phenomenon.

Try it out

� Download H2O directly at http://h2o.ai/download.

� Install H2O’s R package from CRAN at https://cran.r-project.org/
web/packages/h2o/.

� Install the Python package from PyPI at https://pypi.python.org/
pypi/h2o/.

Join the community

� To learn about our training sessions, hackathons, and product updates,
visit http://h2o.ai.

� To learn about our meetups, visit https://www.meetup.com/
topics/h2o/all/.

� Have questions? Post them on Stack Overflow using the h2o tag at
http://stackoverflow.com/questions/tagged/h2o.

� Have a Google account (such as Gmail or Google+)? Join the open source
community forum at https://groups.google.com/d/forum/
h2ostream.

� Join the chat at https://gitter.im/h2oai/h2o-3.

Installation
H2O requires Java; if you do not already have Java installed, install it from
https://java.com/en/download/ before installing H2O.

The easiest way to directly install H2O is via an R or Python package.

Installation in R

To load a recent H2O package from CRAN, run:

http://h2o.ai/download
https://cran.r-project.org/web/packages/h2o/
https://cran.r-project.org/web/packages/h2o/
https://pypi.python.org/pypi/h2o/
https://pypi.python.org/pypi/h2o/
http://h2o.ai
https://www.meetup.com/topics/h2o/all/
https://www.meetup.com/topics/h2o/all/
http://stackoverflow.com/questions/tagged/h2o
https://groups.google.com/d/forum/h2ostream
https://groups.google.com/d/forum/h2ostream
https://gitter.im/h2oai/h2o-3
https://java.com/en/download/
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1 install.packages("h2o")

Note: The version of H2O in CRAN may be one release behind the current
version.

For the latest recommended version, download the latest stable H2O-3 build
from the H2O download page:

1. Go to http://h2o.ai/download.
2. Choose the latest stable H2O-3 build.
3. Click the “Install in R” tab.
4. Copy and paste the commands into your R session.

After H2O is installed on your system, verify the installation:

1 library(h2o)
2

3 #Start H2O on your local machine using all available
cores.

4 #By default, CRAN policies limit use to only 2 cores.
5 h2o.init(nthreads = -1)
6

7 #Get help
8 ?h2o.glm
9 ?h2o.gbm

10 ?h2o.deeplearning
11

12 #Show a demo
13 demo(h2o.glm)
14 demo(h2o.gbm)
15 demo(h2o.deeplearning)

Installation in Python

To load a recent H2O package from PyPI, run:

1 pip install h2o

To download the latest stable H2O-3 build from the H2O download page:

1. Go to http://h2o.ai/download.
2. Choose the latest stable H2O-3 build.
3. Click the “Install in Python” tab.
4. Copy and paste the commands into your Python session.

http://h2o.ai/download
http://h2o.ai/download
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After H2O is installed, verify the installation:

1 import h2o
2

3 # Start H2O on your local machine
4 h2o.init()
5

6 # Get help
7 help(h2o.estimators.glm.H2OGeneralizedLinearEstimator)
8 help(h2o.estimators.gbm.H2OGradientBoostingEstimator)
9 help(h2o.estimators.deeplearning.

H2ODeepLearningEstimator)
10

11 # Show a demo
12 h2o.demo("glm")
13 h2o.demo("gbm")
14 h2o.demo("deeplearning")

Pointing to a Different H2O Cluster

The instructions in the previous sections create a one-node H2O cluster on your
local machine.

To connect to an established H2O cluster (in a multi-node Hadoop environment,
for example) specify the IP address and port number for the established cluster
using the ip and port parameters in the h2o.init() command. The syntax
for this function is identical for R and Python:

1 h2o.init(ip = "123.45.67.89", port = 54321)

Example Code

Python and R code for the examples in this document can be found here:

https://github.com/h2oai/h2o-3/tree/master/h2o-docs/src/
booklets/v2_2015/source/GLM_Vignette_code_examples

The document source itself can be found here:

https://github.com/h2oai/h2o-3/blob/master/h2o-docs/src/
booklets/v2_2015/source/GLM_Vignette.tex

https://github.com/h2oai/h2o-3/tree/master/h2o-docs/src/booklets/v2_2015/source/GLM_Vignette_code_examples
https://github.com/h2oai/h2o-3/tree/master/h2o-docs/src/booklets/v2_2015/source/GLM_Vignette_code_examples
https://github.com/h2oai/h2o-3/blob/master/h2o-docs/src/booklets/v2_2015/source/GLM_Vignette.tex
https://github.com/h2oai/h2o-3/blob/master/h2o-docs/src/booklets/v2_2015/source/GLM_Vignette.tex
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Citation

To cite this booklet, use the following:

Nykodym, T., Kraljevic, T., Hussami, N., Rao, A., and Wang, A. (Dec 2023).
Generalized Linear Modeling with H2O. http://h2o.ai/resources/.

Generalized Linear Models
Generalized linear models (GLMs) are an extension of traditional linear models.
They have gained popularity in statistical data analysis due to:

� the flexibility of the model structure unifying the typical regression methods
(such as linear regression and logistic regression for binary classification)

� the recent availability of model-fitting software

� the ability to scale well with large datasets

Model Components

The estimation of the model is obtained by maximizing the log-likelihood over
the parameter vector β for the observed data

max
β

( GLM Log-likelihood).

In the familiar linear regression setup, the independent observations vector y is
assumed to be related to its corresponding predictor vector x by

y = x>β + β0 + ε,

where β is the parameter vector, β0 represents the intercept term and ε ∼
N (0, σ2) is a gaussian random variable which is the noise in the model.

The response y is normally distributed y ∼ N (x>β + β0, σ
2) as well. Since

it assumes additivity of the covariates, normality of the error term as well as
constancy of the variance, this model is restrictive. Because these assumptions
are not applicable to many problems and datasets, a more flexible model is
beneficial.

GLMs relax the above assumptions by allowing the variance to vary as a function
of the mean, non-normal errors and a non-linear relation between the response
and covariates. More specifically, the response distribution is assumed to belong
to the exponential family, which includes the Gaussian, Poisson, binomial,

http://h2o.ai/resources/
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multinomial and gamma distributions as special cases. The components of a
GLM are:

� The random component f for the dependent variable y: the density
function f(y; θ, φ) has a probability distribution from the exponential
family parametrized by θ and φ. This removes the restriction on the
distribution of the error and allows for non-homogeneity of the variance
with respect to the mean vector.

� The systematic component η: η = Xβ, where X is the matrix of all
observation vectors xi.

� The link function g: E(y) = µ = g−1(η) which relates the expected
value of the response µ to the linear component η. The link function can
be any monotonic differentiable function. This relaxes the constraints on
the additivity of the covariates, and it allows the response to belong to a
restricted range of values depending on the chosen transformation g.

This generalization makes GLM suitable for a wider range of problems. An
example of a particular case of the GLM representation is the familiar logistic
regression model commonly used for binary classification in medical applications.

GLM in H2O

H2O’s GLM algorithm fits generalized linear models to the data by maximizing
the log-likelihood. The elastic net penalty can be used for parameter regulariza-
tion. The model fitting computation is distributed, extremely fast, and scales
extremely well for models with a limited number of predictors with non-zero
coefficients (∼ low thousands).

H2O’s GLM fits the model by solving the following likelihood optimization with
parameter regularization:

max
β,β0

( GLM Log-likelihood − Regularization Penalty ).

The elastic net regularization penalty is the weighted sum of the `1 and `2
norms of the coefficients vector. It is defined as

λPα(β) = λ

(
α‖β‖1 +

1

2
(1− α)‖β‖22

)
,

with no penalty on the intercept term. It is implemented by subtracting λPα(β)
from the optimized likelihood. This induces sparsity in the solution and shrinks
the coefficients by imposing a penalty on their size. Note that maximizing the
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log-likelihood function with the negative regularization penalty is equivalent to
minimizing the negative log-likelihood function with the regularization penalty. In
the actual H2O-3 GLM code, we choose to minimize the negative log-likelihood
function with the regularization penalty term.

These properties are beneficial because they reduce the variance in the predictions
and make the model more interpretable by selecting a subset of the given
variables. For a specific α value, the algorithm can compute models for a single
value of the tuning parameter λ or the full regularization path as in the glmnet
package for R (refer to Regularization Paths for Generalized Linear Models via
Coordinate Descent by Friedman et. al).

The elastic net parameter α ∈ [0, 1] controls the penalty distribution between
the `1 (least absolute shrinkage and selection operator or lasso) and `2 (ridge
regression) penalties. When α = 0, the `1 penalty is not used and a ridge
regression solution with shrunken coefficients is obtained. If α = 1, the Lasso
operator soft-thresholds the parameters by reducing all of them by a constant
factor and truncating at zero. This sets a different number of coefficients to
zero depending on the λ value.

H2O’s GLM solves the following optimization over N observations:

max
β,β0

N∑
i=1

log f (yi;β, β0)− λ
(
α‖β‖1 +

1

2
(1− α)‖β‖22

)

Similar to the methods discussed in Regularization Paths for Generalized Linear
Models via Coordinate Descent by Friedman et. al, H2O can compute the full
regularization path, starting from the null-model (evaluated at the smallest
penalty λmax for which all coefficients are set to zero) down to a minimally-
penalized model.

To improve the efficiency of this search, H2O employs the strong rules as
described in Strong Rules for Discarding Predictors in Lasso-type Problems by
Bien et. al to filter out inactive columns (whose coefficients will remain equal
to zero given the imposed penalty). Computing the full regularization path is
useful for convergence because it uses warm starts for consecutive λ values, and
gives an insight regarding the order in which the coefficients start entering the
model.

Moreover, cross-validation can be used after fitting models for the full regu-
larization path. H2O returns the optimal amount of regularization λ for the
given problem and data by computing the errors on the validation dataset of
the fitted models created using the training data.
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Model Fitting

GLM models are fitted by finding the set of parameters that maximizes the
likelihood of the data. For the Gaussian family, maximum likelihood consists of
minimizing the mean squared error. This has an analytical solution and can be
solved with a standard method of least squares.

This is also applicable when the `2 penalty is added to the optimization. For
all other families and when the `1 penalty is included, the maximum likelihood
problem has no analytical solution. An iterative method such as IRLSM, L-
BFGS, the Newton method, or gradient descent, must be used. To select the
solver, select the model and specify the exponential density.

Model Validation

After selecting the model, evaluate the precision of the estimates to determine
its accuracy. The quality of the fitted model can be obtained by computing the
goodness of fit between the predicted values that it generates and the given
input data. Multiple measures of discrepancy may be used.

H2O returns the logarithm of the ratio of likelihoods, called deviance, and
the Akaike information criterion (AIC) after fitting a GLM. A benchmark for
a good model is the saturated or full model, which is the largest model that
can be fitted. Assuming the dataset consists of N observations, the saturated
model fits N parameters µ̂i. Since it gives a model with one parameter per
observation, its predictions trivially fit the data perfectly.

The deviance is the difference between the maximized log-likelihoods of the
fitted and saturated models. Let `(y; µ̂) be the likelihood corresponding to
the estimated means vector µ̂ from the maximization, and let `(y; y) be the
likelihood of the saturated model which is the maximum achievable likelihood.

The scaled deviance, which is defined as D∗(y, µ̂) = 2(`(y; y) − `(y; µ̂)), is
used as a goodness of fit measure for GLMs. When the deviance obtained is
too large, the model does not fit the data well.

Another metric to measure the quality of the fitted statistical model is the AIC,
defined as AIC = 2k − 2 log(`(y; µ̂)), where k is the number of parameters
included in the model and ` is the likelihood of the fitted model defined as
above.

Given a set of models for a dataset, the AIC compares the qualities of the
models with respect to one another. This provides a way to select the optimal
one, which is the model with the lowest AIC score.
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The AIC score does not give an absolute measure of the quality of a given
model. It takes into account the number of parameters that are included in
the model by increasing the penalty as the number of parameters increases.
This prevents from obtaining a complex model that overfits the data, an aspect
which is not considered in the deviance computation.

Regularization

This subsection discusses the effects of parameter regularization. Penalties are
introduced to the model building process to avoid over-fitting, reduce variance
of the prediction error, and handle correlated predictors. The two most common
penalized models are ridge regression and Lasso (least absolute shrinkage and
selection operator). The elastic net combines both penalties.

Lasso and Ridge Regression

Lasso represents the `1 penalty and is an alternative regularized least squares
method that penalizes the sum of the absolute values of the coefficients ||β||1 =∑p
k=1 |βk|. Lasso leads to a sparse solution when the tuning parameter is

sufficiently large. As the tuning parameter value λ is increased, all coefficients
are set to zero. Since reducing parameters to zero removes them from the
model, Lasso is a good selection tool.

Ridge regression penalizes the `2 norm of the model coefficients ‖β‖22 =∑p
k=1 β

2
k. It provides greater numerical stability and is easier and faster to

compute than Lasso. It keeps all the predictors in the model and shrinks them
proportionally. Ridge regression reduces coefficient values simultaneously as the
penalty is increased without however setting any of them to zero.

Variable selection is important in numerous modern applications with many
covariates where the `1 penalty has proven to be successful. Therefore, if
the number of variables is large or if the solution is known to be sparse, we
recommend using Lasso, which will select a small number of variables for
sufficiently high λ that could be crucial to the interpretability of the model.
The `2 norm does not have this effect: it shrinks the coefficients, but does not
set them exactly to zero.

