Parameters of H2OGAM¶
Affected Classes¶
ai.h2o.sparkling.ml.algos.H2OGAMai.h2o.sparkling.ml.algos.classification.H2OGAMClassifierai.h2o.sparkling.ml.algos.regression.H2OGAMRegressor
Parameters¶
Each parameter has also a corresponding getter and setter method. (E.g.:
label->getLabel(),setLabel(...))
- betaConstraints
 Data frame of beta constraints enabling to set special conditions over the model coefficients.
Scala default value:
null; Python default value:None- ignoredCols
 Names of columns to ignore for training.
Scala default value:
null; Python default value:NoneAlso available on the trained model.
- alphaValue
 Distribution of regularization between the L1 (Lasso) and L2 (Ridge) penalties. A value of 1 for alpha represents Lasso regression, a value of 0 produces Ridge regression, and anything in between specifies the amount of mixing between the two. Default value of alpha is 0 when SOLVER = ‘L-BFGS’; 0.5 otherwise.
Scala default value:
null; Python default value:NoneAlso available on the trained model.
- aucType
 Set default multinomial AUC type. Possible values are
"AUTO","NONE","MACRO_OVR","WEIGHTED_OVR","MACRO_OVO","WEIGHTED_OVO".Default value:
"AUTO"Also available on the trained model.
- balanceClasses
 Balance training data class counts via over/under-sampling (for imbalanced data).
Scala default value:
false; Python default value:FalseAlso available on the trained model.
- betaEpsilon
 Converge if beta changes less (using L-infinity norm) than beta esilon, ONLY applies to IRLSM solver .
Scala default value:
1.0e-4; Python default value:1.0E-4Also available on the trained model.
- bs
 Basis function type for each gam predictors, 0 for cr, 1 for thin plate regression with knots, 2 for monotone I-splines, 3 for NBSplineTypeI M-splines (refer to doc here: https://github.com/h2oai/h2o-3/issues/6926). If specified, must be the same size as gam_columns.
Scala default value:
null; Python default value:NoneAlso available on the trained model.
- classSamplingFactors
 Desired over/under-sampling ratios per class (in lexicographic order). If not specified, sampling factors will be automatically computed to obtain class balance during training. Requires balance_classes.
Scala default value:
null; Python default value:NoneAlso available on the trained model.
- coldStart
 Only applicable to multiple alpha/lambda values when calling GLM from GAM. If false, build the next model for next set of alpha/lambda values starting from the values provided by current model. If true will start GLM model from scratch.
Scala default value:
false; Python default value:FalseAlso available on the trained model.
- columnsToCategorical
 List of columns to convert to categorical before modelling
Scala default value:
Array(); Python default value:[]- computePValues
 Request p-values computation, p-values work only with IRLSM solver and no regularization.
Scala default value:
false; Python default value:FalseAlso available on the trained model.
- convertInvalidNumbersToNa
 If set to ‘true’, the model converts invalid numbers to NA during making predictions.
Scala default value:
false; Python default value:FalseAlso available on the trained model.
- convertUnknownCategoricalLevelsToNa
 If set to ‘true’, the model converts unknown categorical levels to NA during making predictions.
Scala default value:
false; Python default value:FalseAlso available on the trained model.
- dataFrameSerializer
 A full name of a serializer used for serialization and deserialization of Spark DataFrames to a JSON value within NullableDataFrameParam.
Default value:
"ai.h2o.sparkling.utils.JSONDataFrameSerializer"Also available on the trained model.
- detailedPredictionCol
 Column containing additional prediction details, its content depends on the model type.
Default value:
"detailed_prediction"Also available on the trained model.
- earlyStopping
 Stop early when there is no more relative improvement on train or validation (if provided).
Scala default value:
true; Python default value:TrueAlso available on the trained model.
- exportCheckpointsDir
 Automatically export generated models to this directory.
Scala default value:
null; Python default value:NoneAlso available on the trained model.
- family
 Family. Use binomial for classification with logistic regression, others are for regression problems. Possible values are
"AUTO","gaussian","binomial","fractionalbinomial","quasibinomial","poisson","gamma","multinomial","tweedie","ordinal","negativebinomial".Default value:
"AUTO"Also available on the trained model.
- featuresCols
 Name of feature columns
Scala default value:
Array(); Python default value:[]Also available on the trained model.
- foldAssignment
 Cross-validation fold assignment scheme, if fold_column is not specified. The ‘Stratified’ option will stratify the folds based on the response variable, for classification problems. Possible values are
"AUTO","Random","Modulo","Stratified".Default value:
"AUTO"Also available on the trained model.
- foldCol
 Column with cross-validation fold index assignment per observation.
Scala default value:
null; Python default value:NoneAlso available on the trained model.
- gainsliftBins
 Gains/Lift table number of bins. 0 means disabled.. Default value -1 means automatic binning.
Default value:
-1Also available on the trained model.
- gamCols
 Arrays of predictor column names for gam for smoothers using single or multiple predictors like {{‘c1’},{‘c2’,’c3’},{‘c4’},…}
Scala default value:
null; Python default value:NoneAlso available on the trained model.
