Machine Learning with Sparkling Water: H20 + Spark

MICHAL MALOHLAVA JAKUB HAvA NIDHI MEHTA

EDITED BY: VINOD IYENGAR & ANGELA BARTZ

http://h20.ai/resources

November 2024: Fifth Edition

http://h2o.ai/resources

Machine Learning with Sparkling Water: H20 + Spark
by Michal Malohlava, Jakub Hava, & Nidhi Mehta
Edited by: Vinod lyengar & Angela Bartz

Published by H20.ai, Inc.
2307 Leghorn St.
Mountain View, CA 94043

(©2016-2024 H20.ai, Inc. All Rights Reserved.
November 2024: Fifth Edition
Photos by (©H20.ai, Inc.

While every precaution has been taken in the
preparation of this book, the publisher and
authors assume no responsibility for errors or
omissions, or for damages resulting from the
use of the information contained herein.

Printed in the United States of America.

CONTENTS | 3

Contents

1 What is H207? 6
2 Sparkling Water Introduction 8
2.1 Typical Use Cases 8
2.1.1 Model Building 8
212 DataMunging 9
2.1.3 Stream Processing 9
22 Featureso 11
2.3 Supported Data Sources 11
2.4 Supported Data Formats 11
2.5 Supported Spark Execution Environments 12
2.6 Sparkling Water Clients 12
2.7 Sparkling Water Requirements 13
3 Design 14
3.1 Data Sharing between Spark and H20 15
3.2 H20Context 15
4 Starting Sparkling Water 17
4.1 Setting up the Environment 17
4.2 Starting Interactive Shell with Sparkling Water 17
4.3 Starting Sparkling Water in Internal Backend 18
4.4 External Backend oL 19
441 Automatic Mode of External Backend 19
4.42 Manual Mode of External Backend on Hadoop . . . 21

443 Manual Mode of External Backend without Hadoop
(standalone) 22
45 Memory Management 24
5 Data Manipulation 26
5.1 Creating H20 Frames 26
5.1.1 Convert from RDD, DataFrame or Dataset 26
5.1.2 Creating H20Frame from an Existing Key 27
5.1.3 Create H20 Frame Directly 27
5.2 Converting H20 Frames to Spark entities 28
521 ConverttoRDD 28
5.2.2 Convert to DataFrame 28
5.3 Mapping between H20OFrame And Data Frame Types 29
5.4 Mapping between H20OFrame and RDD[T]| Types 30
5.5 Using Spark Data Sources with H20Frame 30

CONTENTS

5.5.1 Reading from H20Frame
5.5.2 Saving to H20Frame
5.5.3 Specifying Saving Mode

Calling H20 Algorithms

Productionizing MOJOs from H20-3

7.1 Loading the H20-3 MOJOs

7.2 Exporting the loaded MOJO model using Sparkling Water

7.3 Importing the previously exported MOJO model from Sparkling
Water

7.4 Accessing additional prediction details

7.5 Customizing the MOJO Settings

7.6 Methods available on MOJO Model
7.6.1 Obtaining Domain Values
7.6.2 Obtaining Model Category
7.6.3 Obtaining Feature Types
7.6.4 Obtaining Feature Importances
7.6.5 Obtaining Scoring History
7.6.6 Obtaining Training Params
7.6.7 Obtaining Metrics
7.6.8 Obtaining Leaf Node Assignments
7.6.9 Obtaining Stage Probabilities

Productionizing MOJOs from Driverless Al

8.1 Requirements
8.2 Loading and Score the MOJO
8.3 Predictions Format L.
8.4 Customizing the MOJO Settings
8.5 Troubleshooting

Deployment

9.1 Referencing Sparkling Water
9.1.1 Using Assembly Jar
9.1.2 Using PySparkling Zip.
9.1.3 Using the Spark Package

9.2 Target Deployment Environments
9.21 Llocalcluster
9.2.2 On a Standalone Cluster
9.23 OnaVYARN Cluster

9.3 DataBricks Cloud
9.3.1 CreatingaCluster

CONTENTS | 5

9.3.2 Running Sparkling Water 54

9.3.3 Running PySparkling 55

9.3.4 Running RSparkling 56

10 Running Sparkling Water in Kubernetes 57
10.1 Internal Backend 57
10.1.1 Scala 58

10.1.2 Python 60

1013 R oo 62

10.2 Manual Mode of External Backend 63
10.2.1 Scala 63

10.2.2 Python 66

1023 R .o 68

10.3 Automatic Mode of External Backend 70
10.3.1 Scala 70

10.3.2 Python 72

1033 R. .. o 75

11 Sparkling Water Configuration Properties 77
11.1 Configuration Properties Independent of Selected Backend 77
11.2 Internal Backend Configuration Properties 84
11.3 External Backend Configuration Properties 87

12 Building a Standalone Application 90
13 A Use Case Example 92
13.1 Predicting Arrival Delay in Minutes - Regression 92

14 FAQ 95
15 References 100

6 | What is H20?

What is H207?

H20.ai focuses on bringing Al to businesses through software. Its flagship
product is H20, the leading open-source platform that makes it easy for
financial services, insurance companies, and healthcare companies to deploy Al
and deep learning to solve complex problems. More than 9,000 organizations and
80,000+ data scientists depend on H20 for critical applications like predictive
maintenance and operational intelligence. The company — which was recently
named to the CB Insights Al 100 — is used by 169 Fortune 500 enterprises,
including 8 of the world's 10 largest banks, 7 of the 10 largest insurance
companies, and 4 of the top 10 healthcare companies. Notable customers
include Capital One, Progressive Insurance, Transamerica, Comcast, Nielsen
Catalina Solutions, Macy's, Walgreens, and Kaiser Permanente.

Using in-memory compression, H20 handles billions of data rows in-memory,
even with a small cluster. To make it easier for non-engineers to create complete
analytic workflows, H20's platform includes interfaces for R, Python, Scala,
Java, JSON, and CoffeeScript/JavaScript, as well as a built-in web interface,
Flow. H20O is designed to run in standalone mode, on Hadoop, or within a
Spark Cluster, and typically deploys within minutes.

H20 includes many common machine learning algorithms, such as generalized
linear modeling (linear regression, logistic regression, etc.), Naive Bayes, principal
component analysis, k-means clustering, and word2vec. H20 implements best-
in-class algorithms at scale, such as distributed random forest, gradient boosting,
and deep learning. H20 also includes a Stacked Ensembles method, which finds
the optimal combination of a collection of prediction algorithms using a process
known as "stacking.” With H20, customers can build thousands of models and
compare the results to get the best predictions.

H20 is nurturing a grassroots movement of physicists, mathematicians, and
computer scientists to herald the new wave of discovery with data science by
collaborating closely with academic researchers and industrial data scientists.
Stanford university giants Stephen Boyd, Trevor Hastie, and Rob Tibshirani
advise the H20 team on building scalable machine learning algorithms. And
with hundreds of meetups over the past several years, H20 continues to remain
a word-of-mouth phenomenon.

Try it out
e Download H20 directly at http://h20.ai/download.

e Install H20's R package from CRAN at https://cran.r-project.
org/web/packages/h2o/.

http://h2o.ai/download
https://cran.r-project.org/web/packages/h2o/
https://cran.r-project.org/web/packages/h2o/

What is H20? | 7

e Install the Python package from PyPl at https://pypi.python.
org/pypi/h2o/.

Join the community

e To learn about our training sessions, hackathons, and product updates,
visit http://h20.ai.

e To learn about our meetups, visit https://www.meetup.com/
topics/h20/all/.

e Have questions? Post them on Stack Overflow using the h2o tag at
http://stackoverflow.com/questions/tagged/h2o.

e Have a Google account (such as Gmail or Google+)? Join the open-source
community forum at https://groups.google.com/d/forum/
h2ostream.

e Join the chat at https://gitter.im/h20ai/h20-3.

https://pypi.python.org/pypi/h2o/
https://pypi.python.org/pypi/h2o/
http://h2o.ai
https://www.meetup.com/topics/h2o/all/
https://www.meetup.com/topics/h2o/all/
http://stackoverflow.com/questions/tagged/h2o
https://groups.google.com/d/forum/h2ostream
https://groups.google.com/d/forum/h2ostream
https://gitter.im/h2oai/h2o-3

8 | Sparkling Water Introduction

Sparkling Water Introduction

Sparkling Water allows users to combine the fast, scalable machine learning
algorithms of H20 with the capabilities of Spark. With Sparkling Water, users
can drive computation from Scala, R, or Python and use the H20 Flow UI,
providing an ideal machine learning platform for application developers.