The two penalties also differ in the presence of correlated predictors. The `2
penalty shrinks coefficients for correlated columns towards each other, while
the `1 penalty tends to select only one of them and set the other coefficients
to zero. Using the elastic net argument α combines these two behaviors.



Generalized Linear Models | 15

The elastic net both selects variables and preserves the grouping effect (shrinking
coefficients of correlated columns together). Moreover, while the number of
predictors that can enter a Lasso model saturates at min(n, p) (where n is the
number of observations and p is the number of variables in the model), the
elastic net does not have this limitation and can fit models with a larger number
of predictors.

Elastic Net Penalty

H2O supports elastic net regularization, which is a combination of the `1 and
`2 penalties parametrized by the α and λ arguments (similar to Regularization
Paths for Generalized Linear Models via Coordinate Descent by Friedman et.
al).

� α controls the elastic net penalty distribution between the `1 and `2
norms. It can have any value in the [0, 1] range or a vector of values
(which triggers grid search). If α = 0, H2O solves the GLM using ridge
regression. If α = 1, the Lasso penalty is used.

� λ controls the penalty strength. The range is any positive value or a
vector of values (which triggers grid search). Note: Lambda values are
capped at λmax, which is the smallest λ for which the solution is all zeros
(except for the intercept term).

The combination of the `1 and `2 penalties is beneficial, since the `1 induces
sparsity while the `2 gives stability and encourages the grouping effect (where
a group of correlated variables tends to be dropped or added into the model
simultaneously). When focusing on sparsity, one possible use of the α argument
involves using the `1 mainly with very little `2 penalty (α almost 1) to stabilize
the computation and improve convergence speed.

GLM Model Families

The following subsection describes the GLM families supported in H2O.

Linear Regression (Gaussian Family)

Linear regression corresponds to the Gaussian family model: the link function g
is the identity and the density f corresponds to a normal distribution. It is the
simplest example of a GLM, but has many uses and several advantages over
other families. For instance, it is faster and requires more stable computations.
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It models the dependency between a response y and a covariates vector x as a
linear function:

ŷ = xTβ + β0.

The model is fitted by solving the least squares problem, which is equivalent to
maximizing the likelihood for the Gaussian family:

max
β,β0

− 1

2N

N∑
i=1

(x>i β + β0 − yi)2 − λ
(
α‖β‖1 +

1

2
(1− α)‖β‖22

)
.

The deviance is the sum of the squared prediction errors:

D =

N∑
i=1

(yi − ŷi)2.

Included in the H2O package is a prostate cancer dataset. The data was
collected by Dr. Donn Young at the Ohio State University Comprehensive
Cancer Center for a study of patients with varying degrees of prostate cancer.
The following example illustrates how to build a model to predict the volume
(VOL) of tumors obtained from ultrasounds based on features such as age and
race.

Example in R

1 library(h2o)
2 h2o.init()
3 path = system.file("extdata", "prostate.csv", package

= "h2o")
4 h2o_df = h2o.importFile(path)
5 gaussian.fit = h2o.glm(y = "VOL", x = c("AGE", "RACE",

"PSA", "GLEASON"), training_frame = h2o_df,
family = "gaussian")

Example in Python

1 import h2o
2 from h2o.estimators.glm import

H2OGeneralizedLinearEstimator
3 h2o.init()
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4 h2o_df = h2o.import_file("http://h2o-public-test-data.
s3.amazonaws.com/smalldata/prostate/prostate.csv")

5 gaussian_fit = H2OGeneralizedLinearEstimator(family =
"gaussian")

6 gaussian_fit.train(y = "VOL", x = ["AGE", "RACE", "PSA
", "GLEASON"], training_frame = h2o_df)

Logistic Regression (Binomial Family)

Logistic regression is used for binary classification problems where the response is
a categorical variable with two levels. It models the probability of an observation
belonging to an output category given the data (for instance Pr(y = 1|x)).
The canonical link for the binomial family is the logit function (also known as
log odds). Its inverse is the logistic function, which takes any real number and
projects it onto the [0, 1] range as desired to model the probability of belonging
to a class. The corresponding s-curve (or sigmoid function) is shown below,

and the fitted model has the form:

ŷ = Pr(y = 1|x) =
ex
>β+β0

1 + ex>β+β0
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This can alternatively be written as:

log

(
ŷ

1− ŷ

)
= log

(
Pr(y = 1|x)

Pr(y = 0|x)

)
= x>β + β0

The model is fitted by maximizing the following penalized likelihood:

max
β,β0

1

N

N∑
i=1

(
yi(x

>
i β + β0)− log(1 + ex

>
i β+β0)

)
−λ
(
α‖β‖1 +

1

2
(1− α)‖β‖22

)

The corresponding deviance is equal to

D = −2

n∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) .

Using the prostate dataset, this example builds a binomial model that classifies
the incidence of penetration of the prostatic capsule (CAPSULE). Confirm the
entries in the CAPSULE column are binary using the h2o.table() function.
Change the regression by changing the family to binomial.

Example in R

1 library(h2o)
2 h2o.init()
3 path = system.file("extdata", "prostate.csv", package

= "h2o")
4 h2o_df = h2o.importFile(path)
5 is.factor(h2o_df$CAPSULE)
6 h2o_df$CAPSULE = as.factor(h2o_df$CAPSULE)
7 is.factor(h2o_df$CAPSULE)
8 binomial.fit = h2o.glm(y = "CAPSULE", x = c("AGE", "

RACE", "PSA", "GLEASON"), training_frame = h2o_df,
family = "binomial")

Example in Python

1 import h2o
2 from h2o.estimators.glm import

H2OGeneralizedLinearEstimator
3 h2o.init()
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4 h2o_df = h2o.import_file("http://h2o-public-test-data.
s3.amazonaws.com/smalldata/prostate/prostate.csv")

5 h2o_df[’CAPSULE’] = h2o_df[’CAPSULE’].asfactor()
6

7 binomial_fit = H2OGeneralizedLinearEstimator(family =
"binomial")

8 binomial_fit.train(y = "CAPSULE", x = ["AGE", "RACE",
"PSA", "GLEASON"], training_frame = h2o_df)

Fractional Logit Model (Fraction Binomial)

In the financial service industry, there are many outcomes that are fractional
in the range of [0,1]. For example, LGD (Loss Given Default in credit risk)
measures the proportion of losses not recovered from a default borrower during
the collection process, and this can be observed to be in the closed interval [0,
1]. The following assumptions are made for this model.

� Pr(y = 1|x) = E(y) = 1
1+exp(−βT x−β0)

� The likelihood function = Pr(y = 1|x)
y
(1 − Pr(y = 1|x))(1−y) for 1 ≥

y ≥ 0

� var(y) = ϕE(y)(1− E(y)) and ϕ is estimated as ϕ = 1
n−p

∑
(yi−E(y))2

E(y)(1−E(y))

Note that these are exactly the same as the binomial distribution. However,
the values are calculated with the value of y in the range of 0 and 1 instead of
just 0 and 1. Therefore, we implemented the fractional binomial family using
the code of binomial. Changes are made when needed.

Example in R

1 library(h2o)
2 h2o.init()
3 path = "https://s3.amazonaws.com/h2o-public-test-data/

smalldata/glm_test/fraction_binommialOrig.csv"
4 train = h2o.importFile(path)
5 x <- c("log10conc")
6 y <- "y"
7

8 fractional_binomial <- h2o.glm (y = y, x = x, family =
"fractionalbinomial", alpha = 0, lambda = 0,
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standardize = FALSE, compute_p_values = TRUE,
training_frame = train)

Example in Python

1 import h2o
2 from h2o.estimators.glm import

H2OGeneralizedLinearEstimator
3 h2o.init()
4 train = h2o.import_file("https://s3.amazonaws.com/h2o-

public-test-data/smalldata/glm_test/fraction_
binommialOrig.csv")

5 x = ["log10conc"]
6 y = "y"
7

8 fractional_binomial = H2OGeneralizedLinearEstimator(
family = "fractionalbinomial", alpha = [0], lambda
_ = [0], standardize = False, compute_p_values =
True)

9 fractional_binomial.train(x = x, y = y, training_frame
= train)

Logistic Ordinal Regression (Ordinal Family)

A logistic ordinal regression model is a generalized linear model that predicts
ordinal variables - variables that are discreet, as in classification, but that can
be ordered, as in regression.

Let Xi ∈ IRp, y can belong to any of the K classes. In logistic ordinal regression,
we model the cumulative distribution function (CDF) of y belonging to class j,
given Xi as the logistic function:

P (y ≤ j|Xi) = φ(βTXi + θj) =
1

1 + exp(−βTXi − θj)

Compared to multiclass logistic regression, all classes share the same β vector.
This adds the constraint that the hyperplanes that separate the different classes
are parallel for all classes. To decide which class will Xi be predicted, we use the
thresholds vector θ. If there are K different classes, then θ is a non-decreasing
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vector (that is, θ0 ≤ θ1 ≤ . . . θK−2) of size K − 1. We then assign Xi to the
class j if βTXi + θj > 0 for the lowest class label j.

We choose a logistic function to model the probability P (y ≤ j|Xi) but other
choices are possible.

To determine the values of β and θ, we maximize the log-likelihood minus the
same Regularization Penalty, as with the other families.

L(β, θ) =

n∑
i=1

log
(
φ(βTXi + θyi)− φ(βTXi + θyi−1)

)
Conventional ordinal regression uses a likelihood function to adjust the model
parameters. However, during prediction, GLM looks at the log CDF odds.

log
P (yi ≤ j|Xi)

1− P (yi ≤ j|Xi)
= βTXi + θyj

As a result, there is a small disconnect between the two. To remedy this, we
have implemented a new algorithm to set and adjust the model parameters.

Recall that during prediction, a dataset row represented by Xi will be set to
class j if

log
P (yi ≤ j|Xi)

1− P (yi ≤ j|Xi)
= βTXi + θj > 0

and

βTXi + θj′ ≤ 0 for j′ < j

Hence, for each training data sample (Xi, yi), we adjust the model parameters
β, θ0, θ1, . . . , θK−2 by considering the thresholds ‘βTXi + θj directly. The
following loss function is used to adjust the model parameters:

Again, you can add the Regularization Penalty to the loss function. The model
parameters are adjusted by minimizing the loss function using gradient descent.
When the Ordinal family is specified, the solver parameter will automatically
be set to GRADIENT DESCENT LH and use the log-likelihood function. To
adjust the model parameters using the loss function, you can set the solver
parameter to GRADIENT DESCENT SQERR.
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Because only first-order methods are used in adjusting the model parameters,
use Grid Search to choose the best combination of the obj reg, alpha, and
lambda parameters.

In general, the loss function methods tend to generate better accuracies than
the likelihood method. In addition, the loss function method is faster as it does
not deal with logistic functions - just linear functions when adjusting the model
parameters.

Example in R

1 library(h2o)
2 h2o.init()
3 h2o_df = h2o.import_file("http://h2o-public-test-data.

s3.amazonaws.com/bigdata/laptop/glm_ordinal_logit/
ordinal_multinomial_training_set.csv")

4 Dtrain$C11 <- h2o.asfactor(Dtrain$C11)
5 X <- c(1:10)
6 Y <-"C11"
7 ordinal.fit <- h2o.glm(y = Y, x = X, training_frame =

Dtrain, lambda=c(0.000000001), alpha=c(0.7),
family = "ordinal", beta_epsilon=1e-8,
objective_epsilon=1e-10, obj_reg=0.00001,
max_iterations=1000 )

Example in Python

1 import h2o
2 from h2o.estimators.glm import

H2OGeneralizedLinearEstimator
3 h2o.init()
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4 h2o_df = h2o.import_file("http://h2o-public-test-data.
s3.amazonaws.com/bigdata/laptop/glm_ordinal_logit/
ordinal_multinomial_training_set.csv")

5 h2o_df[’C11’] = h2o_df[’C11’].asfactor()
6

7 ordinal_fit = H2OGeneralizedLinearEstimator(family = "
ordinal", alpha = 1.0, lambda_=0.000000001,
obj_reg = 0.00001, max_iterations=1000,
beta_epsilon=1e-8, objective_epsilon=1e-10)

8 ordinal_fit.train(x=list(range(0,10)), y="C11",
training_frame=h2o_df)

Multi-class classification (Multinomial Family)

Multinomial family generalization of the binomial model is used for multi-class
response variables. Similar to the binomial family, we model the conditional
probability of observing class c given x. We have a vector of coefficients for
each of the output classes (β is a matrix). The probabilities are defined as

ŷc = Pr(y = c|x) =
ex
>βc+βc0∑K

k=1(ex>βk+βk0)

The penalized negative log-likelihood is defined as:

−[
1

N

N∑
i=1

K∑
k=1

(yi,k(x>i βk+βk0))−log(

K∑
k=1

ex
>
i βk+βk0)]+λ[

(1− α)

2
‖β‖2F+α

P∑
j=1

‖βj‖1]

, where βc is vector of coefficients for class c and yi,k is kth element of the binary
vector produced by expanding the response variable using one-hot encoding (i.e.
yi,k == 1 iff the response at the ith observation is k. It is 0 otherwise.

