# -*- encoding: utf-8 -*-
from h2o.utils.compatibility import * # NOQA
import copy
from h2o.display import H2ODisplay
from h2o.two_dim_table import H2OTwoDimTable
from h2o.utils.typechecks import assert_is_type
[docs]class ConfusionMatrix(H2ODisplay):
ROUND = 4 # round count_errs / sum
def __init__(self, cm, domains=None, table_header=None):
assert_is_type(cm, list)
if len(cm) == 2: cm = list(zip(*cm)) # transpose if 2x2
nclass = len(cm)
class_errs = [0] * nclass
class_sums = [0] * nclass
class_err_strings = [0] * nclass
cell_values = [[0] * (1 + nclass)] * (1 + nclass)
totals = [sum(c) for c in cm]
total_errs = 0
for i in range(nclass):
class_errs[i] = sum([v[i] for v in cm[:i] + cm[(i + 1):]])
total_errs += class_errs[i]
class_sums[i] = sum([v[i] for v in cm]) # row sums
class_err_strings[i] = \
" (" + str(class_errs[i]) + "/" + str(class_sums[i]) + ")"
class_errs[i] = float("nan") if class_sums[i] == 0 else round(class_errs[i] / class_sums[i], self.ROUND)
# and the cell_values are
cell_values[i] = [v[i] for v in cm] + [str(class_errs[i])] + [class_err_strings[i]]
# tally up the totals
class_errs += [sum(class_errs)]
totals += [sum(class_sums)]
class_err_strings += [" (" + str(total_errs) + "/" + str(totals[-1]) + ")"]
class_errs[-1] = float("nan") if totals[-1] == 0 else round(total_errs / totals[-1], self.ROUND)
# do the last row of cell_values ... the "totals" row
cell_values[-1] = totals[0:-1] + [str(class_errs[-1])] + [class_err_strings[-1]]
if table_header is None: table_header = "Confusion Matrix (Act/Pred)"
col_header = [""] # no column label for the "rows" column
if domains is not None:
row_header = copy.deepcopy(domains)
col_header += copy.deepcopy(domains)
else:
row_header = [str(i) for i in range(nclass)]
col_header += [str(i) for i in range(nclass)]
row_header += ["Total"]
col_header += ["Error", "Rate"]
for i in range(len(row_header)):
cell_values[i].insert(0, row_header[i])
self.table = H2OTwoDimTable(row_header=row_header, col_header=col_header,
table_header=table_header, cell_values=cell_values)
def _str_(self, verbosity=None):
return self.table.to_str(verbosity=verbosity)
[docs] def to_list(self):
"""Convert this confusion matrix into a 2x2 plain list of values."""
return [[int(self.table.cell_values[0][1]), int(self.table.cell_values[0][2])],
[int(self.table.cell_values[1][1]), int(self.table.cell_values[1][2])]]
[docs] @staticmethod
def read_cms(cms=None, domains=None):
"""Read confusion matrices from the list of sources (?)."""
assert_is_type(cms, [list])
return [ConfusionMatrix(cm, domains) for cm in cms]