Spark is an elegant and powerful general-purpose, open-source, in-memory
platform with tremendous momentum. H2O is an in-memory application for
machine learning that is reshaping how people apply math and predictive
analytics to their business problems.

Integrating these two open-source environments provides a seamless experience
for users who want to pre-process data using Spark, feed the results into H20
to build a model, and make predictions. Sparkling Water tries to follow Spark
conventions for the H20 algorithms so the APl is easy to start with for people
familiar with Spark.

For end-to-end examples, please visit the Sparkling Water GitHub repository at
https://github.com/h20ai/sparkling-water/tree/master/
examples.

Have Questions about Sparkling Water?
e Post them on Stack Overflow using the sparkling-water tag at http:

/ / stackoverflow . com/ questions /tagged/ sparkling -
water.

e Join the chat at https://gitter.im/h2cai/sparkling-
water.

Typical Use Cases

Sparkling Water excels in leveraging existing Spark-based workflows needed to
call advanced machine learning algorithms. We identified three of the most
common use-cases which are described below.

Model Building

A typical example involves multiple data transformations with the help of Spark
API, where a final form of data is transformed into an H20 frame and passed
to an H20 algorithm. The constructed model estimates different metrics based

https://github.com/h2oai/sparkling-water/tree/master/examples
https://github.com/h2oai/sparkling-water/tree/master/examples
http://stackoverflow.com/questions/tagged/sparkling-water
http://stackoverflow.com/questions/tagged/sparkling-water
http://stackoverflow.com/questions/tagged/sparkling-water
https://gitter.im/h2oai/sparkling-water
https://gitter.im/h2oai/sparkling-water

Sparkling Water Introduction | 9

on the testing data or gives a prediction that can be used in the rest of the
data pipeline (see Figure 1).

Prediction
Data munging Modelling processing

11 BB

Deep Learning, GBM
DRF, GLM, GLRM
K-Means, PCA
CoxPH, Ensembles

Figure 1. Sparkling Water extends existing Spark data pipeline with advanced
machine learning algorithms.

Data Munging

Another use-case includes Sparkling Water as a provider of ad-hoc data trans-
formations. Figure 2 shows a data pipeline benefiting from H2Q'’s parallel
data load and parse capabilities, while Spark APl is used as another provider
of data transformations. Furthermore, H20 can be used as an in-place data
transformer.

Stream Processing

The last use-case depicted in Figure 3 introduces two data pipelines. The first
one, called an off-line training pipeline, is invoked regularly (e.g., every hour or
every day), and utilizes both Spark and H20 API. The off-line pipeline provides
an H20 model as output. The H20 API allows the model to be exported in a
form independent on H20 run-time. The second pipeline processes streaming
data (with help of Spark Streaming or Storm) and utilizes the model trained in
the first pipeline to score the incoming data. Since the model is exported with

10 | Sparkling Water Introduction

Data load/munging/

exploration Modelling
|
e f 1
5 S T B
.+~ 0 O o
Source N N N
I I I
— Ad hoc
data
Load and parse transformation
data directly into
H20Frame

Figure 2: Sparkling Water introduces H20 parallel load and parse into Spark
pipelines.

no run-time dependency on H20, the streaming pipeline can be lightweight and
independent on H20 or Sparkling Water infrastructure.

Data munging Modelling
|
—— f |
Data — —
Source
o ‘o Deploy
ata :
— % the model

Model
prediction

Export model
in a binary format
or
as code

H,0.0

Figure 3: Sparkling Water used as an off-line model producer feeding models
into a stream-based data pipeline.

Sparkling Water Introduction | 11

Features

Sparkling Water provides transparent integration for the H20 engine and its
machine learning algorithms into the Spark platform, enabling:

Use of H20 algorithms in Spark workflows
Transformation between H20 and Spark data structures

Use of Spark RDDs, DataFrames, and Datasets as an input for H20
algorithms

Transparent execution of Sparkling Water applications on top of Spark
Use H20 algorithms in Spark pipelines

Productionalize H20 models in Spark environment

Supported Data Sources

In Sparkling Water, you can either use Spark API or H20 to load data. This
list describes all supported data sources from which Sparkling Water is able to
ingest data:

local filesystems

HDFS

S3

HTTP/HTTPS

JDBC

Apache Hive

DBFS (Databricks File System) when running on Databricks cluster

Google Cloud Storage

For more details, please refer to the H20 documentation at http://docs.

h2o.

ai.

Supported Data Formats

In Sparkling Water, you can decide whether to use Spark or H20 for loading
the file of the specific format. When using H20 API, the following formats are
supported:

http://docs.h2o.ai
http://docs.h2o.ai

12 | Sparkling Water Introduction

e CSV (delimited) files (including GZipped CSV)

e ORC

e SVMLight

e ARFF

e XLS

o XLSX

e Avro version 1.8.0 (without multi-file parsing or column type modification)
e Parquet

e Spark RDD, Data Frame or Dataset

For more details, please refer to the H2O documentation at http://docs.
h2o0.ai.

Supported Spark Execution Environments
Sparkling Water can run on top of Spark in the following ways:
e as a local cluster (where the master node is Local or locall[*])
e as a standalone cluster!

e in a YARN environment?

Sparkling Water Clients

Sparkling Water provides clients for R, Scala and Python languages.
e R : RSparkling
e Python : PySparkling
e Scala/Java : Sparkling Water

Whenever we show any code in this booklet, we will try to show variant in all
three supported languages when possible.

IRefer to the Spark standalone documentation http://spark.apache.org/docs/
latest/spark-standalone.html

?Refer to the Spark YARN documentation http://spark.apache.org/docs/
latest/running-on-yarn.html

http://docs.h2o.ai
http://docs.h2o.ai
http://spark.apache.org/docs/latest/spark-standalone.html
http://spark.apache.org/docs/latest/spark-standalone.html
http://spark.apache.org/docs/latest/running-on-yarn.html
http://spark.apache.org/docs/latest/running-on-yarn.html

Sparkling Water Introduction | 13

Sparkling Water Requirements

Sparkling Water supports Spark 2.3, 2.4 (except Spark 2.4.2) and 3.0. In specific
examples of this booklet we refer to artifacts for Spark 3.0 and use Sparkling
Water 3.30.0.7, however, the Sparkling Water code is consistent across versions
for each Spark.

Linux/OS X/Windows

Java 8 or higher
Python 3.6+ For Python version of Sparkling Water (PySparkling)

R 3.4+ for R version of Sparkling Water (RSparkling)

Installed Spark and have SPARK_HOME environmental variable pointing
to its home.

14 | Design

Design

Sparkling Water is designed to be executed as a regular Spark application. It
provides a way to initialize H20 services on top of Spark and access data stored
in the data structures of Spark and H20.

Sparkling Water supports two types of backends - internal and external. In the
internal backend, Sparkling Water starts H20 in Spark executors, which are
created after application submission. At this point, H20 starts services, including
distributed key-value (K/V) store and memory manager, and orchestrates the
nodes into a cloud. The topology of the created cloud tries to match the
topology of the underlying Spark cluster. The following figure represents the
Internal Sparkling Water cluster.

Sparkling Water Cluster

Y Executor m=p» H20

l implements

w spark-submit [
—

4 Executor ==p H20
App JVM

> E)'(ecutbr—b H20
JVM

Contains application

and Sparkling Water
classes

Figure 4: Sparkling Water design depicting deployment of the Sparkling Water
in internal backend to the Spark cluster.

In the external backend, the H20 cluster is started separately and is connected
to from the Spark driver. The following figure represents the External Sparkling
Water cluster.

More information about the backends and how to start Sparkling Water in each
backend is available in the next section.

Design | 15

H20 Cluster

/Sparkling Water Cluster

4
Spark Spark

Worker -’ Executor .}
JVM

Jvm

/ <

/AE—.
[SEI] spark-submit ’ipark v?pa;k Spark
A laster jorker ‘ Executor mf
jar fite —p Y VM WM >
\ P N o

Spark Spark

Worker B2 4 Executor mfjp-
JVM

JVm

l

Figure 5: Sparkling Water design depicting deployment of the Sparkling Water
in internal backend to the standalone Spark cluster.

Data Sharing between Spark and H20

Sparkling Water enables transformation between Spark data structures (RDD,
DataFrame, Dataset) and H20's H20Frame, and vice versa.

When converting a H20Frame to an RDD or DataFrame, a wrapper is created
around the H20F rame to provide an RDD or DataFrame like API. In this case,
data is not duplicated but served directly from the underlying H20Frame.