Here is a simple example using the iris dataset:

Example in R

1 library(h2o)
2 h2o.init()
3 iris_h2o = as.h2o(iris)



24 | Generalized Linear Models

4 h2o.fit = h2o.glm(training_frame=iris_h2o,y="Species",
x=1:4,family="multinomial")

5 h2o.fit

Example in Python

1 import h2o
2 from h2o.estimators.glm import

H2OGeneralizedLinearEstimator
3 h2o.init()
4 h2o_df = h2o.import_file("http://h2o-public-test-data.

s3.amazonaws.com/smalldata/iris/iris.csv")
5 multinomial_fit = H2OGeneralizedLinearEstimator(family

= "multinomial")
6 multinomial_fit.train(y = 4, x = [0,1,2,3],

training_frame = h2o_df)

Poisson Models

Poisson regression is typically used for datasets where the response represents
counts and the errors are assumed to have a Poisson distribution. In general, it
can be applied to any data where the response is non-negative. It models the
dependency between the response and covariates as:

ŷ = ex
T β+β0

The model is fitted by maximizing the corresponding penalized likelihood:

max
β,β0

1

N

N∑
i=1

(
yi(x

>
i β + β0)− ex

>
i β+β0

)
− λ

(
α‖β‖1 +

1

2
(1− α)‖β‖22

)

The corresponding deviance is equal to:

D = −2

N∑
i=1

(yi log(yi/ŷi)− (yi − ŷi))
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Note in the equation above that H2O-3 uses the negative log of the like-
lihood. This is different than the way deviance is specified in https://
onlinecourses.science.psu.edu/stat501/node/377/. In order to
use this deviance definition, simply multiply the H2O-3 deviance by -1.

The following example loads the Insurance data from the MASS library, imports
it into H2O, and runs a Poisson model that predicts the number of claims
(Claims) based on the district of the policy holder (District), their age (Age),
and the type of car they own (Group).

Example in R

1 library(h2o)
2 h2o.init()
3 library(MASS)
4 data(Insurance)
5

6 # Convert ordered factors into unordered factors.
7 # H2O only handles unordered factors today.
8 class(Insurance$Group) <- "factor"
9 class(Insurance$Age) <- "factor"

10

11 # Copy the R data.frame to an H2OFrame using as.h2o()
12 h2o_df = as.h2o(Insurance)
13 poisson.fit = h2o.glm(y = "Claims", x = c("District",

"Group", "Age"), training_frame = h2o_df, family =
"poisson")

Example in Python

1 # Used swedish insurance data from smalldata instead
of MASS/insurance due to the license of the MASS R
package.

2 import h2o
3 from h2o.estimators.glm import

H2OGeneralizedLinearEstimator
4 h2o.init()
5

6 h2o_df = h2o.import_file("http://h2o-public-test-data.
s3.amazonaws.com/smalldata/glm_test/
Motor_insurance_sweden.txt", sep = ’\t’)

https://onlinecourses.science.psu.edu/stat501/node/377/
https://onlinecourses.science.psu.edu/stat501/node/377/
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7 poisson_fit = H2OGeneralizedLinearEstimator(family = "
poisson")

8 poisson_fit.train(y="Claims", x = ["Payment", "Insured
", "Kilometres", "Zone", "Bonus", "Make"],
training_frame = h2o_df)

Gamma Models

The gamma distribution is useful for modeling a positive continuous response
variable, where the conditional variance of the response grows with its mean but
the coefficient of variation of the response σ2(yi)/µi is constant. It is usually
used with the log link g(µi) = log(µi), or the inverse link g(µi) = 1

µi
which is

equivalent to the canonical link.

The model is fitted by solving the following likelihood maximization:

max
β,β0

− 1

N

{
N∑
i=1

yi
ui

+ log(ui)

}
− λ

(
α‖β‖1 +

1

2
(1− α)‖β‖22

)

where ui = ex
>
i β+β0 or ui = 1

x>i β+βo
.

The corresponding deviance is equal to:

D = 2

N∑
i=1

− log

(
yi
ŷi

)
+

(yi − ŷi)
ŷi

To change the link function from the default inverse function to the log link
function, modify the link argument.

Example in R

1 library(h2o)
2 h2o.init()
3 path = system.file("extdata", "prostate.csv", package

= "h2o")
4 h2o_df = h2o.importFile(path)
5 gamma.inverse <- h2o.glm(y = "DPROS", x = c("AGE","

RACE","CAPSULE","DCAPS","PSA","VOL"), training_
frame = h2o_df, family = "gamma", link = "inverse"
)
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6 gamma.log <- h2o.glm(y="DPROS", x = c("AGE","RACE","
CAPSULE","DCAPS","PSA","VOL"), training_frame =
h2o_df, family = "gamma", link = "log")

Example in Python

1 import h2o
2 from h2o.estimators.glm import

H2OGeneralizedLinearEstimator
3 h2o.init()
4 h2o_df = h2o.import_file("http://h2o-public-test-data.

s3.amazonaws.com/smalldata/prostate/prostate.csv")
5 gamma_inverse = H2OGeneralizedLinearEstimator(family =

"gamma", link = "inverse")
6 gamma_inverse.train(y = "DPROS", x = ["AGE","RACE","

CAPSULE","DCAPS","PSA","VOL"], training_frame =
h2o_df)

7

8 gamma_log = H2OGeneralizedLinearEstimator(family = "
gamma", link = "log")

9 gamma_log.train(y="DPROS", x = ["AGE","RACE","CAPSULE"
,"DCAPS","PSA","VOL"], training_frame = h2o_df)

Tweedie Models

Tweedie distributions are a family of distributions which include gamma, normal,
Poisson and their combinations. Tweedie distributions are especially useful
for modeling positive continuous variables with exact zeros. The variance
of the Tweedie distribution is proportional to the p-th power of the mean
var(yi) = φµpi , where φ is the dispersion of the parameter and p is the variance
power.

The Tweedie distribution is parametrized by variance power p. It is defined for
all p values except in the (0, 1) interval, and has the following distributions as
special cases.

� p = 0: Normal

� p = 1: Poisson

� p ∈ (1, 2): Compound Poisson, non-negative with mass at zero
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� p = 2: Gamma

� p = 3: Inverse-Gaussian

� p > 2: Stable, with support on the positive reals

Example in R

1 library(h2o)
2 h2o.init()
3 library(HDtweedie)
4 data(auto) # 2812 policy samples with 56 predictors
5

6 dim(auto$x)
7 hist(auto$y)
8

9 # Copy the R data.frame to an H2OFrame using as.h2o()
10 h2o_df = as.h2o(auto)
11 vars= paste("x.",colnames(auto$x),sep="")
12 tweedie.fit = h2o.glm(y = "y", x = vars, training_

frame = h2o_df, family = "tweedie")
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Example in Python

1 import h2o
2 from h2o.estimators.glm import

H2OGeneralizedLinearEstimator
3 h2o.init()
4 h2o_df = h2o.import_file("http://h2o-public-test-data.

s3.amazonaws.com/smalldata/glm_test/auto.csv")
5 tweedie_fit = H2OGeneralizedLinearEstimator(family = "

tweedie")
6 tweedie_fit.train(y = "y", x = h2o_df.col_names[1:],

training_frame = h2o_df)

The model likelihood to maximize has the form:

where the function a(yi, φ) is evaluated using an infinite series expansion and
does not have an analytical solution. However, because φ is an unknown
constant,

∑N
i=1 log(a(yi, φ)) is a constant and will be ignored. Hence, the final

objective function to minimize with the penalty term is:

The link function in the GLM representation of the Tweedie distribution defaults
to:
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And q = 1− p. The link power q can be set to other values as well.

The corresponding deviance is equal to:

4.6.8.1 Tweedie Dispersion Parameter Estimation The den-
sity for the maximum likelihood function for Tweedie can be written as:

f(y; θ, φ) = a(y, φ, p) exp
[ 1

φ

{
yθ − k(θ)

}]
(1)

where:

� a(y, φ, p), k(θ) are suitable known functions

� φ is the dispersion parameter and is positive

� θ =

{
µ1−p

1−p p 6= 1

log(µ) p = 1

� k(θ) =

{
µ2−p

2−p p 6= 2

log(µ) p = 2

� the value of α(y, φ) depends on the value of p

If there are weights introduced to each data row, equation 1 will become:

f
(
y; θ,

φ

w

)
= a

(
y,
φ

w
, p
)

exp
[w
φ

{
yθ − k(θ)

}]
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4.6.8.1.1 α(y, φ)when1 < p < 2 For Y = 0,

P (Y = 0) = exp
{
− µ2−p

φ(2− p)

}
(2)

For Y > 0,

a(y, φ, p) =
1

y
W (y, φ, p) (3)

with W (y, φ, p) =
∑∞
j=1Wj and

Wj =
y−jα(p− 1)αj

φj(1−α)(2− p)jj!Γ(−jα)
(4)

If weight is applied to each row, equation 4 becomes:

Wj =
wj(1−α)y−jα(p− 1)αj

φj(1−α)(2− p)jj!Γ(−jα)
(5)

The Wj terms are all positive. The following figure plots for µ = 0.5, p =
1.5, φ = 1.y = 0.1.
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4.6.8.1.2 α(y, φ) when p > 2 Here, you have,

a(y, φ, p) =
1

πy
V (y, φ, p) (6)

and V =
∑∞
k=1 Vk where

Vk =
Γ(1 + αk)φk(α−1)(p− 1)αk

Γ(1 + k)(p− 2)kyαk
(−1)k sin(−kπα) (7)

Note that 0 < α < 1 for p > 2. The Vk terms are both positive and negative.
This will limit the numerical accuracy that is obtained in summing it as shown
in the following image. Again, if weights are applied to each row of the dataset,
equation 6 becomes:

Vk =
Γ(1 + αk)φk(α−1)(p− 1)αk

Γ(1 + k)wk(α−1)(p− 2)kyαk
(−1)k sin(−kπα) (8)

Example in R

1 # Import the training data:
2 training_data <- h2o.importFile("http://h2o-public-

test-data.s3.amazonaws.com/smalldata/glm_test/
tweedie_p3_phi1_10KRows.csv")

3

4 # Set the predictors and response:
5 predictors <- c(’abs.C1.’, ’abs.C2.’, ’abs.C3.’, ’abs.

C4.’, ’abs.C5.’)
6 response <- ’x’
7

8 # Build and train the model:
9 model <- h2o.glm(x = predictors,

10 y = response,
11 training_frame = training_data,
12 family = ’tweedie’,
13 solver = ’IRLSM’,
14 tweedie_variance_power = 3,
15 lambda = 0,
16 compute_p_values = TRUE,
17 dispersion_parameter_method = "

pearson",
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18 init_dispersion_parameter = 0.5,
19 dispersion_epsilon = 1e-4,
20 max_iterations_dispersion = 100)
21

22 # Retrieve the estimated dispersion:
23 model@model$dispersion
24 [1] 0.7599965

Example in Python

1 # Import the training data:
2 training_data = h2o.import_file("http://h2o-public-

test-data.s3.amazonaws.com/smalldata/glm_test/
tweedie_p3_phi1_10KRows.csv")

3

4 # Set the predictors and response:
5 predictors = ["abs.C1.", "abs.C2.", "abs.C3.", "abs.C4

.", "abs.C5.""]
6 response = "x"
7

8 # Build and train the model:
9 model = H2OGeneralizedLinearEstimator(family="tweedie"

,
10 lambda_=0,
11 solver="IRLSM",
12 compute_p_values=True,
13 dispersion_parameter_method="pearson",
14 init_dispersion_parameter=0.5,
15 dispersion_epsilon=1e-4,
16 tweedie_variance_power=3,
17 max_iterations_dispersion=100)
18 model.train(x=predictors, y=response, training_frame=

training_data)
19

20 # Retrieve the estimated dispersion:
21 model._model_json["output"]["dispersion"]
22 0.7599964835351135
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4.6.8.2 Tweedie Variance Power Estimation Depending on p,
y, and φ, different methods are used for this log likelihood estimation. To start,
let:

ξ =
φ

y2−p

If p = 2, then it will use the log likelihood of the Gamma distribution:

log(p) =

{
−∞ y = 0
1
φ log( 1

φµ )− log Gamma 1
φ + log(y)( 1

φ − 1) + (− 1
φµy) y > 0

If p = 3, then it will use the inverse Gaussian distribution:

log(p) =

−∞ y = 0

1
2

(
− log(φµ) log(2π)− 3 log

(
y
µ −

( yµ−1)2

φµ yµ

)
− log(µ) y > 0

If p < 2 and ξ ≤ 0.01, then it will use the Fourier inversion method.

If p > 2 and ξ ≥ 1, then it will also use the Fourier inversion method.

Everything else will use the Series method. However, if the Series method fails
(output of NaN), then it will try the Fourier inversion method instead.

If both the Series method and Fourier inversion method fail, or if the Fourier
inversion method was chosen based on the ξ criterium and it failed, it will then
estimate the log likelihood using the Saddlepoint approximation.

Here are the general usages for Tweedie variance power and dispersion parameter
estimation using maximum likelihood:

� fix tweedie variance power = True and
fix dispersion parameter = False as it will use the Tweedie
variance power set in parameter tweedie variance power and esti-
mate the dispersion parameter starting with the values set in parameter
init dispersion parameter;

� fix tweedie variance power = False and
fix dispersion parameter = True as it will use the dispersion
parameter value set in parameter init dispersion parameter and
estimate the Tweedie variance power starting with the value set in pa-
rameter tweedie variance power;
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� fix tweedie variance power = False and
fix dispersion parameter = False as it will estimate both the
variance power and dispersion parameter starting with the values set in
tweedie variance power and init dispersion parameter re-
spectively.

