h2o4gpu package

Subpackages

h2o4gpu.solvers h2o4gpu.util h2o4gpu.utils

Module contents

copyright:2017-2019 H2O.ai, Inc.
license:Apache License Version 2.0 (see LICENSE for details)
h2o4gpu.clone(estimator, *, safe=True)[source]

Constructs a new estimator with the same parameters.

Clone does a deep copy of the model in an estimator without actually copying attached data. It yields a new estimator with the same parameters that has not been fit on any data.

Parameters:
estimator : {list, tuple, set} of estimator objects or estimator object

The estimator or group of estimators to be cloned.

safe : bool, default=True

If safe is false, clone will fall back to a deep copy on objects that are not estimators.

h2o4gpu.get_config()[source]

Retrieve current values for configuration set by set_config()

Returns:
config : dict

Keys are parameter names that can be passed to set_config().

See also

config_context
Context manager for global h2o4gpu configuration
set_config
Set global h2o4gpu configuration
h2o4gpu.set_config(assume_finite=None, working_memory=None, print_changed_only=None, display=None)[source]

Set global h2o4gpu configuration

New in version 0.19.

Parameters:
assume_finite : bool, optional

If True, validation for finiteness will be skipped, saving time, but leading to potential crashes. If False, validation for finiteness will be performed, avoiding error. Global default: False.

New in version 0.19.

working_memory : int, optional

If set, h2o4gpu will attempt to limit the size of temporary arrays to this number of MiB (per job when parallelised), often saving both computation time and memory on expensive operations that can be performed in chunks. Global default: 1024.

New in version 0.20.

print_changed_only : bool, optional

If True, only the parameters that were set to non-default values will be printed when printing an estimator. For example, print(SVC()) while True will only print ‘SVC()’ while the default behaviour would be to print ‘SVC(C=1.0, cache_size=200, …)’ with all the non-changed parameters.

New in version 0.21.

display : {‘text’, ‘diagram’}, optional

If ‘diagram’, estimators will be displayed as a diagram in a Jupyter lab or notebook context. If ‘text’, estimators will be displayed as text. Default is ‘text’.

New in version 0.23.

See also

config_context
Context manager for global h2o4gpu configuration
get_config
Retrieve current values of the global configuration
h2o4gpu.config_context(**new_config)[source]

Context manager for global h2o4gpu configuration

Parameters:
assume_finite : bool, optional

If True, validation for finiteness will be skipped, saving time, but leading to potential crashes. If False, validation for finiteness will be performed, avoiding error. Global default: False.

working_memory : int, optional

If set, h2o4gpu will attempt to limit the size of temporary arrays to this number of MiB (per job when parallelised), often saving both computation time and memory on expensive operations that can be performed in chunks. Global default: 1024.

print_changed_only : bool, optional

If True, only the parameters that were set to non-default values will be printed when printing an estimator. For example, print(SVC()) while True will only print ‘SVC()’, but would print ‘SVC(C=1.0, cache_size=200, …)’ with all the non-changed parameters when False. Default is True.

Changed in version 0.23: Default changed from False to True.

display : {‘text’, ‘diagram’}, optional

If ‘diagram’, estimators will be displayed as a diagram in a Jupyter lab or notebook context. If ‘text’, estimators will be displayed as text. Default is ‘text’.

New in version 0.23.

See also

set_config
Set global h2o4gpu configuration
get_config
Retrieve current values of the global configuration

Notes

All settings, not just those presently modified, will be returned to their previous values when the context manager is exited. This is not thread-safe.

Examples

>>> import h2o4gpu
>>> from h2o4gpu.utils.validation import assert_all_finite
>>> with h2o4gpu.config_context(assume_finite=True):
...     assert_all_finite([float('nan')])
>>> with h2o4gpu.config_context(assume_finite=True):
...     with h2o4gpu.config_context(assume_finite=False):
...         assert_all_finite([float('nan')])
Traceback (most recent call last):
...
ValueError: Input contains NaN, ...
h2o4gpu.show_versions()[source]

Print useful debugging information”

New in version 0.20.