Converting from an RDD/DataFrame to an H20F rame requires data duplication
because it transfers data from the RDD storage into a H20Frame. However,
data stored in a H20Frame is heavily compressed and does not need to be
preserved in RDD after the conversion.

The following figure shows how data is accessed when running in the internal
backend mode of Sparkling Water.

In the external backend, the Spark and H20 data spaces are separated, however
the separation is transparent to the user.

H20Context

The main Sparkling Water component is H20 Context. H20 Context holds
state and provides primitives to transfer RDD/DataFrames/Datasets into

16 | Design

Sparkling Water Cluster N

park Executor JYM

I\-'\t_Spnrk Executor JVM

RDDs and DataFrames
share same memory

space

Figure 6: Sharing between Spark and H2O inside an executor JVM in Internal
backend.

H20OFrames and vice versa. It follows design principles of Spark primitives
such as SparkSession, SparkContext and SQLContext.

H20Context contains the necessary information for running H20 services and
exposes methods for data transformation between the Spark RDD, DataFrame
or Dataset, and the H20Frame. Starting H20Context involves an opera-
tion that:

e In case of the internal backend, is distributed and contacts all accessible
Spark executor nodes and initializes H20 services (such as the key-value
store and RPC) inside the executors’ JVMs.

e In case of the external backend, either starts H20 cluster on YARN and
connects to it or connects to the existing H20 cluster right away (depends
on the configuration).

The next sections show how to start H20Context in all supported clients and
both backends.

Starting Sparkling Water | 17

Starting Sparkling Water

This section focuses on how Sparkling Water can be started in both backends
and all language clients. You can submit a Sparkling Water code as a Spark
batch job or you can explore its functionality in an interactive shell.

Before you start, please make sure that you have downloaded Sparkling Water
from https://www.h20.ai/download/ for your desired Spark version.

Setting up the Environment

In the case of Scala, all dependencies are already provided inside the Sparkling
Water artifacts.

In the case of Python, please make sure that you have the following Python
packages installed:

e requests
e tabulate

. Also please make sure that your Python environment is set-up to run regular
Spark applications.

In the case of R, please make sure that SparklyR and H2O libraries are installed.
The H20 version needs to match the version used in Sparkling Water. For
example, when using RSparkling 3.30.0.7, make sure that you have H20 of
version 3.30.0.7 installed.

Starting Interactive Shell with Sparkling Water

To start interactive Scala shell, run:

./bin/sparkling-shell

To start interactive Python shell, run:

./bin/pysparkling

To use RSparkling in an interactive environment, we suggest using RStudio.

https://www.h2o.ai/download/

18 | Starting Sparkling Water

Starting Sparkling Water in Internal Backend

In the internal backend, the H20 cluster is created automatically during the
call of H20Context .getOrCreate. Since it is not technically possible to
get the number of executors in Spark, Sparkling Water tries to discover all
executors during the initiation of H20Context and starts H20 instance inside
each of discovered executors. This solution is the easiest to deploy; however
when Spark or YARN kills the executor, the whole H20 cluster goes down since
H20 does not support high availability. Also, there are cases where Sparkling
Water is not able to discover all Spark executors and will start just on the
subset of executors. The shape of the cluster can not be changed later. Internal
backend is the default backend for Sparkling Water. It can be changed via spark
configuration property spark.ext.h2o.backend.cluster.mode to ex-
ternal or internal. Another way how to change the type of backend is by calling
setExternalClusterMode () or setInternalClusterMode () method
on H20Conf class instance. H20Conf is a simple wrapper around SparkConf
and inherits all properties in spark configuration.

H20Context can be started as:

e Scala

1 |import ai.h2o.sparkling._
2 |val conf = new H20Conf () .setInternalClusterMode ()
3 |val h2oContext = H20Context.getOrCreate (conf)

e Python

1 |from pysparkling import =«
2 |[conf = H20Conf () .setInternalClusterMode ()
3 |h2oContext = H20Context.getOrCreate (conf)

e R

1 |library (sparklyr)

2 |library (rsparkling)

3 |spark_connect (master = "local", version = "3.0.0")
4 |conf <— H20Conf () $setInternalClusterMode ()

5 |h2oContext <— H20Context.getOrCreate (conf)

If spark.ext.h2o0.backend.cluster.mode property was set to inter-
nal either on the command line or on the SparkConf, the following call is
sufficient

Starting Sparkling Water | 19

e Scala

1 |import ai.h2o.sparkling._
2 |[val h2oContext = H20Context.getOrCreate ()

e Python

1 |from pysparkling import =
2 |h2oContext = H20Context.getOrCreate ()

e R

1 |library (sparklyr)

2 |library (rsparkling)

3 |spark_connect (master = "local", version = "3.0.0")
4 |h2o0Context <— H20Context.getOrCreate ()

External Backend

In the external cluster, we use the H20 cluster running separately from the rest
of the Spark application. This separation gives us more stability because we are
no longer affected by Spark executors being killed, which can lead (as in the
previous mode) to h2o cluster being killed as well.

There are two deployment strategies of the external cluster: manual and
automatic. In manual mode, we need to start the H20O cluster, and in the
automatic mode, the cluster is started for us automatically based on our
configuration. In Hadoop environments, the creation of the cluster is performed
by a simple process called H20 driver. When the cluster is fully formed, the
H20O driver terminates. In both modes, we have to store a path of H20 driver
jar to the environment variable H2O_DRIVER_JAR.

H20_DRIVER_JAR=S$ (./bin/get-h2o-driver.sh
some_hadoop_distribution)

Automatic Mode of External Backend

In the automatic mode, the H20 cluster is started automatically. The cluster
can be started automatically only in YARN environment at the moment. We
recommend this approach, as it is easier to deploy external clusters in this mode,
and it is also more suitable for production environments. When the H20 cluster

20 | Starting Sparkling Water

is started on YARN, it is started as a map-reduce job, and it always uses the
flat-file approach for nodes to cloud up.

First, get H20 driver, for example, for cdh 5.8, as:

H20_DRIVER_JAR=S$ (./bin/get-h2o-driver.sh cdhb5.8)

To start an H20 cluster and connect to it, run:

e Scala

1 |import ai.h2o.sparkling._

2 |val conf = new H20Conf ()

3 .setExternalClusterMode ()

4 .useAutoClusterStart ()

5 .setH20DriverPath ("path_to_h2o_driver")
6 .setClusterSize (1)

7 .setExternalMemory ("2G")

8 .setYARNQueue ("abc")

9 |[val hc = H20Context.getOrCreate (conf)

e Python

1 | from pysparkling import =

2 |conf = H20Conf ()

3 .setExternalClusterMode ()

4 .useAutoClusterStart ()

5 .setH20DriverPath ("path_to_h2o_driver")
6 .setClusterSize (1)

7 .setExternalMemory ("2G")

8 .setYARNQueue ("abc")

9 |hc = H20Context.getOrCreate (conf)

e R

1 [library (sparklyr)
2 |library (rsparkling)
3 |spark_connect (master = "local", version = "3.0.0")
4 |conf <— H20Conf ()
5 $setExternalClusterMode ()
6 SuseAutoClusterStart ()
7 $setH20DriverPath ("path_to_h2o_driver")
8 $setClusterSize (1)
9 $setExternalMemory ("2G")

Starting Sparkling Water | 21

10 $set YARNQueue ("abc")
11 |hc <—= H20Context.getOrCreate (conf)

In case we stored the path of the driver H20 jar to environmental variable
H20_DRIVER_JAR, we do not need to call setH20DriverPath as Sparkling
Water will read the path from the environmental variable.

When specifying the queue, we recommend that this queue has YARN preemp-
tion off to have a stable H20 cluster.

Manual Mode of External Backend on Hadoop

In the manual mode, we need to start the H20 cluster before connecting to it
manually. At this section, we will start the cluster on Hadoop.

First, get the H2O driver, for example, for cdh 5.8, as:

H20_DRIVER_JAR=$ (./bin/get-h2o-driver.sh cdh5.8)

Also, set path to sparkling-water-assembly-extensions-2.12-all.jar which is bun-
dled in Sparkling Water for Spark 3.0 archive.

SW_EXTENSIONS_ASSEMBLY=/path/to/sparkling-water
-3.30.0.7-1-3.0/jars/sparkling-water—assembly-
extensions_2.12-3.30.0.7-1-2.4-all. jar

Let's start the H20 cluster on Hadoop:

hadoop -jar $H20_DRIVER_JAR -libjars
SSW_EXTENSIONS_ASSEMBLY -sw_ext_backend -jobname
test —-nodes 3 -mapperXmx 6g

The —sw_ext_backend option is required as without it, the cluster won't
allow Sparkling Water client to connect to it.