4.6.8.2.1 Optimization Procedure When estimating just the Tweedie
variance power, it use the golden section search. Once a small region is found,
then it switches to Newton’s method. If Newton’s method fails (i.e. steps out
of the bounds found by the golden section search), it uses the golden section
search until convergence. When you optimize both Tweedie variance power and
dispersion, it uses the Nelder-Mead method with constraints so that Tweedie
variance power p > 1 + 10−10 and dispersion φ > 10−10.

Note: If you specify the maximum likelihood method for the dispersion parame-
ter method (dispersion parameter method = "ml") for the Negative
Binomial, Gamma, or Tweedie families, then you must also set solver equal
to "IRLSM".

Negative Binomial Models

Negative binomial regression is a generalization of Poisson regression that loosens
the restrictive assumption that the variance is equal to the mean. Instead, the
variance of negative binomial is a function of its mean and parameter θ, the
dispersion parameter.

Let Y denote a random variable with negative binomial distribution, and let µ
be the mean. The variance of Y (σ2) will be σ2 = µ+ θµ2. The possible values
of Y are non-negative integers like 0, 1, 2, ...

The negative binomial regression for an observation i is:

Pr(Y = yi|µi, θ) =
Γ(yi + θ−1)

Γ(θ−1)Γ(yi + 1)

(
1

1 + θµi

)θ−1(
θµi

1 + θµi

)yi
where Γ(x) is the gamma function, and µi can be modeled as:

µi =

{
exp(βTXi + β0) for log link
βTXi + β0 for identity link

The negative log likelihood L(yi, µi) function is:
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max
β,β0

[
−1
N

∑N
i=1

{(∑yi−1
j=0 log(j+θ−1)

)
−log(Γ(yi+1))−(yi+θ

−1)log(1+θµi)

+ yilog(µi) + yilog(θ)

}]

The final penalized negative log likelihood is used to find the coefficients β, β0

given a fixed θ value:

L(yi, µi) + λ
(
α||β||1 +

1

2
(1− α)||β||2

)
The corresponding deviance is:

D = 2

N∑
i=1

{
yilog

( yi
µi

)
− (yi + θ−1)log

(1 + θyi)

(1 + θµi)

}

Note: Future versions of this model will optimize the coefficients as well as
the dispersion parameter. Please stay tuned.
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Example in R

1 library(h2o)
2 h2o.init()
3 h2o_df = h2o.importFile("http://h2o-public-test-data.

s3.amazonaws.com/smalldata/glm_test/Motor_
insurance_sweden.txt")

4 predictors <- c["Payment", "Insured", "Kilometres", "
Zone", "Bonus", "Make"]

5 response <- "Claims"
6 negativebinomial.fit <- h2o.glm(x=predictors, y=

response, training_frame=h2o_df, family="
negativebinomial", link="identity", theta=0.5)

Example in Python

1 import h2o
2 from h2o.estimators.glm import

H2OGeneralizedLinearEstimator
3 h2o.init()
4 h2o_df = h2o.h2o.import_file("http://h2o-public-test-

data.s3.amazonaws.com/smalldata/glm_test/
Motor_insurance_sweden.txt")

5 predictors = ["Payment", "Insured", "Kilometres", "
Zone", "Bonus", "Make"]

6 response = "Claims"
7 negativebinomial_fit = H2OGeneralizedLinearEstimator(

family="negativebinomial", link="identity", theta
=0.5)

8 negativebinomial_fit.train(x=predictors, y=response,
training_frame=h2o_df)

4.6.9.1 Negative Binomia Dispersion Parameter Estima-
tionl GLM dispersion estimation using the maximum likelihood method
for the negative binomial family is available when you set
dispersion parameter method=’ml’.

The coefficients, or betas, are estimated using IRLSM. The dispersion parameter
theta is estimated after each IRLSM iteration. After the first beta update, the
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initial theta estimate is made using the method of moments as a starting point.
Then, theta is updated using the maximum likelihood in each iteration.

While not converged:

1. Estimate coefficients (betas)

2. Estimate dispersion (theta)

� If it is the first iteration: Theta ← Method of Moments estimate

� Otherwise: Theta ← Maximum Likelihood estimate using Newton’s
method with learning rate estimated using Golden section search

Hierarchical GLM

Introduced in 3.28.0.1, Hierarchical GLM (HGLM) fits generalized linear models
with random effects, where the random effect can come from a conjugate
exponential-family distribution (for example, Gaussian). HGLM allows you to
specify both fixed and random effects, which allows fitting correlated to random
effects as well as random regression models. HGLM can be used for linear
mixed models and for generalized linear mixed models with random effects for
a variety of links and a variety of distributions for both the outcomes and the
random effects.

Note: The initial release of HGLM supports only the Gaussian family and
random family.

Gaussian Family and Random Family in HGLM

To build an HGLM, we need the hierarchical log-likelihood (h-likelihood) function.
The h-likelihood function can be expressed as (equation 1):

h(β, θ, u) = log(f(y|u)) + log(f(u))

for fixed effects β, variance components θ, and random effects u.

A standard linar mixed model can be expressed as (equation 2):

y = Xβ + Zu+ e

where

� e N(0, In, δ
2
e), u N(0, Ik, δ

2
u)
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� e, u are independent, and u represents the random effects

� n is the number of i.i.d observations of y with mean 0

� q is the number of values Z can take

Then rewriting equation 2ase = Xβ + Zu− y and derive the h-likelihood as:

where C1 = −n2 log(2π), C2 = − q2 log(2π)

In principal, the HGLM model building involves the following main steps:

� Set the initial values to δ2
u, δ

2
e , u, β

� Estimate the fixed (β) and random effects (u) by solving for ∂h
∂β = 0, ∂h∂u =

0

� Estimate variance components using the adjusted profile likelihood:

hp =
(
h+

1

2
log
∣∣2πD−1

∣∣)
β=β̂,u=û

and solving for
∂hp
∂θ

= 0

Note that D is the matrix of the second derivatives of h around β =
β̂, u = û, θ = (δ2

u, δ
2
e).

H2O Implementation

In reality, Lee and Nelder (see References) showed that linear mixed models can
be fitted using a hierarchy of GLM by using an augmented linear model. The
linear mixed model will be written as:

y = Xβ + Zu+ ev = ZZTσ2
u +Rσ2

e

where R is a diagonal matrix with elements given by the estimated dispersion
model. The dispersion model refers to the variance part of the fixed effect
model with error e. There are cases where the dispersion model is modeled itself
as exp(xd, βd). However, in our current version, the variance is just a constant
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σ2
e , and hence R is just a scalar value. It is initialized to be the identity matrix.

The model can be written as an augmented weighted linear model:

ya = Taδ + ea

where

Note that q is the number of columns in Z, 0q is a vector of q zeroes, Iq is the
qxq identity matrix. The variance-covariance matrix of the augmented residual
matrix is

Fixed and Random Coefficients Estimation

The estimates for δ from weighted least squares are given by solving

TTa W
−1Taδ = TTa W

−1ya

where

W = V (ea)

The two variance components are estimated iteratively by applying a gamma
GLM to the residuals e2

i , u
2
i . Because we are not using a dispersion model,

there is only an intercept terms in the linear predictors. The leverages hi for
these models are calculated from the diagonal elements of the hat matrix:

Ha = Ta(TTa W
−1Ta)−1TTa W

−1
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Estimation of Fixed Effect Dispersion Parameter/Variance

A gamma GLM is used to fit the dispersion part of the model with response
yd,i = (e2

i )(1 − hi) where E(yd) = ud and ud ≡ φ (i.e., δ2
e for a Gaussian

response). The GLM model for the dispersion parameter is then specified by
the link function gd(.) and the linear predictor Xdβd with prior weights for
(1 − hi)2 for gd(ud) = Xdβd. Because we are not using a dispersion model,
Xdβd will only contain the intercept term.

Estimation of Random Effect Dispersion Parameter/Vari-
ance

Similarly, a gamma GLM is fitted to the dispersion term alpha (i.e., δ2
e for

a GLM) for the random effect v, with yα, j = u2
j(1 − hn+j), j = 1, 2, . . . , q

and gα(uα) = λ, where the prior weights are (1− hn+j)2, and the estimated

dispersion term for the random effect is given by α̂ = g−1
α (λ̂).

Fitting Algorithm Overview

The following fitting algorithm from ”Generalized linear models with random
effects” (Y. Lee, J. A. Nelder and Y. Pawitan; see References) is used to build
our HGLM. Let n be the number of observations and k be the number of levels
in the random effect. The algorithm that was implemented here at H2O will
perform the following:

1. Initialize starting values either from user by setting parameter startval or
by the system if startval is left unspecified.

2. Construct an augmented model with response yaug =
(

y
E(u)

)
.

3. Use a GLM to estimate δ =
(
β
u

)
given the dispersion φ and λ. Save the

deviance components and leverages from the fitted model.

4. Use a gamma GLM to estimate the dispersion parameter for φ (i.e. δ2
e

for a Gaussian response).

5. Use a similar GLM as in step 4 to estimate λ from the last k deviance
components and leverages obtained from the GLM in step 3.

6. Iterate between steps 3-5 until convergence. Note that the convergence
measure here is either a timeout event or the following condition has been

met: Σi(eta.i−eta.o)2
Σi(eta.i)2¡1e−6 .
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A timeout event can be defined as the following:

1. Maximum number of iterations have been reached

2. Model building run time exceeds what is specified in max runtime secs

3. A user has clicked on stop model button or similar from Flow.

For families and random families other than Gaussian, link functions are used
to translate from the linear space to the model the mean output.

Linear Mixed Model with Correlated Random Effect

Let A be a matrix with known elements that describe the correlation among
the random effects. The model is now given by:

where N is normal distribution and MVN is multi-variable normal. This can
be easily translated to:

where Z∗ = ZL and L is the Cholesky factorization of A. Hence, if you have
correlated random effects, you can first perform the transformation to your data
before using our HGLM implementation here.

HGLM Model Metrics

H2O provides the following model metrics at the end of each HGLM experiment:

� fixef: fixed effects coefficients

� ranef: random effects coefficients

� randc: vector of random column indices

� varfix: dispersion parameter of the mean model

� varranef: dispersion parameter of the random effects
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� converge: true if algorithm has converge, otherwise false

� sefe: standard errors of fixed effects

� sere: standard errors of random effects

� dfrefe: deviance degrees of freedom for the mean part of model

� sumvc1: estimates and standard errors of linear predictor in the dispersion
model

� summvc2: estimates and standard errors of the linear predictor for the
dispersion parameter of the random effects

� likelihood: if calc like is true, the following four values are returned:

– hlik: log-h-likelihood;

– pvh: adjusted profile log-likelihood profiled over the random effects;

– pbvh: adjusted profile log-likelihood profiled over fixed and random
effects;

– caic: conditional AIC.

� bad: row index of the most influential observation.

Mapping of Fitting Algorithm to the H2O-3 Implementation

This mapping is done in four steps:

1. Initialize starting values by the system.

2. Estimate δ =
(
β
u

)
.

3. Estimate δ2
e(tau).

4. Estimate δ2
u(phi).

Building GLM Models in H2O

H2O’s GLM implementation presents a high-performance distributed algorithm
that scales linearly with the number of rows and works extremely well for
datasets with a limited number of active predictors.
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Classification and Regression

GLM can produce two categories of models: classification (binary classifica-
tion only) and regression. Logistic regression is the GLM to perform binary
classification.

The data type of the response column determines the model category. If the
response is a categorical variable (also called a factor or an enum), then a
classification model is created. If the response column data type is numeric
(either integer or real), then a regression model is created.

The following examples show how to coerce the data type of a column to a
factor.

Example in R

1 library(h2o)
2 h2o.init()
3 path = system.file("extdata", "prostate.csv", package

= "h2o")
4 h2o_df = h2o.importFile(path)
5 h2o_df$CAPSULE = as.factor(h2o_df$CAPSULE)
6 summary(h2o_df)

Example in Python

1 import h2o
2 h2o.init()
3 h2o_df = h2o.import_file("http://h2o-public-test-data.

s3.amazonaws.com/smalldata/prostate/prostate.csv")
4 h2o_df["CAPSULE"] = h2o_df["CAPSULE"].asfactor()
5 h2o_df.summary()

Training and Validation Frames

Frame refers to an H2OFrame, the fundamental method of data storage in
H2O’s distributed memory.

training frame refers to a frame containing a training dataset. All pre-
dictors and the response (as well as offset and weights, if specified) must be
included in this frame.
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validation frame refers to an optional frame containing a validation
dataset. If specified, this frame must have exactly the same columns as
the training dataset. Metrics are calculated on the validation dataset for
convenience.

Predictor and Response Variables

Every model must specify its predictors and response. Predictors and responses
are specified by the x and y parameters.

x contains the list of column names or column indices referring to vectors from
the training frame; periods are not supported characters.

y is a column name or index referring to a vector from the training frame.

Categorical Variables

If the response column is categorical, then a classification model is created.
GLM only supports binary classification, so the response column may only have
two levels. Categorical predictor columns may have more than two levels.

We recommend letting GLM handle categorical columns, as it can take advantage
of the categorical column for better performance and memory utilization.

We strongly recommend avoiding one-hot encoding categorical columns with
many levels into many binary columns, as this is very inefficient. This is
especially true for Python users who are used to expanding their categorical
variables manually for other frameworks.

Family and Link

Family and Link are optional parameters. The default family is Gaussian and
the default link is a canonical link for the selected family. These are passed as
strings, e.g. family = "gamma", link = "log". While it is possible
to select a non-canonical link, this may lead to an unstable computation.

