Source code for h2o4gpu.solvers.logistic

# - * - encoding : utf - 8 - * -
# pylint: disable=fixme, line-too-long
"""
:copyright: 2017-2018 H2O.ai, Inc.
:license:   Apache License Version 2.0 (see LICENSE for details)
"""
# pylint: disable=unused-import
import numpy as np
from h2o4gpu.solvers import elastic_net
from h2o4gpu.linear_model import logistic as sk
from ..solvers.utils import _setter


[docs]class LogisticRegression: """H2O Logistic Regression Solver Parameters ---------- penalty : str, 'l1' or 'l2', default: 'l2' Used to specify the norm used in the penalization. The 'newton-cg', 'sag' and 'lbfgs' solvers support only l2 penalties. .. versionadded:: 0.19 l1 penalty with SAGA solver (allowing 'multinomial' + L1) dual : bool, default: False Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. tol : float, default: 1e-4 Tolerance for stopping criteria. C : float, default: 1.0 Inverse of regularization strength; must be a positive float. Like in support vector machines, smaller values specify stronger regularization. fit_intercept : bool, default: True Specifies if a constant (a.k.a. bias or intercept) should be added to the decision function. intercept_scaling : float, default 1. Useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equal to intercept_scaling is appended to the instance vector. The intercept becomes ``intercept_scaling * synthetic_feature_weight``. Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. class_weight : dict or 'balanced', default: None Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))``. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. .. versionadded:: 0.17 *class_weight='balanced'* random_state : int, RandomState instance or None, optional, default: None The seed of the pseudo random number generator to use when shuffling the data. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Used when ``solver`` == 'sag' or 'liblinear'. solver : {'newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'}, default: 'liblinear' Algorithm to use in the optimization problem. - For small datasets, 'liblinear' is a good choice, whereas 'sag' and 'saga' are faster for large ones. - For multiclass problems, only 'newton-cg', 'sag', 'saga' and 'lbfgs' handle multinomial loss; 'liblinear' is limited to one-versus-rest schemes. - 'newton-cg', 'lbfgs' and 'sag' only handle L2 penalty, whereas 'liblinear' and 'saga' handle L1 penalty. Note that 'sag' and 'saga' fast convergence is only guaranteed on features with approximately the same scale. You can preprocess the data with a scaler from h2o4gpu.preprocessing. .. versionadded:: 0.17 Stochastic Average Gradient descent solver. .. versionadded:: 0.19 SAGA solver. max_iter : int, default: 100 Useful only for the newton-cg, sag and lbfgs solvers. Maximum number of iterations taken for the solvers to converge. multi_class : str, {'ovr', 'multinomial'}, default: 'ovr' Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Does not work for liblinear solver. .. versionadded:: 0.18 Stochastic Average Gradient descent solver for 'multinomial' case. verbose : int, (Default=0) Print verbose information to the console if set to > 0. warm_start : bool, default: False When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. Useless for liblinear solver. .. versionadded:: 0.17 *warm_start* to support *lbfgs*, *newton-cg*, *sag*, *saga* solvers. n_jobs : int, default: 1 Number of CPU cores used when parallelizing over classes if multi_class='ovr'". This parameter is ignored when the ``solver``is set to 'liblinear' regardless of whether 'multi_class' is specified or not. If given a value of -1, all cores are used. n_gpus : int Number of gpu's to use in RandomForestRegressor solver. Default is -1. glm_stop_early : bool, (Default=True) Stop early when there is no more relative improvement in the primary and dual residuals for ADMM. glm_stop_early_error_fraction : float, (Default=1.0) Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much). backend : string, (Default="auto") Which backend to use. Options are 'auto', 'sklearn', 'h2o4gpu'. Saves as attribute for actual backend used. """ def __init__( self, penalty='l2', # h2o4gpu dual=False, tol=1E-2, # h2o4gpu C=1.0, # h2o4gpu fit_intercept=True, # h2o4gpu intercept_scaling=1.0, class_weight=None, random_state=None, solver='liblinear', max_iter=5000, # h2o4gpu multi_class='ovr', verbose=0, # h2o4gpu warm_start=False, n_jobs=1, n_gpus=-1, # h2o4gpu