After this step, we should have an H20 cluster with 3 nodes running on Hadoop.
To connect to this external cluster, run the following commands:

e Scala

1 |import ai.h2o.sparkling._
2 |val conf = new H20Conf ()
3 .setExternalClusterMode ()

22 | Starting Sparkling Water

4 .useManualClusterStart ()

5 .setH20Cluster ("representant_ip",
representant_port)

6 .setCloudName ("test")

7 |val hc = H20Context.getOrCreate (conf)

e Python

from pysparkling import =«

conf = H20Conf ()
.setExternalClusterMode ()
.useManualClusterStart ()
.setH20Cluster ("representant_ip",

representant_port)
6 .setCloudName ("test")
7 |hc = H20Context.getOrCreate (conf)

g A W N =

e R

1 |library (sparklyr)

2 |library (rsparkling)

3 |spark_connect (master = "local", version = "3.0.0")

4 |conf <= H20Conf ()

5 $setExternalClusterMode ()

6 $useManualClusterStart ()

7 $setH20Cluster ("representant_ip", representant
_port)

8 $setCloudName ("test")

9 |hc <— H20Context .getOrCreate (conf)

The representant_ip and representant_port should be IP and port
of the leader node of the started H2O cluster from the previous step.

Manual Mode of External Backend without Hadoop (stan-
dalone)

In the manual mode, we need to start the H20 cluster before connecting to it
manually. At this section, we will start the cluster as a standalone application
(without Hadoop).

First, get the assembly H20 Jar:

Starting Sparkling Water | 23

H20_JAR=$ (./bin/get-h2o-driver.sh standalone)

. code:: bash

Also, set path to sparkling-water-assembly-extensions-2.12-all.jar which is bun-
dled in Sparkling Water for Spark 3.0 archive.

SW_EXTENSIONS_ASSEMBLY=/path/to/sparkling-water
-3.30.0.7-1-3.0/jars/sparkling-water—assembly—
extensions_2.12-3.30.0.7-1-2.4-all. jar

To start an external H20 cluster, run:

java —cp "S$H20_JAR:S$SW_EXTENSIONS_ASSEMBLY" water.
H20App -allow_clients —name test —-flatfile
path_to_flatfile

where the flat-file content are lines in the format of ip:port of the nodes
where H20 is supposed to run. To read more about flat-file and its format,
please see https://github.com/h20ai/h20-3/blob/master/h20o-
docs/src/product /howto/H20-DevCmdLine.md#flatfile

To connect to this external cluster, run the following commands:

e Scala

import ai.h2o.sparkling._

val conf = new H20Conf ()
.setExternalClusterMode ()
.useManualClusterStart ()
.setH20Cluster ("representant_ip",

representant_port)
6 .setCloudName ("test")
7 |val hc = H20Context.getOrCreate (conf)

g o~ W NN =

e Python

from pysparkling import =
conf = H20Conf ()
.setExternalClusterMode ()
.useManualClusterStart ()
.setH20Cluster ("representant_ip",
representant_port)
6 .setCloudName ("test")

o A~ W NN

https://github.com/h2oai/h2o-3/blob/master/h2o-docs/src/product/howto/H2O-DevCmdLine.md#flatfile
https://github.com/h2oai/h2o-3/blob/master/h2o-docs/src/product/howto/H2O-DevCmdLine.md#flatfile

24 | Starting Sparkling Water

7‘hc = H20Context .getOrCreate (conf)

e R

library (sparklyr)
library (rsparkling)
spark_connect (master = "local", version = "3.0.0")
conf <= H20Conf ()
$setExternalClusterMode ()
$useManualClusterStart ()
$setH20Cluster ("representant_ip", representant
_port)
$setCloudName ("test")
9 |hc <= H20Context.getOrCreate (conf)

N o b W N =

o

The representant_ip and representant_port need to be IP and port
of the leader node of the started H2O cluster from the previous step.

Memory Management

In the case of the internal backend, H2O resides in the same executor JVM
as Spark and the memory provided for H2O is configured via Spark. Executor
memory (i.e., memory available for H20 in internal backend) can be config-
ured via the Spark configuration property spark.executor.memory. For
example, as:

./bin/sparkling-shell —--conf spark.executor.memory=5g

or configure the property in:

SSPARK_HOME/conf/spark—-defaults.conf

Driver memory (i.e., memory available for H20 client running inside the Spark
driver) can be configured via the Spark configuration property spark.driver.memory
For example, as:

./bin/sparkling-shell --conf spark.driver.memory=>5g

or configure the property in:

SSPARK_HOME/conf/spark-defaults.conf

Starting Sparkling Water | 25

In the external backend, only the H20 client (Scala only) is running in the
Spark driver and is affected by Spark memory configuration. Memory has to
be configured explicitly for the H20 nodes in the external backend via the
spark.ext.h2o0.external .memory option or setExternalMemory
setter on H20Conf.

For YARN-specific configuration, refer to the Spark documentation https:
//spark.apache.org/docs/latest/running-on-yarn.html.

https://spark.apache.org/docs/latest/running-on-yarn.html
https://spark.apache.org/docs/latest/running-on-yarn.html

26 | Data Manipulation

Data Manipulation

This section covers conversions between Spark and H20 Frames and also ways
how H20 Frames can be created directly.

Creating H20 Frames

This section covers multiple ways how a H20 Frame can be created.

Convert from RDD, DataFrame or Dataset

H20OFrame can be created by converting Spark entities into it. H20Context
provides the asH20Frame method which accepts Spark Dataset, DataFrame
and RDD[T] as an input parameter. In the case of RDD, the type T has to
satisfy the upper bound expressed by the type Product. The conversion will
create a new H20F rame, transfer data from the specified RDD, and save it to
the H20 K/V data store.

Example of converting Spark DataFrame into H20OFrame is:

e Scala

1 |h2oContext.asH20Frame (sparkDf)

Python

1 |h20Context .asH20Frame (sparkDf)

e R

1 |h2oContext$asH20Frame (sparkDf)

You can also specify the name of the resulting H2OFrame as

e Scala

1 |h2oContext.asH20Frame (sparkDf, "frameName")

Python

1 |h2oContext.asH20Frame (sparkDf, "frameName")

e R

Data Manipulation | 27

1 |h2oContext$asH20Frame (sparkDf, "frameName")

The method is overloaded and accepts also RDDs and Datasets as inputs.

Creating H20Frame from an Existing Key

If the H20 cluster already contains a loaded H20F rame referenced by key, for
example, train.hex, it is possible to reference it from Sparkling Water by
creating a proxy H20F rame instance using the key as the input:

e Scala

1 |import ai.h2o.sparkling.H20Frame
2 |val frame = H20Frame ("train.hex")

e Python

1 |[import h2o
2 |val frame = h2o.get_frame ("train.hex")

e R

1 |library (h20)
2 |val frame = h2o.getFrame ("train.hex")

Create H20 Frame Directly

H20 Frame can also be created directly. To see how you can create H20 Frame
directly in Python and R, please see H20 documentation at https://docs.
h20.ai/h20/latest-stable/h2o0-docs/data-munging.html.

To create H20 Frame directly in Scala, you can:

e load a cluster local file (a file located on each node of the cluster):

1 [val h2oFrame = H20Frame (new File ("/data/iris.csv")

)

load file from HDFS/S3/S3N/S3A:

1 |[val h2oFrame = H20Frame (URI.create ("hdfs://data/
iris.csv"))

https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-munging.html
https://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-munging.html

28 | Data Manipulation

Converting H20 Frames to Spark entities

This section covers how we can convert H20 Frame to Spark entities.

Convert to RDD

Conversion to RDD is only available in the Scala API of Sparkling Water

The H20Context class provides the method asRDD, which creates an RDD-
like wrapper around the provided H20Frame.

The method expects the type T to create a correctly-typed RDD. The conversion
requires type T to be bound by Product interface. The relationship between
the columns of H20Frame and the attributes of class A is based on name
matching.

Example of converting H20Frame into Spark RDD is:

val df: H20Frame = .
h2oContext.asRDD [Weather] (df)

Convert to DataFrame
The H20Context class provides the method asSparkFrame, which creates a
DataFrame-like wrapper around the provided H20Frame.

The schema of the created instance of the DataFrame is derived from the
column names and the types of the specified H20Frame.