Regularization Parameters

To get the best possible model, we need to find the optimal values of the
regularization parameters α and λ. To find the optimal values, H2O provides
grid search over α and a special form of grid search called “lambda search”
over λ. For a detailed explanation, refer to Regularization.
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The recommended way to find optimal regularization settings on H2O is to do
a grid search over a few α values with an automatic lambda search for each α.
Both are described below in greater detail.

Alpha and Lambda

The alpha parameter controls the distribution between the `1 (Lasso) and `2
(Ridge regression) penalties. A value of 1.0 for alpha represents Lasso, and
an alpha value of 0.0 produces ridge regression.

The lambda parameter controls the amount of regularization applied. If
lambda is 0.0, no regularization is applied and the alpha parameter is ignored.
The default value for lambda is calculated by H2O using a heuristic based on
the training data. If you let H2O calculate the value for lambda, you can see
the chosen value in the model output.

Lambda Search

Lambda search enables efficient and automatic search for the optimal value of
the lambda parameter. When lambda search is enabled, GLM will first fit a
model with maximum regularization and then keep decreasing it until overfitting
occurs. The resulting model is based on the best lambda value.

When looking for sparse solution (alpha > 0), lambda search can also be
used to efficiently handle very wide datasets because it can filter out inactive
predictors (known as noise) and only build models for a small subset of predictors.
A common use of lambda search is to run it on a dataset with many predictors
but limit the number of active predictors to a relatively small value.

Lambda search can be enabled by setting lambda search and can be config-
ured using the following arguments:

� alpha: Regularization distribution between `1 and `2.

� validation frame andor n folds: Used to select the best lambda
based on the cross-validation performance or the validation or training
data. If available, cross-validation performance takes precedence. If no
validation data is available, the best lambda is selected based on training
data performance and is therefore guaranteed to always be the minimal
lambda computed, since GLM can not overfit on a training dataset.

Note: If running lambda search with a validation dataset and cross-
validation disabled, the chosen lambda value corresponds to the lambda
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with the lowest validation error. The validation dataset is used to select
the model and the model performance should be evaluated on another
independent test dataset.

� lambda min ratio and nlambdas: The sequence of λs is automati-
cally generated as an exponentially decreasing sequence. It ranges from
λmax, the smallest λ so that the solution is a model with all 0s, to λmin =
lambda min ratio * λmax.

H2O computes λ-models sequentially and in decreasing order, warm-
starting the model for λk with the solution for λk−1. By warm-starting
(using the previous solution as the initial prediction) the models, we get
better performance: typically models for subsequent λs are close to each
other, so only a few iterations per λ are needed (typically two or three).
This also achieves greater numerical stability, since models with a higher
penalty are easier to compute. This method starts with an easy problem
and then continues to make small adjustments.

Note: nlambda and lambda min ratio also specify the relative
distance of any two lambdas in the sequence. This is important when
applying recursive strong rules, which are only effective if the neighboring
lambdas are “close” to each other. The default values are nlambda =
100 and λmin = λmax1e−4, which gives us the ratio of 0.912. For best
results when using strong rules, keep the ratio close to the default.

� max active predictors: This limits the number of active predictors
(the actual number of non-zero predictors in the model is going to be
slightly lower). It is useful when obtaining a sparse solution to avoid
costly computation of models with too many predictors.
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Solver Selection

This section provides general guidelines for best performance from the H2O GLM
implementation options. The optimal solver depends on the data properties
and prior information regarding the variables (if available).

The data are considered sparse if the ratio of zeros to non-zeros in the input
matrix is greater than ∼ 10. The solution is sparse when only a subset of the
original set of variables is intended to be kept in the model. In a dense solution,
all predictors have non-zero coefficients in the final model.

Solver Details

H2O’s GLM offers the following solvers:

� the Iteratively Reweighted Least Squares Method (IRLSM)

� the Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-
BFGS)

� Coordinate Decent

� Coordinate Decent Naive

� Gradient Descent Likelihood (available for Ordinal family only; default
for Ordinal family)

� Gradient Descent Squared Error (available for Ordinal family only)

IRLSM uses a Gram Matrix approach, which is very efficient for tall and narrow
datasets and when running lambda search with a sparse solution. For wider
and dense datasets (thousands of predictors and up), the L-BFGS solver scales
better. If there are fewer than ∼ 500 predictors in the data, use the default,
which is IRLSM.

For larger numbers of predictors, it is recommended to run IRLSM with lambda
search and compare it to L-BFGS with just the `2 penalty. For advanced users,
we recommend the following general guidelines:

� For a dense solution and a dense dataset, use IRLSM if there are fewer
than ∼ 500 predictors in the data; otherwise, use L-BFGS. Set alpha
to 0 to include `2 regularization in the elastic net penalty term to avoid
inducing sparsity in the model.

� For a dense solution with a sparse dataset, use IRLSM if there are fewer
than ∼ 2000 predictors in the data; otherwise, use L-BFGS. Set alpha
to 0.
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� For a sparse solution with a dense dataset, use IRLSM with lambda-
search if fewer than ∼ 500 active predictors in the solution are expected;
otherwise, use L-BFGS. Set alpha to be greater than zero to add an
`1 penalty to the elastic net regularization, which induces sparsity in the
estimated coefficients.

� For a sparse solution with a sparse dataset, use IRLSM with lambda-search
if you expect less than ∼ 5000 active predictors in the solution; otherwise,
use L-BFGS. Set alpha to be greater than zero.

� If unsure whether the solution should be sparse or dense, try both and
a grid of alpha values. The optimal model can be picked based on its
performance on the validation data (or alternatively the performance in
cross-validation when not enough data is available to have a separate
validation dataset).

The above recommendations are general guidelines; if the performance of the
method seems slow, experiment with the available options.

IRLSM can be run with two algorithms to solve its innermost loop: ADMM and
cyclical coordinate descent. The latter is used in glmnet.

The method is able to handle large datasets well and deals efficiently with sparse
features. It should improve the performance when the data contains categorical
variables with a large number of levels, as it is implemented to deal with such
variables in a parallelized way.

Coordinate descent can be implemented with naive or covariance updates as
explained in the glmnet paper. The covariance updates version is faster when
N > p and p ∼ 500.

For Ordinal regression problems, H2O provides options for Gradient Descent.
Gradient Descent is a first-order iterative optimization algorithm for finding the
minimum of a function. In H2O’s GLM, conventional ordinal regression uses a
likelihood function to adjust the model parameters. The model parameters are
adjusted by maximizing the log-likelihood function using gradient descent. When
the Ordinal family is specified, the solver parameter will automatically be set to
GRADIENT DESCENT LH. To adjust the model parameters using the loss func-
tion, you can set the solver parameter to GRADIENT DESCENT SQERR.

Stopping Criteria

When using the `1 penalty with lambda search, specify a value for the
max active predictors parameter to stop the search before it completes.
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Models built at the beginning of the lambda search have higher lambda values,
consider fewer predictors, and take less time to calculate the model.

Models built at the end of the lambda search have lower lambda values,
incorporate more predictors, and take a longer time to calculate the model. Set
the nlambdas parameter for a lambda search to specify the number of models
attempted across the search.

Example in R

1 library(h2o)
2 h2o.init()
3 h2o_df = h2o.importFile("http://s3.amazonaws.com/h2o-

public-test-data/smalldata/airlines/allyears2k_
headers.zip")

4

5 #stops the model when we reach 10 active predictors
6 model = h2o.glm(y = "IsDepDelayed", x = c("Year", "

Origin"), training_frame = h2o_df, family = "
binomial", lambda_search = TRUE, max_active_
predictors = 10)

7 print(model)

Example in Python

1 import h2o
2 from h2o.estimators.glm import

H2OGeneralizedLinearEstimator
3 h2o.init()
4 h2o_df = h2o.import_file("http://s3.amazonaws.com/h2o-

public-test-data/smalldata/airlines/
allyears2k_headers.zip")

5

6 #stops the model when we reach 10 active predictors
7 model = H2OGeneralizedLinearEstimator(family = "

binomial", lambda_search = True,
max_active_predictors = 10)

8 model.train(y = "IsDepDelayed", x = ["Year", "Origin"
], training_frame = h2o_df)

9 print(model)
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Advanced Features

H2O’s GLM has several advanced features to help build better models.

Standardizing Data

The standardize parameter, which is enabled by default, standardizes
numeric columns to have zero mean and unit variance. This parameter must
be enabled (using standardize=TRUE) to produce standardized coefficient
magnitudes in the model output.

We recommend enabling standardization when using regularization (i.e. lambda
chosen by H2O or greater than 0). Only advanced users should disable this.

Auto-remove collinear columns

Collinear columns can cause problems during model fitting. The preferred way
to deal with collinearity is to add some regularization (either L1, L2 or Elastic
Net). This is the default H2O behavior. However, if you want a non-regularized
solution, you can choose to automatically remove collinear columns by setting
the remove collinear columns option.

This option can only be used with the IRLSM solver and no regularization.
If selected, H2O will automatically remove columns if it detects collinearity.
Which columns are removed depends on the order of the columns in the vector
of coefficients (Intercept first, then categorical variables ordered by cadrinality
from largest to smallest, and then numbers).

Example in R

1 library(h2o)
2 h2o.init()
3 a = runif(100)
4 b = 2*a
5 c = -3*a + 10
6 df = data.frame(a,b,c)
7 h2o_df = as.h2o(df)
8 h2o.fit = h2o.glm(y = "c", x = c("a", "b"), training_

frame = h2o_df, lambda=0,remove_collinear_columns=
TRUE)

9 h2o.fit
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P-Values

Z-score, standard error and p-values are classical statistical measures of model
quality. p-values are essentially hypothesis tests on the values of each coefficient.
A high p-value means that a coefficient is unreliable (insiginificant) while a low
p-value suggest that the coefficient is statistically significant.

You can request p-values by setting the
compute p values option. It can only be used with the IRLSM solver.
P-values and z-score can be computed with or without regularization. It is
recommended that you also set the remove collinear columns option.
Otherwise, H2O will return an error if it detects collinearity in the dataset and
p-values are requested.

Note: GLM auto-standardizes the data by default (recommended). This
changes the p-value of the constant term (intercept).

Example in R

1 library(h2o)
2 h2o.init()
3 a = runif(100)
4 b = runif(100)
5 c = -3*a + 10 + 0.01*runif(100)
6 df = data.frame(a,b,c)
7 h2o_df = as.h2o(df)
8 h2o.fit = h2o.glm(y = "c", x = c("a", "b"), training_

frame = h2o_df, lambda=0,remove_collinear_columns=
TRUE,compute_p_values=TRUE)

9 h2o.fit

K-fold Cross-Validation

All validation values can be computed using either the training dataset (the
default option) or using K-fold cross-validation (kfolds > 1). When K-
fold cross-validation is enabled, H2O randomly splits data into K equally-sized
sections, trains each of the K models on K−1 sections, and computes validation
on the section that was not used for training.

You can also specify the rows assigned to each fold using the
fold assignment or fold column parameters.
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Example in R

1 library(h2o)
2 h2o.init()
3 path = system.file("extdata", "prostate.csv", package

= "h2o")
4 h2o_df = h2o.importFile(path)
5 h2o_df$CAPSULE = as.factor(h2o_df$CAPSULE)
6 binomial.fit = h2o.glm(y = "CAPSULE", x = c("AGE", "

RACE", "PSA", "GLEASON"), training_frame = h2o_df,
family = "binomial", nfolds = 5)

7 print(binomial.fit)
8 print(paste("training auc: ", binomial.

fit@model$training_metrics@metrics$AUC))
9 print(paste("cross-validation auc:", binomial.

fit@model$cross_validation_metrics@metrics$AUC))

Example in Python

1 import h2o
2 from h2o.estimators.glm import

H2OGeneralizedLinearEstimator
3 h2o.init()
4 h2o_df = h2o.import_file("http://h2o-public-test-data.

s3.amazonaws.com/smalldata/prostate/prostate.csv")
5 h2o_df[’CAPSULE’] = h2o_df[’CAPSULE’].asfactor()
6 binomial_fit = H2OGeneralizedLinearEstimator(family =

"binomial", nfolds=5, fold_assignment="Random")
7 binomial_fit.train(y = "CAPSULE", x = ["AGE", "RACE",

"PSA", "GLEASON"], training_frame = h2o_df)
8 print("training auc:", binomial_fit.auc(train=True))
9 print("cross-validation auc:", binomial_fit.auc(xval=

True))
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Grid Search Over Alpha

Alpha search is not always necessary; changing its value to 0.5 (or 0 or 1 if
we only want Ridge or Lasso, respectively) works in most cases. If α search
is required, specifying only a few values is typically sufficient. Alpha search is
invoked by supplying a list of values for α instead of a single value. H2O then
produces one model per α value.

The grid search computation can be done in parallel (depending on the cluster
resources) and it is generally more efficient than computing different models
separately from R.

Use caution when including α = 0 or α = 1 in the grid search. α = 0 will
produce a dense solution and it can be very slow (or even impossible) to compute
in large N situations. α = 1 has no `2 penalty, so it is therefore less numerically
stable and can be very slow as well due to slower convergence. In general, we
recommend using alpha = 1− ε instead.