glm_stop_early=True, # h2o4gpu glm_stop_early_error_fraction=1.0, backend='auto'): # h2o4gpu import os _backend = os.environ.get('H2O4GPU_BACKEND', None) if _backend is not None: backend = _backend # Fall back to Sklearn # Can remove if fully implement sklearn functionality self.do_sklearn = False if backend == 'auto': params_string = [ 'intercept_scaling', 'class_weight', 'solver', 'multi_class' ] params = [intercept_scaling, class_weight, solver, multi_class] params_default = [1.0, None, 'liblinear', 'ovr'] i = 0 for param in params: if param != params_default[i]: self.do_sklearn = True if verbose: print("WARNING:" " The sklearn parameter " + params_string[i] + " has been changed from default to " + str(param) + " Will run Sklearn Logistic Regression.") self.do_sklearn = True i = i + 1 elif backend == 'sklearn': self.do_sklearn = True elif backend == 'h2o4gpu': self.do_sklearn = False if self.do_sklearn: self.backend = 'sklearn' else: self.backend = 'h2o4gpu' self.model_sklearn = sk.LogisticRegressionSklearn( penalty=penalty, dual=dual, tol=tol, C=C, fit_intercept=fit_intercept, intercept_scaling=intercept_scaling, class_weight=class_weight, random_state=random_state, solver=solver, max_iter=max_iter, multi_class=multi_class, verbose=verbose, warm_start=warm_start, n_jobs=n_jobs) # Equivalent Logistic parameters for h2o4gpu n_threads = None n_alphas = 1 n_lambdas = 1 n_folds = 1 lambda_max = 1.0 / C lambda_min_ratio = 1.0 lambda_stop_early = False store_full_path = 0 alphas = None lambdas = None # Utilize penalty parameter to setup alphas if penalty == 'l2': alpha_min = 0.0 alpha_max = 0.0 elif penalty == 'l1': alpha_min = 1.0 alpha_max = 1.0 else: assert ValueError, "penalty should be either l1 " \ "or l2 but got " + penalty self.model_h2o4gpu = elastic_net.ElasticNetH2O( n_threads=n_threads, n_gpus=n_gpus, fit_intercept=fit_intercept, lambda_min_ratio=lambda_min_ratio, n_lambdas=n_lambdas, n_folds=n_folds, n_alphas=n_alphas, tol=tol, lambda_stop_early=lambda_stop_early, glm_stop_early=glm_stop_early, glm_stop_early_error_fraction=glm_stop_early_error_fraction, max_iter=max_iter, verbose=verbose, family='logistic', store_full_path=store_full_path, lambda_max=lambda_max, alpha_max=alpha_max, alpha_min=alpha_min, alphas=alphas, lambdas=lambdas, order=None) if self.do_sklearn: if verbose: print("Running sklearn Logistic Regression") self.model = self.model_sklearn else: if verbose: print("Running h2o4gpu Logistic Regression") self.model = self.model_h2o4gpu self.verbose = verbose
[docs] def fit(self, X, y=None, sample_weight=None): res = self.model.fit(X, y, sample_weight) self.set_attributes() return res
[docs] def predict_proba(self, X): if self.do_sklearn: res = self.model.predict_proba(X) self.set_attributes() return res res = self.model.predict(X) self.set_attributes() return res
[docs] def decision_function(self, X): if self.verbose: print("WARNING: decision_function() is using sklearn") return self.model_sklearn.decision_function(X)
[docs] def densify(self): if self.do_sklearn: return self.model.densify() return None
[docs] def get_params(self): return self.model.get_params()
[docs] def predict(self, X): if self.do_sklearn: res = self.model.predict(X) self.set_attributes() return res res = self.model.predict(X) res[res < 0.5] = 0 res[res > 0.5] = 1 self.set_attributes() return res.squeeze()
[docs] def predict_log_proba(self, X): res = self.predict_proba(X) self.set_attributes() return np.log(res)
[docs] def score(self, X, y, sample_weight=None): # TODO add for h2o4gpu if self.verbose: print("WARNING: score() is using sklearn") if not self.do_sklearn: self.model_sklearn.fit(X, y) # Need to re-fit res = self.model_sklearn.score(X, y, sample_weight) return res
[docs] def set_params(self, **params): return self.model.set_params(**params)
[docs] def sparsify(self): if self.do_sklearn: return self.model.sparsify() assert ValueError, "sparsify() is not yet supporte for h2o4gpu" return None
[docs] def set_attributes(self): """ set attributes for Logistic """ s = _setter(oself=self, e1=NameError, e2=AttributeError) s('oself.coef_ = oself.model.coef_') s('oself.intercept_ = oself.model.intercept_') s('oself.n_iter_ = oself.model.n_iter_') self.time_prepare = None s('oself.time_prepare = oself.model.time_prepare') self.time_upload_data = None s('oself.time_upload_data = oself.model.time_upload_data') self.time_fitonly = None s('oself.time_fitonly = oself.model.time_fitonly')