Example of converting H2OFrame into Spark DataFrame is:

e Scala

1 |h2oContext.asSparkFrame (h2oFrame)

Python

1 |h2o0Context .asSparkFrame (h2oFrame)

e R

1 |h2oContext$asSparkFrame (h2oFrame)

Data Manipulation | 29

Mapping between H20Frame And Data Frame
Types

For all primitive types or Spark SQL types (see
org.apache.spark.sqgl.types) which can be part of Spark RDD/DataFrame/-
Dataset, we provide mapping into H20 vector types (numeric, categorical, string,
time, UUID - see water.fvec.Vec):

Primitive type SQL type H20 type
NA BinaryType Numeric
Byte ByteType Numeric
Short ShortType Numeric
Integer IntegerType Numeric
Long LongType Numeric
Float FloatType Numeric
Double DoubleType Numeric
String String Type String
Boolean BooleanType Numeric
java.sql. TimeStamp TimestampType Time

30 | Data Manipulation

Mapping between H20Frame and RDD|[T] Types

For converting rdd to H20Frame and vice-versa, as type T in RDD[T] we
support following types:

T

NA

Byte

Short

Integer

Long

Float

Double

String

Boolean

java.sql. Timestamp

Any scala class extending scala Product
org.apache.spark.mllib.regression.LabeledPoint
org.apache.spark.ml.linalg.Vector
org.apache.spark.mllib.linalg

Using Spark Data Sources with H20OFrame

Spark SQL provides a configurable data source for SQL tables. Sparkling Water
enables H20F rames to be used as a data source to load/save data from/to
Spark DataFrame. This APl is supported only in Scala and Python APls

Reading from H20Frame

To read H20OFrame as Spark DataFrame, run:

e Scala

1 |spark.read.format ("h20") .load (frameKey)

Python

1 | spark.read.format ("h20") .load (frameKey)

You can also specify the key as option:

Data Manipulation | 31

e Scala

1 |spark.read.format ("h20") .option("key", frameKey).
load ()

Python

1 |spark.read.format ("h20") .option("key", frameKey) .
load()

If you specify the key as the option and inside the load method, the option has
the precedence.

Saving to H20Frame

To save DataFrame into a H20Frame, run:

e Scala

1 |df.write.format ("h20") .save ("new_key")

Python

1 |[df .write.format ("h20") .save ("new_key")

You can also specify the key as option:

e Scala

1 |df.write.format ("h20") .option ("key", "new_key").
save ()

e Python

1 |df.write.format ("h20") .option ("key", "new_key").
save ()

If you specify the key as the option and inside the save method, the option has
the precedence.

32 | Data Manipulation

Specifying Saving Mode

There are four save modes available when saving data using Data Source API -
see http://spark.apache.org/docs/latest/sgl-programming-
guide.html#save-modes

o If append mode is used, an existing H20Frame with the same key is

deleted, and a new one created with the same key. The new frame
contains the union of all rows from the original H20Frame and the

appended DataFrame.

e If overwrite mode is used, an existing H20Frame with the same key is
deleted, and a new one with the new rows is created with the same key.

e If error mode is used, and a H20Frame with the specified key already
exists, an exception is thrown.

e If ignore mode is used, and a H20Frame with the specified key already
exists, no data are changed.

http://spark.apache.org/docs/latest/sql-programming-guide.html#save-modes
http://spark.apache.org/docs/latest/sql-programming-guide.html#save-modes

Calling H20 Algorithms | 33

Calling H20 Algorithms

This section describes how to call H20 algorithms and feature transformers
from Sparkling Water. In Scala and Python, Sparkling Water exposes H20
algorithms via its own API. In R, we still need to use H20's R API.

Following feature transformers are exposed in Sparkling Water:
e H20Word2Vec
e H20TargetEncoder
Currently, the following algorithms are exposed:
e Deeplearning
e DRF
e GBM
e XGBoost
e AutoML
e GridSearch
o KMeans
e GLM
e GAM
o CoxPH
e Isolation Forest

In the exposed algorithms above, it is up on the users to decide whether they
want to run classification or regression problem using the given algorithm. H20
decides whether it will run classification or regression based on the type of the
label column. If it is categorical, classification will be performed, otherwise
regression.

If you do not want to be worried about this, we also expose specific regressors
and classifiers to make this more explicit. For example, if you decide to use
H20AutoMLRegressor, you can be sure that the algorithm will do regression
and you do not need to worry about the type of the label column. These
wrappers automatically convert the label column to required type for the given
problem. The following wrappers exist:

e H20AutoMLClassifer and H20AutoMLRegressor

34 | Calling H20 Algorithms

e H20DeepLearningClassifier and H20DeeplLearningRegressor
e H20DRFClassifier and H20DRFRegressor
e H20GBMClassifier and H20GBMRegressor
e H20GLMClassifier and H20GLMRegressor
e H20XGBoostClassifier and H200XGBoostRegressor
e H20GAMClassifier and H20GAMRegressor
First, let's create H20Context:

e Scala

1 |import ai.h2o.sparkling._
2 |import java.net.URI
3 [val hc = H20Context.getOrCreate ()

e Python

1 | from pysparkling import =
2 |hc = H20Context.getOrCreate ()

Parse the data using H20 and convert them to Spark Frame:

e Scala

1 |val frame = new H20Frame (new URI ("https://raw.
githubusercontent.com/h20ai/sparkling-water/
master/examples/smalldata/prostate/prostate.
csv"))

2 |val sparkDF = hc.asSparkFrame (frame) .withColumn ("
CAPSULE", S$"CAPSULE" cast "string")

3 |val Array(trainingDF, testingDF) = sparkDF.
randomSplit (Array (0.8, 0.2))

e Python

1 |import h2o0

2 |frame = h2o.import_file("https://raw.
githubusercontent.com/h20ai/sparkling-water/
master/examples/smalldata/prostate/prostate.
csv")

3 | sparkDF = hc.asSparkFrame (frame)

Calling H20 Algorithms | 35

4 | sparkDF = sparkDF.withColumn ("CAPSULE", sparkDF.
CAPSULE.cast ("string"))

5 | [trainingDF, testingDF] = sparkDF.randomSplit
(0.8, 0.27)

Train the model. You can configure all the available arguments using provided
setters, such as the label column:

e Scala

1 |import ai.h2o.sparkling.ml.algos.H20GBM
2 |val estimator = new H20GBM /()

3 .setLabelCol ("CAPSULE")

4 |val model = estimator.fit (trainingDF)

e Python

1 |from pysparkling.ml import H20GBM

2 |estimator = H20GBM (labelCol = "CAPSULE")
3 |[model = estimator.fit (trainingDF)

Instead of calling the generic wrapper, we can do regression explicitly as:

e Scala

1 |import ai.h2o.sparkling.ml.algos.H20GBMRegressor
2 |val estimator = new H20GBMRegressor ()

3 .setLabelCol ("CAPSULE")

4 |val model = estimator.fit (trainingDF)

e Python

1 |from pysparkling.ml import H20GBMRegressor

2 |estimator = H20GBMRegressor (labelCol = "CAPSULE")
3 |model = estimator.fit (trainingDF)

or classification explicitly as:

e Scala

import ai.h2o.sparkling.ml.algos.H20GBMClassifier

val estimator = new H20GBMClassifier ()
.setLabelCol ("CAPSULE")

val model = estimator.fit (trainingDF)

A W N =

36 |

Calling H20 Algorithms

1
2

e Python
from pysparkling.ml import H20GBMClassifier
estimator = H20GBMClassifier (labelCol = "CAPSULE")
model = estimator.fit (trainingDF)

3

Run Predictions:

Scala

model.transform(testingDF) .show (false)

Python

model.transform(testingDF) .show (truncate = False)

The code is identical to the rest of the exposed algorithms.

In the case of AutoML, after you have fit the model, you can obtain the
leaderboard frame using the estimator.getLeaderBoard () method.

In case of Grid, after you have fit the model, you can obtain the grid mod-
els, their parameters and metrics using estimator.getGridModels (),
estimator.getGridModelsParams () and
estimator.getGridModelsMetrics ().

Productionizing MOJOs from H20-3 | 37

Productionizing MOJOs from H20-3
Loading the H20-3 MOJOs

When training algorithm using Sparkling Water API, Sparkling Water always
produces H20MOJOModel. It is however also possible to import existing MOJO
into Sparkling Water ecosystem from H20-3. After importing the H20-3 MOJO
the API is unified for the loaded MOJO and the one created in Sparkling Water,
for example, using H20XGBoost.