Example in R

1 library(h2o)
2 h2o.init()
3 path = system.file("extdata", "prostate.csv", package

= "h2o")
4 h2o_df = h2o.importFile(path)
5 h2o_df$CAPSULE = as.factor(h2o_df$CAPSULE)
6 alpha_opts = list(list(0), list(.25), list(.5), list

(.75), list(1))
7 hyper_parameters = list(alpha = alpha_opts)
8 grid <- h2o.grid("glm", hyper_params = hyper_

parameters,
9 y = "CAPSULE", x = c("AGE", "RACE", "

PSA", "GLEASON"), training_frame
= h2o_df, family = "binomial")

10 grid_models <- lapply(grid@model_ids, function(model_
id) { model = h2o.getModel(model_id) })

11 for (i in 1:length(grid_models)) {
12 print(sprintf("regularization: %-50s auc: %f",

grid_models[[i]]@model$model_summary$
regularization, h2o.auc(grid_models[[i]])))

13 }
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Example in Python

1 import h2o
2 from h2o.estimators.glm import

H2OGeneralizedLinearEstimator
3 from h2o.grid.grid_search import H2OGridSearch
4 h2o.init()
5 h2o_df = h2o.import_file("http://h2o-public-test-data.

s3.amazonaws.com/smalldata/prostate/prostate.csv")
6 h2o_df[’CAPSULE’] = h2o_df[’CAPSULE’].asfactor()
7 alpha_opts = [0.0, 0.25, 0.5, 1.0]
8 hyper_parameters = {"alpha":alpha_opts}
9

10

11 grid = H2OGridSearch(H2OGeneralizedLinearEstimator(
family="binomial"), hyper_params=hyper_parameters)

12 grid.train(y = "CAPSULE", x = ["AGE", "RACE", "PSA", "
GLEASON"], training_frame = h2o_df)

13 for m in grid:
14 print("Model ID: " + m.model_id + " auc: " , m.auc

())
15 print(m.summary())
16 print("\n\n")

Grid Search Over Lambda

While automatic lambda search is the preferred method, a grid search over
lambda values is also supported by passing in a vector of lambdas and disabling
the lambda-search option. The behavior will be identical to lambda search,
except H2O will use the specified list of lambdas instead (still capped at λmax).

Example in R

1 library(h2o)
2 h2o.init()
3 path = system.file("extdata", "prostate.csv", package

= "h2o")
4 h2o_df = h2o.importFile(path)
5 h2o_df$CAPSULE = as.factor(h2o_df$CAPSULE)
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6 lambda_opts = list(list(1), list(.5), list(.1), list
(.01), list(.001), list(.0001), list(.00001), list
(0))

7 hyper_parameters = list(lambda = lambda_opts)
8 grid <- h2o.grid("glm", hyper_params = hyper_

parameters,
9 y = "CAPSULE", x = c("AGE", "RACE", "

PSA", "GLEASON"), training_frame
= h2o_df, family = "binomial")

10 grid_models <- lapply(grid@model_ids, function(model_
id) { model = h2o.getModel(model_id) })

11 for (i in 1:length(grid_models)) {
12 print(sprintf("regularization: %-50s auc: %f",

grid_models[[i]]@model$model_summary$
regularization, h2o.auc(grid_models[[i]])))

13 }

Example in Python

1 import h2o
2 from h2o.estimators.glm import

H2OGeneralizedLinearEstimator
3 from h2o.grid.grid_search import H2OGridSearch
4 h2o.init()
5 h2o_df = h2o.import_file("http://h2o-public-test-data.

s3.amazonaws.com/smalldata/prostate/prostate.csv")
6 h2o_df[’CAPSULE’] = h2o_df[’CAPSULE’].asfactor()
7 lambda_opts = [1, 0.5, 0.1, 0.01, 0.001, 0.0001,

0.00001, 0]
8 hyper_parameters = {"lambda":lambda_opts}
9

10

11 grid = H2OGridSearch(H2OGeneralizedLinearEstimator(
family="binomial"), hyper_params=hyper_parameters)

12 grid.train(y = "CAPSULE", x = ["AGE", "RACE", "PSA", "
GLEASON"], training_frame = h2o_df)

13 for m in grid:
14 print("Model ID:", m.model_id, " auc:", m.auc())
15 print(m.summary())
16 print("\n\n")
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Offsets

offset column is an optional column name or index referring to a column
in the training frame. This column specifies a prior known component to be
included in the linear predictor during training. Offsets are per-row ”bias values”
that are used during model training.

For Gaussian distributions, they can be seen as simple corrections to the response
(y) column. Instead of learning to predict the response (y-row), the model
learns to predict the (row) offset of the response column.

For other distributions, the offset corrections are applied in the linearized space
before applying the inverse link function to get the actual response values.

Row Weights

weights column is an optional column name or index referring to a column
in the training frame. This column specifies on a per-row basis the weight of
that row. If no weight column is specified, a default value of 1 is used for each
row. Weights are per-row observation weights. This is typically the number of
times a row is repeated, but non-integer values are supported as well. During
training, rows with higher weights matter more, due to the larger loss function
pre-factor.

Coefficient Constraints

Coefficient constraints allow you to set special conditions over the model
coefficients. Currently supported constraints are upper and lower bounds and
the proximal operator interface, as described in Proximal Algorithms by Boyd
et. al.

The constraints are specified as a frame with following vecs (matched by name;
all vecs can be sparse):

� names: (mandatory) coefficient names

� lower bounds: (optional) coefficient lower bounds , must be less than
or equal to upper bounds

� upper bounds: (optional) coefficient upper bounds , must be greater
than or equal to lower bounds

� beta given: (optional) specifies the given solution in proximal operator
interface
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� rho: (mandatory if beta given is specified, otherwise ignored): speci-
fies per-column `2 penalties on the distance from the given solution

� mean: specifies the mean override (for data standardization)

� std dev: specifies the standard deviation override (for data standardiza-
tion)

Proximal Operators

The proximal operator interface allows you to run the GLM with a proximal
penalty on a distance from a specified given solution. There are many potential
uses: for example, it can be used as part of an ADMM consensus algorithm to
obtain a unified solution over separate H2O clouds or in Bayesian regression
approximation.

Cold Start

cold start allows you to specify whether the GLM model should be built
from scratch. This parameter is only applicable when building a GLM model
with multiple alpha/lambda values. If false and for a fixed alpha value, the next
model with the next lambda value out of the lambda array will be built using
the coefficients and the GLM state values of the current model. If true, the
next GLM model will be built from scratch. The default value is false.

Note: If an alpha array is specified and for a brand new alpha, the model will
be built from scratch regardless of the value of cold start.

GLM Model Output
The following sections represent the output produced by logistic regression (i.e.
binomial classification).

Example in R

1 library(h2o)
2 h2o.init()
3 path = system.file("extdata", "prostate.csv", package

= "h2o")
4 h2o_df = h2o.importFile(path)
5 h2o_df$CAPSULE = as.factor(h2o_df$CAPSULE)
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6 rand_vec <- h2o.runif(h2o_df, seed = 1234)
7 train <- h2o_df[rand_vec <= 0.8,]
8 valid <- h2o_df[rand_vec > 0.8,]
9 binomial.fit = h2o.glm(y = "CAPSULE", x = c("AGE", "

RACE", "PSA", "GLEASON"), training_frame = train,
validation_frame = valid, family = "binomial")

10 print(binomial.fit)
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Example in Python

1 import h2o
2 from h2o.estimators.glm import

H2OGeneralizedLinearEstimator
3 h2o.init()
4 h2o_df = h2o.import_file("http://h2o-public-test-data.

s3.amazonaws.com/smalldata/prostate/prostate.csv")
5 h2o_df[’CAPSULE’] = h2o_df[’CAPSULE’].asfactor()
6 r = h2o_df[0].runif(seed=1234)
7 train = h2o_df[r <= 0.8]
8 valid = h2o_df[r > 0.8]
9 binomial_fit = H2OGeneralizedLinearEstimator(family =

"binomial")
10 binomial_fit.train(y = "CAPSULE", x = ["AGE", "RACE",

"PSA", "GLEASON"], training_frame = train,
validation_frame=valid)

11 print(binomial_fit)

1 Model Details:
2 ==============
3

4 H2OBinomialModel: glm
5 Model ID: GLM_model_R_1439511782434_25
6 GLM Model:
7 family link

regularization number_of_predictors_total
number_of_active_predictors
number_of_iterations training_frame

8 1 binomial logit Elastic Net (alpha = 0.5, lambda =
4.674E-4 ) 4

5 5
subset_39

9

10 Coefficients:
11 names coefficients standardized_coefficients
12 1 Intercept -6.467393 -0.414440
13 2 AGE -0.021983 -0.143745
14 3 RACE -0.295770 -0.093423
15 4 PSA 0.028551 0.604644
16 5 GLEASON 1.156808 1.298815
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17

18 H2OBinomialMetrics: glm
19 ** Reported on training data. **
20

21 MSE: 0.1735008
22 Rˆ2: 0.2842015
23 LogLoss: 0.5151585
24 AUC: 0.806806
25 Gini: 0.6136121
26 Null Deviance: 403.9953
27 Residual Deviance: 307.0345
28 AIC: 317.0345
29

30 Confusion Matrix for F1-optimal threshold:
31 0 1 Error Rate
32 0 125 50 0.285714 =50/175
33 1 24 99 0.195122 =24/123
34 Totals 149 149 0.248322 =74/298
35

36 Maximum Metrics:
37 metric threshold value idx
38 1 max f1 0.301518 0.727941 147
39 2 max f2 0.203412 0.809328 235
40 3 max f0point5 0.549771 0.712831 91
41 4 max accuracy 0.301518 0.751678 147
42 5 max precision 0.997990 1.000000 0
43 6 max absolute_MCC 0.301518 0.511199 147
44 7 max min_per_class_accuracy 0.415346 0.739837 134
45

46 H2OBinomialMetrics: glm
47 ** Reported on validation data. **
48

49 MSE: 0.1981162
50 Rˆ2: 0.1460683
51 LogLoss: 0.5831277
52 AUC: 0.7339744
53 Gini: 0.4679487
54 Null Deviance: 108.4545
55 Residual Deviance: 95.63294
56 AIC: 105.6329
57

58 Confusion Matrix for F1-optimal threshold:
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59 0 1 Error Rate
60 0 35 17 0.326923 =17/52
61 1 8 22 0.266667 =8/30
62 Totals 43 39 0.304878 =25/82
63

64 Maximum Metrics:
65 metric threshold value idx
66 1 max f1 0.469237 0.637681 38
67 2 max f2 0.203366 0.788043 63
68 3 max f0point5 0.527267 0.616438 28
69 4 max accuracy 0.593421 0.719512 18
70 5 max precision 0.949357 1.000000 0
71 6 max absolute_MCC 0.469237 0.391977 38
72 7 max min_per_class_accuracy 0.482906 0.692308 36

Coefficients and Normalized Coefficients

Coefficients are the predictor weights (i.e. the actual model used for prediction).
Coefficients should be used to make predictions for new data points:

1 binomial.fit@model$coefficients

1 binomial_fit.coef()

1 Intercept AGE RACE PSA
GLEASON

2 -6.46739299 -0.02198278 -0.29576986 0.02855057
1.15680761

If the standardize option is enabled, H2O returns another set of coefficients:
the standardized coefficients. These are the predictor weights of the standardized
data and are included only for informational purposes (e.g. to compare relative
variable importance).

In this case, the “normal” coefficients are obtained from the standardized
coefficients by reversing the data standardization process (de-scaled, with the
intercept adjusted by an added offset) so that they can be applied to data in its
original form (i.e. no standardization prior to scoring). Note: These are not
the same as coefficients of a model built on non-standardized data.

Standardized coefficients are useful for comparing the relative contribution of
different predictors to the model:
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1 binomial.fit@model$coefficients_table

1 binomial_fit.pprint_coef()

1 Coefficients:
2 names coefficients standardized_coefficients
3 1 Intercept -6.467393 -0.414440
4 2 AGE -0.021983 -0.143745
5 3 RACE -0.295770 -0.093423
6 4 PSA 0.028551 0.604644
7 5 GLEASON 1.156808 1.298815

This view provides a sorted list of standardized coefficients in descending order
for easy comparison:

1 binomial.fit@model$standardized_coefficient_magnitudes

1 sorted(binomial_fit.coef_norm().items(), key=lambda x:
x[1], reverse=True)

1 Standardized Coefficient Magnitudes:
2 names coefficients sign
3 GLEASON GLEASON 1.298815 POS
4 PSA PSA 0.604644 POS
5 AGE AGE 0.143745 NEG
6 RACE RACE 0.093423 NEG

Model Statistics

Various model statistics are available:

MSE is the mean squared error: MSE = 1
N

∑N
i=1(actuali − predictioni)2

Rˆ2 is the R squared: R2 = 1− MSE
σ2
y

LogLoss is the log loss. LogLoss = −1
N

∑N
i

∑C
j yilog(pi,j)

AUC is available only for binomial models and is defined the area under ROC
curve.

Null deviance Deviance (defined by selected family) computed for the null
model.
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Residual deviance Deviance of the built model

AIC is based on log-likelihood, which is summed up similarly to deviance

Retrieve these statistics using the following accessor functions:

Example in R

1 h2o.num_iterations(binomial.fit)
2 h2o.null_dof(binomial.fit, train = TRUE, valid = TRUE)
3 h2o.residual_dof(binomial.fit, train = TRUE, valid =

TRUE)
4

5 h2o.mse(binomial.fit, train = TRUE, valid = TRUE)
6 h2o.r2(binomial.fit, train = TRUE, valid = TRUE)
7 h2o.logloss(binomial.fit, train = TRUE, valid = TRUE)
8 h2o.auc(binomial.fit, train = TRUE, valid = TRUE)
9 h2o.giniCoef(binomial.fit, train = TRUE, valid = TRUE)

10 h2o.null_deviance(binomial.fit, train = TRUE, valid =
TRUE)

11 h2o.residual_deviance(binomial.fit, train = TRUE,
valid = TRUE)

12 h2o.aic(binomial.fit, train = TRUE, valid = TRUE)

Example in Python

1 binomial_fit.summary()
2 binomial_fit._model_json["output"]["model_summary"].