- gradientEpsilon
 Converge if objective changes less (using L-infinity norm) than this, ONLY applies to L-BFGS solver. Default indicates: If lambda_search is set to False and lambda is equal to zero, the default value of gradient_epsilon is equal to .000001, otherwise the default value is .0001. If lambda_search is set to True, the conditional values above are 1E-8 and 1E-6 respectively.
Default value:
-1.0Also available on the trained model.
- ignoreConstCols
 Ignore constant columns.
Scala default value:
true; Python default value:TrueAlso available on the trained model.
- interactions
 A list of predictor column indices to interact. All pairwise combinations will be computed for the list.
Scala default value:
null; Python default value:NoneAlso available on the trained model.
- intercept
 Include constant term in the model.
Scala default value:
true; Python default value:TrueAlso available on the trained model.
- keepBinaryModels
 If set to true, all binary models created during execution of the
fitmethod will be kept in DKV of H2O-3 cluster.Scala default value:
false; Python default value:False- keepCrossValidationFoldAssignment
 Whether to keep the cross-validation fold assignment.
Scala default value:
false; Python default value:FalseAlso available on the trained model.
- keepCrossValidationModels
 Whether to keep the cross-validation models.
Scala default value:
true; Python default value:TrueAlso available on the trained model.
- keepCrossValidationPredictions
 Whether to keep the predictions of the cross-validation models.
Scala default value:
false; Python default value:FalseAlso available on the trained model.
- keepGamCols
 Save keys of model matrix.
Scala default value:
false; Python default value:FalseAlso available on the trained model.
- knotIds
 Array storing frame keys of knots. One for each gam column set specified in gam_columns.
Scala default value:
null; Python default value:NoneAlso available on the trained model.
- labelCol
 Response variable column.
Default value:
"label"Also available on the trained model.
- lambdaSearch
 Use lambda search starting at lambda max, given lambda is then interpreted as lambda min.
Scala default value:
false; Python default value:FalseAlso available on the trained model.
- lambdaValue
 Regularization strength.
Scala default value:
null; Python default value:NoneAlso available on the trained model.
- link
 Link function. Possible values are
"family_default","identity","logit","log","inverse","tweedie","multinomial","ologit","oprobit","ologlog".Default value:
"family_default"Also available on the trained model.
- maxActivePredictors
 Maximum number of active predictors during computation. Use as a stopping criterion to prevent expensive model building with many predictors. Default indicates: If the IRLSM solver is used, the value of max_active_predictors is set to 5000 otherwise it is set to 100000000.
Default value:
-1Also available on the trained model.
- maxAfterBalanceSize
 Maximum relative size of the training data after balancing class counts (can be less than 1.0). Requires balance_classes.
Scala default value:
5.0f; Python default value:5.0Also available on the trained model.
- maxConfusionMatrixSize
 [Deprecated] Maximum size (# classes) for confusion matrices to be printed in the Logs.
Default value:
20Also available on the trained model.
- maxIterations
 Maximum number of iterations.
Default value:
-1Also available on the trained model.
- maxRuntimeSecs
 Maximum allowed runtime in seconds for model training. Use 0 to disable.
Default value:
0.0Also available on the trained model.
- missingValuesHandling
 Handling of missing values. Either MeanImputation, Skip or PlugValues. Possible values are
"MeanImputation","PlugValues","Skip".Default value:
"MeanImputation"Also available on the trained model.
- modelId
 Destination id for this model; auto-generated if not specified.
Scala default value:
null; Python default value:None- nfolds
 Number of folds for K-fold cross-validation (0 to disable or >= 2).
Default value:
0Also available on the trained model.
- nlambdas
 Number of lambdas to be used in a search. Default indicates: If alpha is zero, with lambda search set to True, the value of nlamdas is set to 30 (fewer lambdas are needed for ridge regression) otherwise it is set to 100.
Default value:
-1Also available on the trained model.
- nonNegative
 Restrict coefficients (not intercept) to be non-negative.
Scala default value:
false; Python default value:FalseAlso available on the trained model.
- numKnots
 Number of knots for gam predictors. If specified, must specify one for each gam predictor. For monotone I-splines, mininum = 2, for cs spline, minimum = 3. For thin plate, minimum is size of polynomial basis + 2.
Scala default value:
null; Python default value:NoneAlso available on the trained model.
- objReg
 Likelihood divider in objective value computation, default is 1/nobs.
Default value:
-1.0Also available on the trained model.
- objectiveEpsilon
 Converge if objective value changes less than this. Default indicates: If lambda_search is set to True the value of objective_epsilon is set to .0001. If the lambda_search is set to False and lambda is equal to zero, the value of objective_epsilon is set to .000001, for any other value of lambda the default value of objective_epsilon is set to .0001.
Default value:
-1.0Also available on the trained model.
- offsetCol
 Offset column. This will be added to the combination of columns before applying the link function.
Scala default value:
null; Python default value:NoneAlso available on the trained model.