H20 MOJOs can be imported to Sparkling Water from all data sources supported
by Apache Spark such as local file, S3 or HDFS and the semantics of the import
is the same as in the Spark API.

When creating a MOJO specified by a relative path and HDFS is enabled, the
method attempts to load the MOJO from the HDFS home directory of the
current user. In case we are not running on HDFS-enabled system, we create
the mojo from a current working directory.

e Scala

1 |import ai.h2o.sparkling.ml.models._
2 |val model = H20MOJOModel.createFromMojo ("
prostate_mojo.zip")

e Python

1 | from pysparkling.ml import =«
2 [model = H20MOJOModel.createFromMojo ("prostate_mojo
.zip")

e R

1 |library (rsparkling)

2 |sc <= spark_connect (master = "local")

3 |model <— H20MOJOModel.createFromMojo ("prostate_
mojo.zip")

Absolute local path can also be used. To create a MOJO model from a locally
available MOJO, call:

e Scala

1 |import ai.h2o.sparkling.ml.models._

38 | Productionizing MOJOs from H20-3

2 |val model = H20MOJOModel.createFromMojo ("/Users/
peter/prostate_mojo.zip")

e Python

1 | from pysparkling.ml import
2 |model = H20MOJOModel.createFromMojo ("/Users/peter/
prostate_mojo.zip")

e R

1 |library (rsparkling)

2 |sc <= spark_connect (master = "local")

3 |model <— H20MOJOModel.createFromMojo ("/Users/peter
/prostate_mojo.zip")

Absolute paths on Hadoop can also be used. To create a MOJO model from a
MOJO stored on HDFS, call:

e Scala

1 |import ai.h2o.sparkling.ml.models._
2 |val model = H20MOJOModel.createFromMojo ("/user/
peter/prostate_mojo.zip")

e Python

1 | from pysparkling.ml import =
2 |model = H20MOJOModel.createFromMojo ("/user/peter/
prostate_mojo.zip")

e R

1 |library (rsparkling)

2 |sc <= spark_connect (master = "local")

3 |model <- H20MOJOModel.createFromMojo ("/user/peter/
prostate_mojo.zip")

The call loads the mojo file from the following location
hdfs://server:port/user/peter/prostate.mojo.zip, where server
and port are automatically filled in by Spark.

We can also manually specify the type of data source we need to use, in that
case, we need to provide the schema:

Productionizing MOJOs from H20-3 | 39

AW N =

Scala

import ai.h2o.sparkling.ml.models._

// HDFS

val modelHDFS = H20MOJOModel.createFromMojo ("hdfs
:///user/peter/prostate_mojo.zip")

// Local file

val modellLocal = H20MOJOModel.createFromMojo ("file
:///Users/peter/prostate_mojo.zip")

Python

from pysparkling.ml import =

HDFS

modelHDFS = H20MOJOModel.createFromMojo ("hdfs:///
user/peter/prostate_mojo.zip")

Local file

modelLocal = H20MOJOModel.createFromMojo ("file:///
Users/peter/prostate_mojo.zip")

R

library (rsparkling)

sc <— spark_connect (master = "local")

HDFS

modelHDFS <= H20MOJOModel.createFromMojo ("hdfs:///
user/peter/prostate_mojo.zip")

Local file

modellLocal <— H20MOJOModel.createFromMojo ("file
:///Users/peter/prostate_mojo.zip")

The loaded model is an immutable instance, so it's not possible to change the
configuration of the model during its existence. On the other hand, the model
can be configured during its creation via H20MOJOSettings:

Scala

import ai.h2o.sparkling.ml.models._

val settings = H20MOJOSettings (
convertUnknownCategoricalLevelsToNa = true,
convertInvalidNumbersToNa = true)

val model = H20MOJOModel.createFromMojo ("
prostate_mojo.zip", settings)

40 | Productionizing MOJOs from H20-3

e Python

1 | from pysparkling.ml import =«

2 |settings = H20MOJOSettings (
convertUnknownCategoricallLevelsToNa = True,
convertInvalidNumbersToNa = True)

3 |model = H20MOJOModel.createFromMojo ("prostate_mojo

.zip", settings)

e R

1 |library (rsparkling)

2 |sc <= spark_connect (master = "local")

3 |settings <— H20MOJOSettings (
convertUnknownCategoricalLevelsToNa = TRUE,

convertInvalidNumbersToNa = TRUE)
4 |model <— H20MOJOModel.createFromMojo ("prostate_
mojo.zip", settings)

To score the dataset using the loaded mojo, call:

e Scala

1 |model.transform(dataset)

e Python

1 |model.transform(dataset)

e R

1 |model$transform(dataset)

In Scala, the createFromMo jo method returns a mojo model instance casted
as a base class H20MOJOModel. This class holds only properties that are

shared accross all MOJO model types from the following type hierarchy:
e H20MOJOModel
e H20UnsupervisedMOJOModel
e H20SupervisedMOJOModel

e H20TreeBasedSupervisedMOJOModel

Productionizing MOJOs from H20-3 | 41

If a Scala user wants to get a property specific for a given MOJO model type,
they must utilize casting or call the createFromMo jo method on the specific
MOJO model type.

import ai.h2o.sparkling.ml.models._

val specificModel = H20TreeBasedSupervisedMOJOModel.
createFromMojo ("prostate_mojo.zip")

println(s"Ntrees: ${specificModel.getNTrees()}")

R Tatrant e] v7 - CTRM NRE anA MRAANCt+
Relevant only to GBM, DRF and XGBoost

Exporting the loaded MOJO model using Sparkling
Water

To export the MOJO model, call model.write.save (path). In case of
Hadoop enabled system, the command by default uses HDFS.

Importing the previously exported MOJO model
from Sparkling Water

To import the Sparkling Water MOJO model, call
H20MOJOModel .read.load (path). In case of Hadoop enabled system,
the command by default uses HDFS.

Accessing additional prediction details

After computing predictions, the prediction column contains in case of
classification problem the predicted label and in case regression problem the
predicted number. If we need to access more details for each prediction, , see
the content of a detailed prediction column. By default, the column is named
named detailed prediction . It could contain, for example, predicted
probabilities for each predicted label in case of classification problem, shapley
values and other information.

Customizing the MOJO Settings

We can configure the output and format of predictions via the H20MOJOSettings.
The available options are:

e predictionCol - Specifies the name of the generated prediction col-
umn. Default value is prediction.

42 |

Productionizing MOJOs from H20-3

detailedPredictionCol - Specifies the name of the generated
detailed prediction column. The detailed prediction column, if enabled,
contains additional details, such as probabilities, shapley values etc. The
default value is detailed_prediction.

convertUnknownCategoricalLevelsToNa - Enables or disables
conversion of unseen categoricals to NAs. By default, it is disabled.

convertInvalidNumbersToNa - Enables or disables conversion of
invalid numbers to NAs. By default, it is disabled.

withContributions - Enables or disables computing Shapley values.
Shapley values are generated as a sub-column for the detailed prediction
column.

withLeafNodeAssignments - When enabled, a user can obtain the
leaf node assignments after the model training has finished. By default,
it is disabled.

withStageResults - When enabled, a user can obtain the stage
results for tree-based models. By default, it is disabled and also it's not
supported by XGBoost although it's a tree-based algorithm.

dataFrameSerializer - A full name of a serializer used for serial-
ization and deserialization of Spark DataFrames to a JSON value within
NullableDataFrameParam

Methods available on MOJO Model

Obtaining Domain Values

To obtain domain values of the trained model, we can run getDomainValues ()
on the model. This call returns a mapping from a column name to its domain
in a form of array.

Obtaining Model Category

The method getModelCategory can be used to get the model category
(such as binomial, multinomial etc).

Productionizing MOJOs from H20-3 | 43

Obtaining Feature Types

The method getFeatureTypes returns a map/dictionary from a feature
name to a corresponding feature type [enum (categorical), numeric, string,
etc.]. These pieces helps to understand how individual columns of the training
dataset were treated during the model training.

Obtaining Feature Importances

The method getFeatureImportances returns a data frame describing
importance of each feature. The importance is expressed by several numbers
(Relative Importance, Scaled Importance and Percentage).

Obtaining Scoring History

The method getScoringHistory returns a data frame describing how the
model evolved during the training process according to a certain training and
validation metrics.