__getitem__(’number_of_iterations’)
3

4 binomial_fit.null_degrees_of_freedom(train=True, valid
=True)

5 binomial_fit.residual_degrees_of_freedom(train=True,
valid=True)

6

7 binomial_fit.mse(train=True, valid=True)
8 binomial_fit.r2(train=True, valid=True)
9 binomial_fit.logloss(train=True, valid=True)

10 binomial_fit.auc(train=True, valid=True)
11 binomial_fit.giniCoef(train=True, valid=True)
12 binomial_fit.null_deviance(train=True, valid=True)
13 binomial_fit.residual_deviance(train=True, valid=True)
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14 binomial_fit.aic(train=True, valid=True)

GLM Likelihood and AIC

During model training, simplified formulas of likelihood and AIC are used. After
the model is built, the full formula is used to calculate the output of the full log
likelihood and full AIC values. The full formula is used to calculate the output
of the full log likelihood and full AIC values if the parameter calc like is set
to True.

Note: The log likelihood value is not available in the cross-validation metrics.
The AIC value is available and is calculated using the original simplified formula
independent of the log likelihood.

The following are the supported GLM families and formulae (the log likelihood
is calculated for the ith observation).

Gaussian:

l(µi(β); yi, wi) = −1

2

[wi(yi − µi)2

φ
+ log

( φ
wi

)
+ log(2π)

]
where

� φ is the dispersion parameter estimation

� µi is the prediction

� yi is the real value of the target variable

Note: For Gaussian family, you need the dispersion parameter estimate in order
to calculate the full log likelihood and AIC. Hence, when calc like is set to
True, the parameters compute p values and remove collinear columns
must be set to True. The parameter dispersion parameter method is
set to "pearson" by default. However, you can also set
dispersion parameter method to "deviance" if you like.

Binomial:

l
(
µi(β); yi, wi

)
= wi

(
yi log{µi}+ (1− yi) log{1− µi}

)
where

� µi is the probability of 1
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� yi is the real value of the target variable

Quasibinomial:

� If the predicted value equals yi, log likelihood is 0

� If µi > 1 then l(µi(β); yi) = yi log{µi}

� Otherwise, l(µi(β); yi) = yi log{µi}+ (1− yi) log{1− µi} where

– µi is the probability of 1

– yi is the real value of the target variable

Fractional Binomial:

l(µi(β); yi) = wi

(
yi × log

( yi
µi

)
+ (1− yi)× log

( 1− yi
1− µi

))
where

� µi is the probability of 1

� yi is the real value of the target variable

Poisson:

l(µi(β); yi) = wi
(
yi × log(µi)− µi − log(Γ(yi + 1))

)
where

� µi is the prediction

� yi is the real value of the target variable

Negative Binomial:

l(µi(β); yi, wi) = yi log
(kµ
wi

)
−
(
yi+

wi
k

)
log
(
1+

kµ

wi

)
+log

( Γ
(
yi + wi

k

)
Γ(yi + 1)Γ

(
wi
k

))

where

� µi is the prediction

� yi is the real value of the target variable

� k = 1
φ is the dispersion parameter estimation
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Note: For Negative Binomial family, you need the dispersion parameter es-
timate. When the parameter calc like is set to True, the parameters
compute p values and remove collinear columns are set to True
for you. By default, the parameter dispersion parameter method is set
to "pearson". However, you can set dispersion parameter method
to "deviance" or "ml" if you prefer.

Gamma:

l(µi(β); yi, wi) =
wi
φ

log
(wiyi
φµi

)
− wiyi
φµi

− log(yi)− log
(
Γ
(wi
φ

))
where

� µi is the prediction

� yi is the real value of the target variable

� φ is the dispersion parameter estimation

Note: For Gamma family, you need the dispersion parameter estimate. When the
parameter calc like is set to True, the parameters compute p values
and remove collinear columns are set to True for you. By default,
the parameter dispersion parameter deviance is set to "pearson".
However, you can set dispersion parameter deviance to "deviance"
or "ml" if you prefer.

Multinomial:

l(µi(β); yi) = wi log(µi)

where µi is the predicted probability of the actual class yi

Tweedie:

The Tweedie calculation is located in the section 4.6.8.2.

Note: For Tweedie family, you need the dispersion parameter estimate. When
parameter calc like is set to True, the parameter
dispersion parameter method is set to "ml" which provides you with
the best log likelihood estimation.

6.2.1.1 Final AIC Calculation The final AIC in the output metric
is calculated using the standard formula, utilizing the previously computed log
likelihood.
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AIC = −2LL+ 2p

where

� p is the number of non-zero coefficients estimated in the model

� LL is the log likelihood

To manage computational intensity, calc like is used. This parameter was
previously only used for HGLM models, but its utilization has been expanded.
By default, calc like=False, but you can set it to True and HGLM to
False to enable the calculation of the full log likelihood and full AIC. This
computation is performed during the final scoring phase after the model finishes
building.

Confusion Matrix

Fetch the confusion matrix directly using the following accessor function:

Example in R

1 h2o.confusionMatrix(binomial.fit, valid = FALSE)
2 h2o.confusionMatrix(binomial.fit, valid = TRUE)

Example in Python

1 binomial_fit.confusion_matrix(valid=False)
2 binomial_fit.confusion_matrix(valid=True)

Scoring History

The following output example represents a sample scoring history:

1 binomial.fit@model$scoring_history

Example in Python

1 binomial_fit.scoring_history
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1 Scoring History:
2 timestamp duration iteration

log_likelihood objective
3 1 2015-08-13 19:05:17 0.000 sec 0

201.99764 0.67784
4 2 2015-08-13 19:05:17 0.002 sec 1

158.46117 0.53216
5 3 2015-08-13 19:05:17 0.003 sec 2

153.74404 0.51658
6 4 2015-08-13 19:05:17 0.004 sec 3

153.51935 0.51590
7 5 2015-08-13 19:05:17 0.005 sec 4

153.51723 0.51590
8 6 2015-08-13 19:05:17 0.006 sec 5

153.51723 0.51590

Making Predictions
Once you have built a model, you can use it to make predictions using two
different approaches: the in-H2O batch scoring approach and the real-time
nano-fast POJO approach.

Batch In-H2O Predictions

Batch in-H2O predictions are made using a normal H2O cluster on a new
H2OFrame. When you use h2o.predict(), the order of the rows in the
results is the same as the order in which the data was loaded, even if some rows
fail (for example, due to missing values or unseen factor levels). In addition
to predictions, you can view metrics such as area under curve (AUC) if you
include the response column in the new data. The following example represents
a logistic regression model (i.e. binomial classification).

Example in R

1 library(h2o)
2 h2o.init()
3 path = system.file("extdata", "prostate.csv", package

= "h2o")
4 h2o_df = h2o.importFile(path)
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5 h2o_df$CAPSULE = as.factor(h2o_df$CAPSULE)
6 rand_vec <- h2o.runif(h2o_df, seed = 1234)
7 train <- h2o_df[rand_vec <= 0.8,]
8 valid <- h2o_df[(rand_vec > 0.8) & (rand_vec <= 0.9),]
9 test <- h2o_df[rand_vec > 0.9,]

10 binomial.fit = h2o.glm(y = "CAPSULE", x = c("AGE", "
RACE", "PSA", "GLEASON"), training_frame = train,
validation_frame = valid, family = "binomial")

11

12 # Make and export predictions.
13 pred = h2o.predict(binomial.fit, test)
14 h2o.exportFile(pred, "/tmp/pred.csv", force = TRUE)
15 # Or you can export the predictions to hdfs:
16 # h2o.exportFile(pred, "hdfs://namenode/path/to/file

.csv")
17

18 # Calculate metrics.
19 perf = h2o.performance(binomial.fit, test)
20 print(perf)

Example in Python

1 h2o.init()
2 h2o_df = h2o.import_file("http://h2o-public-test-data.

s3.amazonaws.com/smalldata/prostate/prostate.csv")
3 h2o_df[’CAPSULE’] = h2o_df[’CAPSULE’].asfactor()
4

5 rand_vec = h2o_df.runif(1234)
6

7 train = h2o_df[rand_vec <= 0.8]
8 valid = h2o_df[(rand_vec > 0.8) & (rand_vec <= 0.9)]
9 test = h2o_df[rand_vec > 0.9]

10 binomial_fit = H2OGeneralizedLinearEstimator(family =
"binomial")

11 binomial_fit.train(y = "CAPSULE", x = ["AGE", "RACE",
"PSA", "GLEASON"], training_frame = train,
validation_frame = valid)

12

13 # Make and export predictions.
14 pred = binomial_fit.predict(test)
15 h2o.export_file(pred, "/tmp/pred.csv", force = True)
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16 # Or you can export the predictions to hdfs:
17 # h2o.exportFile(pred, "hdfs://namenode/path/to/file

.csv")
18

19 # Calculate metrics.
20 binomial_fit.model_performance(test)
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Here is an example of making predictions on new data:

Example in R

1 # Remove the response column to simulate new data
points arriving without the answer being known.

2 newdata = test
3 newdata$CAPSULE <- NULL
4 newpred = h2o.predict(binomial.fit, newdata)
5 head(newpred)

Example in Python

1 # Remove the response column to simulate new data
points arriving without the answer being known.

2 newdata = test
3 newdata[’CAPSULE’] = None
4 newpred = binomial_fit.predict(newdata)
5 newpred

1 predict p0 p1
2 1 1 0.1676892 0.8323108
3 2 0 0.4824181 0.5175819
4 3 1 0.2000061 0.7999939
5 4 0 0.9242169 0.0757831
6 5 0 0.5044669 0.4955331
7 6 0 0.7272743 0.2727257

The three columns in the prediction file are the predicted class, the probability
that the prediction is class 0, and the probability that the prediction is class 1.
The predicted class is chosen based on the maximum-F1 threshold.

You can change the threshold manually, for example to 0.3, and recalculate the
predict column like this:

1 newpred$predict = newpred$p1 > 0.3
2 head(newpred)

1 #manually define threshold for predictions to 0.3
2 import pandas as pd
3 pred = binomial_fit.predict(h2o_df)
4 pred[’predict’] = pred[’p1’]>0.3
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1 predict p0 p1
2 1 1 0.1676892 0.8323108
3 2 1 0.4824181 0.5175819
4 3 1 0.2000061 0.7999939
5 4 0 0.9242169 0.0757831
6 5 1 0.5044669 0.4955331
7 6 0 0.7272743 0.2727257

Low-latency Predictions using POJOs

For nano-fast scoring, H2O GLM models can be directly rendered as a Plain Old
Java Object (POJO). POJOs are very low-latency and can easily be embedded
in any Java environment (a customer-facing web application, a Storm bolt, or
a Spark Streaming pipeline, for example).

The POJO does nothing but pure math, and has no dependencies on any other
software packages (not even H2O), so it is easy to implement.

Directions for using the POJO in detail are beyond the scope of this document,
but the following example demonstrates how to generate and view a POJO. To
access the POJO from the Flow Web UI, click the Download POJO button
at the bottom of the cell containing the generated model.

For more information on how to use an H2O POJO, refer to the POJO Quick
Start Guide at https://github.com/h2oai/h2o-3/blob/master/
h2o-docs/src/product/howto/POJO_QuickStart.md.