- predictionCol
 Prediction column name
Default value:
"prediction"Also available on the trained model.
- prior
 Prior probability for y==1. To be used only for logistic regression iff the data has been sampled and the mean of response does not reflect reality.
Default value:
-1.0Also available on the trained model.
- removeCollinearCols
 In case of linearly dependent columns, remove some of the dependent columns.
Scala default value:
false; Python default value:FalseAlso available on the trained model.
- scale
 Smoothing parameter for gam predictors. If specified, must be of the same length as gam_columns.
Scala default value:
null; Python default value:NoneAlso available on the trained model.
- scaleTpPenaltyMat
 Scale penalty matrix for tp (thin plate) smoothers as in R.
Scala default value:
false; Python default value:FalseAlso available on the trained model.
- scoreEachIteration
 Whether to score during each iteration of model training.
Scala default value:
false; Python default value:FalseAlso available on the trained model.
- seed
 Seed for pseudo random number generator (if applicable).
Scala default value:
-1L; Python default value:-1- solver
 AUTO will set the solver based on given data and the other parameters. IRLSM is fast on on problems with small number of predictors and for lambda-search with L1 penalty, L_BFGS scales better for datasets with many columns. Possible values are
"AUTO","IRLSM","L_BFGS","COORDINATE_DESCENT_NAIVE","COORDINATE_DESCENT","GRADIENT_DESCENT_LH","GRADIENT_DESCENT_SQERR".Default value:
"AUTO"Also available on the trained model.
- splineOrders
 Order of I-splines or NBSplineTypeI M-splines used for gam predictors. If specified, must be the same size as gam_columns. For I-splines, the spline_orders will be the same as the polynomials used to generate the splines. For M-splines, the polynomials used to generate the splines will be spline_order-1. Values for bs=0 or 1 will be ignored.
Scala default value:
null; Python default value:NoneAlso available on the trained model.
- splinesNonNegative
 Valid for I-spline (bs=2) only. True if the I-splines are monotonically increasing (and monotonically non-decreasing) and False if the I-splines are monotonically decreasing (and monotonically non-increasing). If specified, must be the same size as gam_columns. Values for other spline types will be ignored. Default to true.
Scala default value:
null; Python default value:NoneAlso available on the trained model.
- splitRatio
 Accepts values in range [0, 1.0] which determine how large part of dataset is used for training and for validation. For example, 0.8 -> 80% training 20% validation. This parameter is ignored when validationDataFrame is set.
Default value:
1.0- standardize
 Standardize numeric columns to have zero mean and unit variance.
Scala default value:
false; Python default value:FalseAlso available on the trained model.
- standardizeTpGamCols
 standardize tp (thin plate) predictor columns.
Scala default value:
false; Python default value:FalseAlso available on the trained model.
- startval
 double array to initialize coefficients for GAM.
Scala default value:
null; Python default value:NoneAlso available on the trained model.
- stoppingMetric
 Metric to use for early stopping (AUTO: logloss for classification, deviance for regression and anomaly_score for Isolation Forest). Note that custom and custom_increasing can only be used in GBM and DRF with the Python client. Possible values are
"AUTO","deviance","logloss","MSE","RMSE","MAE","RMSLE","AUC","AUCPR","lift_top_group","misclassification","mean_per_class_error","anomaly_score","AUUC","ATE","ATT","ATC","qini","custom","custom_increasing".Default value:
"AUTO"Also available on the trained model.
- stoppingRounds
 Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable).
Default value:
0Also available on the trained model.
- stoppingTolerance
 Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much).
Default value:
0.001Also available on the trained model.
- storeKnotLocations
 If set to true, will return knot locations as double[][] array for gam column names found knots_for_gam. Default to false.
Scala default value:
false; Python default value:FalseAlso available on the trained model.
- theta
 Theta.
Default value:
0.0Also available on the trained model.
- tweedieLinkPower
 Tweedie link power.
Default value:
0.0Also available on the trained model.
- tweedieVariancePower
 Tweedie variance power.
Default value:
0.0Also available on the trained model.
- validationDataFrame
 A data frame dedicated for a validation of the trained model. If the parameters is not set,a validation frame created via the ‘splitRatio’ parameter. The parameter is not serializable!
Scala default value:
null; Python default value:None- weightCol
 Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data frame. This is typically the number of times a row is repeated, but non-integer values are supported as well. During training, rows with higher weights matter more, due to the larger loss function pre-factor. If you set weight = 0 for a row, the returned prediction frame at that row is zero and this is incorrect. To get an accurate prediction, remove all rows with weight == 0.
Scala default value:
null; Python default value:NoneAlso available on the trained model.
- withContributions
 Enables or disables generating a sub-column of detailedPredictionCol containing Shapley values of original features.
Scala default value:
false; Python default value:FalseAlso available on the trained model.
- withLeafNodeAssignments
 Enables or disables computation of leaf node assignments.
Scala default value:
false; Python default value:FalseAlso available on the trained model.
- withStageResults
 Enables or disables computation of stage results.
Scala default value:
false; Python default value:FalseAlso available on the trained model.