Obtaining Training Params

The method getTrainingParams can be used to get map containing all
training parameters used in the H20. It is a map from parameter name to the
value. The parameters name use the H2O’s naming structure. An alternative
approach for Scala and Python APl is to use a getter method on the MOJO
model instance for a given training parameter. The getter methods utilize
Sparkling Water naming conventions (E.g. H20 name: max_depth, getter
method name: getMaxDepth).

Obtaining Metrics
There are several methods to obtain metrics from the MOJO model. All return
a map from metric name to its double value.

e getTrainingMetrics - obtain training metrics

e getValidationMetrics - obtain validation metrics

e getCrossValidationMetrics - obtain cross validation metrics

44 | Productionizing MOJOs from H20-3

We also have method getCurrentMetrics which gets one of the metrics
above based on the following algorithm:

If cross validation was used, ie, setNfolds was called and value was higher
than zero, this method returns cross validation metrics. If cross validation
was not used, but validation frame was used, the method returns validation
metrics. Validation frame is used if setSplitRatio was called with value
lower than one. If neither cross validation or validation frame was used, this
method returns the training metrics.

Obtaining Leaf Node Assignments

To obtain the leaf node assignments, please first make sure to set
withLeafNodeAssignments on your MOJO settings object. The leaf node
assignments are now stored in the $detailedPredictionCol.leafNodeAssignn
column on the dataset obtained from the prediction. Please replace
S$detailedPredictionCol with the actual value of your detailed prediction

col. By default, it is detailed prediction.

Obtaining Stage Probabilities

To obtain the stage results, please first make sure to set withStageResults

to true on your MOJO settings object. The stage results for regression and
anomaly detection problems are stored in the SdetailedPredictionCol.stageRe
on the dataset obtained from the prediction. The stage results for classifica-
tion(binomial, multinomial) problems are stored under
$detailedPredictionCol.stageProbabilities. Please replace
SdetailedPredictionCol with the actual value of your detailed prediction

col. By default, it is detailed_prediction.

The stage results are an array of values, where a value at the position *t* is the
prediction/probability combined from contributions of trees *T1, T2, ..., Tt*.
For *t* equal to a number of model trees, the value is the same as the final
prediction/probability. The stage results (probabilities) for the classification
problem are represented by a list of columns, where one column contains stage
probabilities for a given prediction class.

Productionizing MOJOs from Driverless Al | 45

Productionizing MOJOs from Driverless
Al

MOJO scoring pipeline artifacts, created in Driverless Al, can be used in Spark
to carry out predictions in parallel using the Sparkling Water API. This section
shows how to load and run predictions on the MOJO scoring pipeline in Sparkling
Water.

Note: Sparkling Water is backward compatible with MOJO versions produced
by different Driverless Al versions.

One advantage of scoring the MOJO artifacts is that H20Context does not
have to be created if we only want to run predictions on MOJOs using Spark.
This is because the scoring is independent of the H20 run-time. It is also
important to mention that the format of prediction on MOJOs from Driverless
Al differs from predictions on H20-3 MOJOs. The format of Driverless Al
prediction is explained bellow.

Requirements

In order to use the MOJO scoring pipeline, Driverless Al license has to be passed
to Spark. This can be achieved via ——jars argument of the Spark launcher
scripts.

Note: In Local Spark mode, please use ——driver-class—-path to specify
the path to the license file.

We also need Sparkling Water distribution which can be obtained from https:
//www.h20.ai/download/. After we downloaded the Sparkling Water
distribution, extract it, and go to the extracted directory.

Loading and Score the MOJO

First, start the environment for the desired language with Driverless Al license.
There are two variants. We can use Sparkling Water prepared scripts which put
required dependencies on the Spark classpath or we can use Spark directly and
add the dependencies manually.

In case of Scala, run:

./bin/spark-shell --jars license.sig, jars/sparkling-
water—-assembly_2.12-3.30.1.1-1-3.0-all.jar

https://www.h2o.ai/download/
https://www.h2o.ai/download/

A W N

46 | Productionizing MOJOs from Driverless Al

or

./bin/sparkling-shell --jars license.sig

In case of Python, run:

./bin/pyspark —-jars license.sig —--py-files py/
h2o_pysparkling_3.0-3.30.1.1-1-3.0.zip

or

./bin/pysparkling ——jars license.sig

In case of R, run in R console or RStudio:

library (sparklyr)
library (rsparkling)
config <- spark_config()

config$sparklyr.jars.default <— "license.sig"
spark_connect (master = "local", version = "3.0.0",
config = confiqg)

At this point, we should have Spark interactive terminal where we can carry
out predictions. For productionalizing the scoring process, we can use the
same configuration, except instead of using Spark shell, we would submit the
application using . /bin/spark-submit

Now Load the MOJO as:

e Scala

1 |import ai.h2o.sparkling.ml.models.
H20MOJOPipelineModel

2 |val settings = H20MOJOSettings (predictionCol = "
fruit_type",
convertUnknownCategoricallLevelsToNa = true)

3 |[val mojo = H20MOJOPipelineModel.createFromMojo ("
file:///path/to/the/pipeline_mojo.zip",
settings)

e Python

1 | from pysparkling.ml import H20MOJOPipelineModel

Productionizing MOJOs from Driverless Al | 47

settings = H20MOJOSettings (predictionCol = "
fruit_type",
convertUnknownCategoricallLevelsToNa = True)

mojo = H20MOJOPipelineModel.createFromMojo ("file
:///path/to/the/pipeline_mojo.zip", settings)

e R
library (rsparkling)
settings <— H20MOJOSettings (predictionCol = "fruit
_type", convertUnknownCategoricallLevelsToNa =
TRUE)

mojo <— H20MOJOPipelineModel.createFromMojo ("file
:///path/to/the/pipeline_mojo.zip", settings)

In the examples above settings is an optional argument. If it's not specified,
the default values are used.

Prepare the dataset to score on:

e Scala

val dataFrame = spark.read.option("header", "true"
) .option ("inferSchema", "true").csv("file:///
path/to/the/data.csv")

e Python
dataFrame = spark.read.option("header", "true").
option ("inferSchema", "true").csv("file:///

path/to/the/data.csv")

e R

dataFrame <— spark_read_csv(sc, name = "table_ name
", path = "file:///path/to/the/data.csv",
header = TRUE)

And finally, score the mojo on the loaded dataset:

e Scala

val predictions = mojo.transform(dataFrame)

48 | Productionizing MOJOs from Driverless Al

e Python

1 |predictions = mojo.transform(dataFrame)

e R

1 |predictions <— mojo$$transform(dataFrame)

We can select the predictions as:

e Scala

1 |predictions.select ("prediction")

Python

1 |predictions.select ("prediction")

e R

1 |predictions <- select (dataFrame, "prediction")

The output data frame contains all the original columns plus the prediction col-
umn which is by default named prediction. The prediction column contains
all the prediction detail. Its name can be modified via the H20MOJOSettings
object.

Predictions Format

The predictionCol contains sub-columns with names corresponding to the
columns Driverless Al identified as output columns. For example, if Driverless
API MOJO pipeline contains one output column AGE (for example regression
problem), the prediction column contains another sub-column named AGE. If
The MOJO pipeline contains multiple output columns, such as VALID.O0 and
VALID.1 (for example classification problems), the prediction column contains
two sub-columns with the aforementioned names.

If this option is disabled, the predictionCol contains the array of predictions
without the column names. For example, if Driverless APl MOJO pipeline
contains one output column AGE (for example regression problem), the predic-
tion column contains array of size 1 with the predicted value. If The MOJO
pipeline contains multiple output columns, such as VALID.0 and VALID.1
(for example classification problems), the prediction column contains array of
size 2 containing predicted probabilities for each class.

Productionizing MOJOs from Driverless Al | 49

By default, this option is enabled.

Customizing the MOJO Settings

We can configure the output and format of predictions via the H2OMOJOSettings.
The available options are

e predictionCol - Specifies the name of the generated prediction col-
umn. The default value is prediction.

e convertUnknownCategoricalLevelsToNa - Enables or disables
conversion of unseen categoricals to NAs. By default, it is disabled.

e convertInvalidNumbersToNa - Enables or disables conversion of
invalid numbers to NAs. By default, it is disabled.

Troubleshooting

If you see the following exception during loading the MOJO pipeline:
java.io.lOException: MOJO doesn't contain resource mojo/pipeline.pb,
then it means you are adding incompatible mojo-runtime.jar on your classpath.
It is not required and also not suggested to put the JAR on the classpath as
Sparkling Water already bundles the correct dependencies.