Example in R

1 library(h2o)
2 h2o.init()
3 path = system.file("extdata", "prostate.csv", package

= "h2o")
4 h2o_df = h2o.importFile(path)
5 h2o_df$CAPSULE = as.factor(h2o_df$CAPSULE)
6 binomial.fit = h2o.glm(y = "CAPSULE", x = c("AGE", "

RACE", "PSA", "GLEASON"), training_frame = h2o_df,
family = "binomial")

7 h2o.download_pojo(binomial.fit)

https://github.com/h2oai/h2o-3/blob/master/h2o-docs/src/product/howto/POJO_QuickStart.md
https://github.com/h2oai/h2o-3/blob/master/h2o-docs/src/product/howto/POJO_QuickStart.md
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Example in Python

1 import h2o
2 from h2o.estimators.glm import

H2OGeneralizedLinearEstimator
3 h2o.init()
4 h2o_df = h2o.import_file("http://h2o-public-test-data.

s3.amazonaws.com/smalldata/prostate/prostate.csv")
5 h2o_df[’CAPSULE’] = h2o_df[’CAPSULE’].asfactor()
6 binomial_fit = H2OGeneralizedLinearEstimator(family =

"binomial")
7 binomial_fit.train(y = "CAPSULE", x = ["AGE", "RACE",

"PSA", "GLEASON"], training_frame = h2o_df)
8 h2o.download_pojo(binomial_fit)

Best Practices
Here are a few rules of thumb to follow:

� Use symmetric nodes in your H2O cluster

� Impute data before running GLM

� The IRLSM solver works best on tall and skinny datasets

� If you have a wide dataset, use an `1 penalty to eliminate columns from
the model

� If you have a wide dataset, use the L-BFGS solver

� When using lambda search, specify a value for max predictors if the
process takes too long. 90% of the time is spent on the larger models
with the small lambdas, so specifying max predictors can reduce this
time

� Retain a small `2 penalty (i.e. ridge regression) for numerical stability
(i.e. don‘t use alpha 1.0, use 0.95 instead)

� When using the IRLSM solver, larger nodes can help the ADMM (Cholesky
decomposition) run faster
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Verifying Model Results

To determine the accuracy of your model, use the following guidelines:

� Look for conspicuously different cross-validation results between folds:

Example in R

1 library(h2o)
2 h2o.init()
3 h2o_df = h2o.importFile("http://s3.amazonaws.com/

h2o-public-test-data/smalldata/airlines/
allyears2k_headers.zip")

4 model = h2o.glm(y = "IsDepDelayed", x = c("Year",
"Origin"), training_frame = h2o_df, family = "
binomial", nfolds = 5, keep_cross_validation_
models = TRUE)

5 print(paste("full model training auc:",
model@model$training_metrics@metrics$AUC))

6 print(paste("full model cv auc:", model@model$
cross_validation_metrics@metrics$AUC))

7 for (i in 1:5) {
8 cv_model_name = model@model$cross_validation_

models[[i]]$name
9 cv_model = h2o.getModel(cv_model_name)

10 print(paste("cv fold ", i, " training auc:",
cv_model@model$training_metrics@metrics$
AUC, " validation auc: ", cv_model@model$
validation_metrics@metrics$AUC))

11 }

Example in Python

1 h2o_df = h2o.import_file("http://s3.amazonaws.com/
h2o-public-test-data/smalldata/airlines/
allyears2k_headers.zip")

2 model = H2OGeneralizedLinearEstimator(family = "
binomial", nfolds = 5)

3 model.train(y = "IsDepDelayed", x = ["Year", "
Origin"], training_frame = h2o_df)

4

5 print "full model training auc:", model.auc()
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6 print "full model cv auc:", model.auc(xval=True)
7 for model_ in model.get_xval_models():
8 print(model_.model_id, " training auc:",

model_.auc(), " validation auc: ", model_.
auc(valid=True))

� Look for explained deviance (1− NullDev−ResDev
NullDev )

– Too close to 0: model doesn‘t predict well (underfitting)

– Too close to 1: model predicts too well due to noisy data (overfitting)

� For logistic regression (i.e. binomial classification) models, look for AUC

– Too close to 0.5: model doesn‘t predict well (underfitting)

– Too close to 1: model predicts too well due to noisy data (overfitting)

� Look at the number of iterations or scoring history to see if GLM stops
early for a specific lambda; performing all the iterations usually means
the solution is not good. This is controlled by the max iterations
parameter.

� The fewer the NA values in your training data, the better; GLM will
either skip or mean-impute rows with NA values. Always check degrees
of freedom in the output model. Degrees of freedom is the number of
observations used to train the model minus the size of the model. If this
number is much smaller than expected, it is likely that too many rows
have been excluded due to missing values.

– If you have few columns with many NAs, you might accidentally be
losing all your rows, so it‘s better to exclude them.

– If you have many columns with small fraction of uniformly-distributed
missing values, every row will likely have at least one missing value.
In this case, impute the NAs (e.g. substituted with mean values)
before modeling.

Implementation Details

The following sections discuss some of the implementation choices in H2O’s
GLM.
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Categorical Variables

When applying linear models to datasets with categorical variables, the usual
approach is to expand the categoricals into a set of binary vectors, with one
vector per each categorical level (e.g. by calling model.matrix in R). H2O
performs similar expansions automatically and no prior changes to the dataset
are needed. Each categorical column is treated as a set of sparse binary vectors.

Largest Categorical Speed Optimization

Categoricals have special handling during GLM computation as well. When
forming the gram matrix, we can take advantage of the fact that columns
belonging to the same categorical never co-occur and the gram matrix region
belonging to these columns will not have any non-zero elements outside of the
diagonal.

This keeps it in sparse representation, taking only O(N) elements instead of
O(N ∗N). Furthermore, the complexity of Choelsky decomposition of a matrix
that starts with a diagonal region can be greatly reduced. H2O’s GLM exploits
these two facts to handle the largest categorical “for free”. Therefore, when
analyzing the performance of GLM in the equation expressed above, we can
subtract the size of the largest categoricals from the number of predictors.

N =
∑
c∈C

(‖c.domain‖)− arg max
c∈C
‖c.domain‖+ ‖Nums‖

Performance Characteristics

This section discusses the CPU and memory cost of the IRLSM and L-BFGS
solvers for running GLM.

IRLSM Solver

The implementation is based on iterative re-weighted least squares with an
ADMM inner solver (as described in Distributed Optimization and Statistical
Learning via the Alternating Direction Method of Multipliers by Boyd et. al) to
deal with the `1 penalty. Every iteration of the algorithm consists of following
steps:

1. Generate weighted least squares problem based on previous solution, i.e.
vector of weights w and response z
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2. Compute the weighted gram matrix XTWX and XT z vector

3. Decompose the gram matrix (Cholesky decomposition) and apply ADMM
solver to solve the `1 penalized least squares problem

Steps 1 and 2 are performed distributively. Step 3 is computed in parallel on
a single node. This method characterizes the computational complexity and
scalability of a dataset with M observations and N columns (predictors) on a
cluster with n nodes with p CPUs each.

CPU Memory

Gram matrix (XTX)
(distributed)

O(
MN2

pn
)

O(training data) + O(gram matrix)
O(MN) + O(N2pn)

ADMM + Cholesky decomposition
(single node)

O(
N3

p
) O(N2)

M Number of rows in the training data
N Number of predictors in the training data
p Number of CPUs per node
n Number of nodes in the cluster

If M >> N , the algorithm scales linearly both in the number of nodes and the
number of CPUs per node. However, the algorithm is limited in the number of
predictors it can handle, since the size of the Gram matrix grows quadratically,
due to a memory and network throughput issue with the number of predictors.

Its decomposition cost grows as the cube of the number of predictors increases,
which is a computational cost issue. In many cases, H2O can work around these
limitations due to its handling of categoricals and by employing strong rules to
filter out inactive predictors.

L-BFGS solver

In each iteration, L-BFGS computes a gradient at the current vector of coeffi-
cients and then computes an updated vector of coefficients in an approximated
Newton-method step.

The cost of the coefficient update is k ∗N . N is the number of predictors; k is
a constant. The cost of gradient computation is M∗N

pn where M is number of
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observations in the dataset and pn is the number of CPU cores in the cluster.
Since k is a small constant, the runtime of L-BFGS is dominated by the gradient
computation, which is fully parallelized, scaling L-BFGS almost linearly.

FAQ

� What if the training data contains NA values?

The rows with missing response are ignored during model training and
validation.

� What if the testing data contains NA values?

If the missing value handling is set to skip and you are generating predic-
tions, skipped rows will have NA (missing) prediction.

� What if, while making predictions on testing data, a predictor
column is categorical and the predictor is a level not observed
during training?

The value is zero for all predictors associated with that categorical variable.

� What if, while making predictions on testing data, the response
column is categorical and the response is a level not observed
during training?

H2O supports binomial models only; any extra levels in the test response
will generate an error.

Appendix: Parameters
� x: A vector containing the names of the predictors to use while building

the GLM model. No default.

� y: A character string or index that represents the response variable in the
model. No default.

� training frame: An H2OFrame object containing the variables in
the model.

� model id: (Optional) The unique ID assigned to the generated model.
If not specified, an ID is generated automatically.

� validation frame: An H2OParsedData object containing the val-
idation dataset used to construct confusion matrix. If blank, the training
data is used by default.
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� max iterations: A non-negative integer specifying the maximum
number of iterations.

� objective epsilon: Specify a threshold for convergence. If the
objective value is less than this threshold, the model is converged.

� beta epsilon: A non-negative number specifying the magnitude of
the maximum difference between the coefficient estimates from successive
iterations. Defines the convergence criterion.

� gradient epsilon: (For L-BFGS only) Specify a threshold for con-
vergence. If the objective value (using the L-infinity norm) is less than
this threshold, the model is converged.

� solver: A character string specifying the solver used. IRLSM supports
more features. L BFGS scales better for datasets with many columns.
COORDINATE DESCENT is IRLSM with the covariance updates version
of cyclical coordinate descent in the innermost loop.
COORDINATE DESCENT NAIVE is IRLSM with the naive updates ver-
sion of cyclical coordinate descent in the innermost loop.
GRADIENT DESCENT LH and
GRADIENT DESCENT SQERR can only be used with the Ordinal family.

� standardize: A logical value that indicates whether the numeric
predictors should be standardized to have a mean of 0 and a variance of
1 prior to model training.

� family: A description of the error distribution and corresponding link
function to be used in the model. The following options are supported:
gaussian (default), binomial, gamma, ordinal, multinomial,
poisson, tweedie, quasibinomial, or negativebinomial.
When a model is specified as Tweedie, users must also specify the appro-
priate Tweedie power.

� link: The link function relates the linear predictor to the distribution
function. The default is the canonical link for the specified family. The
full list of supported links for each family:

– logit: binomial, quasibinomial

– identity: gaussian, poisson, gamma, negativebinomial

– log: gaussian, negativebinomial

– inverse: gaussian, gamma

– tweedie: tweedie
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– multinomial (family default): multinomial

– ordinal: ologit

� tweedie variance power: A numeric specifying the power for the
variance function when family = "tweedie". Default is 0.

� tweedie link power: A numeric specifying the power for the link
function when family = "tweedie". Default is 1.

� theta: Theta value (equal to 1/r) for use with the negative binomial
family. This value must be >0 and defaults to 1e-10.

� alpha: The elastic-net mixing parameter, which must be in [0, 1]. The
penalty is defined to be P (α, β) = (1− α)/2||β||22 + α||β||1 =

∑
j [(1−

α)/2β2
j + α|βj |] so alpha=1 is the Lasso penalty, while alpha=0 is

the ridge penalty. Default is 0.5.

� prior: (Optional) A numeric specifying the prior probability of class 1
in the response when family = "binomial". The default value is
the observation frequency of class 1. Must be from (0,1) exclusive range
or NULL (no prior).

� lambda: A non-negative value representing the shrinkage parameter,
which multiplies P (α, β) in the objective. The larger lambda is, the more
the coefficients are shrunk toward zero (and each other). When the value
is 0, regularization is disabled and ordinary generalized linear models are
fit. The default is 1e-05.

� lambda search: A logical value indicating whether to conduct a search
over the space of lambda values, starting from the max lambda, given
lambda will be interpreted as the min. lambda. Default is false.

� nlambdas: The number of lambda values when lambda search =
TRUE. Default is -1.

� lambda min ratio: Smallest value for lambda as a fraction of
lambda.max, the entry value, which is the smallest value for which all
coefficients in the model are zero. If the number of observations is greater
than the number of variables then lambda min ratio = 0.0001; if
the number of observations is less than the number of variables then
lambda min ratio = 0.01. Default is -1.0.

� nfolds: Number of folds for cross-validation. If nfolds >=2, then
validation frame must remain blank. Default is 0.

� fold column: (Optional) Column with cross-validation fold index as-
signment per observation.
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� fold assignment: Cross-validation fold assignment scheme, if
fold column is not specified. The following options are supported:
AUTO, Random, or Modulo.

� keep cross validation predictions: Specify whether to keep
the predictions of the cross-validation models.

� beta constraints: A data frame or H2OParsedData object with
the columns ["names", "lower bounds", "upper bounds",
"beta given"], where each row corresponds to a predictor in the GLM.
"names" contains the predictor names, "lower bounds"/
"upper bounds" are the lower and upper bounds (respectively) of the
beta, and "beta given" is a user-specified starting value.

� offset column: Specify the offset column. Note: Offsets are per-row
bias values that are used during model training. For Gaussian distributions,
they can be seen as simple corrections to the response (y) column. Instead
of learning to predict the response (y-row), the model learns to predict the
(row) offset of the response column. For other distributions, the offset
corrections are applied in the linearized space before applying the inverse
link function to get the actual response values.

� weights column: Specify the weights column. These are per-row
observation weights. This is typically the number of times a row is
repeated. Non-integer values are also supported. During training, rows
with higher weights matter more, due to the larger loss function pre-factor.

� intercept: Logical; includes a constant term (intercept) in the model.
Must be included if there are factor columns in your model.

� max runtime secs: Maximum allowed runtime in seconds for model
training. Use 0 to disable.

� missing values handling: Handling of missing values. Either
Skip or MeanImputation (default).

� seed: Specify the random number generator (RNG) seed for algorithm
components dependent on randomization. The seed is consistent for
each H2O instance so that you can create models with the same starting
conditions in alternative configurations.

� max active predictors: Specify the maximum number of active
predictors during computation. This value is used as a stopping criterium
to prevent expensive model building with many predictors.

� compute p values: Request GLM to compute p-values. This is only
applicable with no penalty (lambda = 0 and no beta constraints). Setting
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remove collinear columns is recommended. H2O will return an
error if p-values are requested when there are collinear columns and the
remove collinear columns flag is not enabled.

� non negative: Forces coefficients to have non-negative values.

� remove collinear columns: Specify whether to automatically re-
move collinear columns during model building. When enabled, collinear
columns will be dropped from the model and will have a 0 coefficient in
the returned model. This can only be set if there is no regularization.

� interactions: Optionally specify a list of predictor column indices to
interact. All pairwise combinations will be computed for this list.

� hglm: Specify whether to build a hierarchical generalized linear model.
HGLM produces estimates for fixed effects, random effects, variance
components and their standard errors. It also produces diagnostics, such
as variances and leverages. This option is disabled by default. Note that
HGLM currently supports only the Gaussian family and random family.
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