S 0B~ W

50 | Deployment

Deployment

Since Sparkling Water is designed as a regular Spark application, its deployment
cycle is strictly driven by Spark deployment strategies (refer to Spark documen-
tation®). Deployment on top of Kubernetes is described in the next section.
Spark applications are deployed by the spark-submit # script that handles
all deployment scenarios:

./bin/spark-submit \
-—class <main-class> \
-—-master <master-url> \
——conf <key>=<value> \
other options \
<application—-jar> [application—-arguments]

e ——class: Name of main class with main method to be executed.
For example, the ai.h20.sparkling.SparklingWaterDriver
application launches H20 services.

e ——master: Location of Spark cluster
e ——conf: Specifies any configuration property using the format key=value

e application-jar: Jar file with all classes and dependencies required
for application execution

e application-arguments: Arguments passed to the main method
of the class via the ——class option

Referencing Sparkling Water

Using Assembly Jar
The Sparkling Water archive provided at http://h20.ai/download con-
tains an assembly jar with all classes required for Sparkling Water run.

An application submission with Sparkling Water assembly jar is using the
——jars option which references included jar

3Spark deployment guide http://spark.apache.org/docs/latest/cluster—
overview.html

4Submitting Spark applications http://spark.apache .org/docs/ latest /
submitting—applications.html

http://h2o.ai/download
http://spark.apache.org/docs/latest/cluster-overview.html
http://spark.apache.org/docs/latest/cluster-overview.html
http://spark.apache.org/docs/latest/submitting-applications.html
http://spark.apache.org/docs/latest/submitting-applications.html

Deployment | 51

SSPARK_HOME/bin/spark—submit \
--jars /sparkling-water-distribution/Jjars/sparkling-
water—-assembly_2.12-3.30.1.1-1-3.0-all.jar \
——class ai.h2o.sparkling.SparklingWaterDriver

Using PySparkling Zip

An application submission for PySparkling is using the ——py-files option
which references the PySparkling zip package

$SSPARK_HOME/bin/spark—submit \
——py-files /sparkling-water-distribution/py/
h2o_pysparkling_3.0-3.30.1.1-1-3.0.zip \
app.py

Using the Spark Package

Sparkling Water is also published as a Spark package. The benefit of using the
package is that you can use it directly from your Spark distribution without
need to download Sparkling Water.

SSPARK_HOME/bin/spark—submit \
—-—-packages ai.h2o:sparkling-water-package_2
.12:3.30.0.7-1-3.0 \
——class ai.h2o.sparkling.SparklingWaterDriver

The Spark option ——packages points to coordinate of published Sparkling
Water package in Maven repository.

The similar command works for spark-shell:

SSPARK_HOME/bin/spark-shell \
—--packages ai.h2o:sparkling-water-package_2
.12:3.30.0.7-1-3.0

Note: When you are using Spark packages, you do not need to download
Sparkling Water distribution. Spark installation is sufficient.

o~ W N

52 | Deployment

Target Deployment Environments
Sparkling Water supports deployments to the following Spark cluster types:
e Local cluster

e Standalone cluster

e YARN cluster

Local cluster

The local cluster is identified by the following master URLs - 1ocal, local [K],
or local[*]. In this case, the cluster is composed of a single JVM and is
created during application submission.

For example, the following command will run the ChicagoCrimeApp application
inside a single JVM with a heap size of bg:

$SPARK_HOME/bin/spark-submit \
—-—conf spark.executor.memory=5g \
——-conf spark.driver.memory=5g \
——master locall[x] \
——packages ai.h2o:sparkling-water-package_2
.12:3.30.0.7-1-3.0 \
——class ai.h2o.sparkling.SparklingWaterDriver

On a Standalone Cluster

For AWS deployments or local private clusters, the standalone cluster deploy-
ment® is typical. Additionally, a Spark standalone cluster is also provided by
Hadoop distributions like CDH or HDP. The cluster is identified by the URL
spark://IP:PORT.

The following command deploys the SparklingWaterDriver on a stan-
dalone cluster where the master node is exposed on IP machine-foo.bar.com
and port 7077:

SSPARK_HOME/bin/spark—submit \
——conf spark.executor.memory=5g \
——-conf spark.driver.memory=5g \

5Refer to Spark documentation http://spark.apache.org/docs/latest/spark-
standalone.html

http://spark.apache.org/docs/latest/spark-standalone.html
http://spark.apache.org/docs/latest/spark-standalone.html

~N O A W N =

Deployment | 53

—--master spark://machine-foo.bar.com:7077 \

—--packages ai.h2o:sparkling-water-package_2
.12:3.30.0.7-1-3.0 \

——class ai.h2o.sparkling.SparklingWaterDriver

In this case, the standalone Spark cluster must be configured to provide the
requested 5g of memory per executor node.

On a YARN Cluster

Because it provides effective resource management and control, most production
environments use YARN for cluster deployment.® In this case, the environment
must contain the shell variable HADOOP_CONF _DIR or YARN_CONF_DIR which
points to Hadoop configuration directory (e.g., /etc/hadoop/conf).

S$SSPARK_HOME/bin/spark—-submit \
——conf spark.executor.memory=5g \
——conf spark.driver.memory=5g \
—--num-executors 5 \
--master yarn \
——-deploy-mode client
——packages ai.h2o:sparkling-water-package_2
.12:3.30.0.7-1-3.0 \
——-class ai.h2o.sparkling.SparklingWaterDriver

The command in the example above creates a YARN job and requests for 5
nodes, each with 5G of memory. Master is set to yarn, and together with the
deploy mode client option forces the driver to run in the client process.

DataBricks Cloud

This section describes how to use Sparkling Water and PySparkling with
DataBricks. The first part describes how to create a cluster for Sparkling
Water/PySparkling and then discusses how to use Sparkling Water and PyS-
parkling in Databricks.

DataBricks cloud is Integrated with Sparkling Water and Pysparkling. Only
internal Sparkling Water backend may be used.

6See Spark documentation http://spark.apache.org/docs/latest/running-
on-yarn.html

http://spark.apache.org/docs/latest/running-on-yarn.html
http://spark.apache.org/docs/latest/running-on-yarn.html

54 |

Deployment

Creating a Cluster

Requirements:

e Databricks Account

e AWS Account

Steps:

1.
2.

In Databricks, click Create Cluster in the Clusters dashboard.
Select your Databricks Runtime Version.

Select 0 on-demand workers. On demand workers are currently not
supported with Sparkling Water.

. In the SSH tab, upload your public key. You can create a public key by

running the below command in a terminal session:

ssh-keygen -t rsa -b 4096 -C "your_email@example.

com"

Click Create Cluster

Once the cluster has started, run the following command in a terminal
session:

ssh ubuntul<ec-2 driver host>.compute.amazonaws.
com —-p 2200 —-i <path to your public/private
key> -L 54321:1ocalhost:54321

This will allow you to use the Flow Ul.

(You can find the ‘ec-2 driver host' information in the SSH tab of the
cluster.)

Running Sparkling Water

Requirements:

e Sparkling Water Jar

Steps:

1.

Create a new library containing the Sparkling Water jar.

Deployment | 55

o o &

Download the selected Sparkling Water version from https://www.
h20.ai/download/.

The jar file is located in the sparkling water zip file at the following
location: ‘jars/sparkling-water-assembly_*-all jar'

Attach the Sparkling Water library to the cluster.
Create a new Scala notebook.

Create an H20 cluster inside the Spark cluster:

import ai.h2o.sparkling._
val conf = new H20Conf (spark)
val h2oContext = H20Context.getOrCreate (conf)

You can access Flow by going to localhost:54321.

Running PySparkling

Requirements:

e PySparkling zip file

e Python Module: request

e Python Module: tabulate

Steps:

1.
2.

N o A

N =

Create a new Python library containing the PySparkling zip file.

Download the selected Sparkling Water version from https://www.
h2o0.ai/download/.

The PySparkling zip file is located in the sparkling water zip file at the
following location: ‘py/h2o_pysparkling_*.zip."

Create libraries for the following python modules: request, tabulate.
Attach the PySparkling library and python modules to the cluster.
Create a new python notebook.

Create an H20 cluster inside the Spark cluster:

from pysparkling import =«
conf = H20Conf (spark)
hc = H20Context.getOrCreate (conf)

https://www.h2o.ai/download/
https://www.h2o.ai/download/
https://www.h2o.ai/download/
https://www.h2o.ai/download/

56 |

Deployment

Running RSparkling

Steps:

1.

© 0 N O

Create a new R notebook

. Create an H20 cluster inside the Spark cluster:

install.packages ("sparklyr")
Install H20

install.packages ("h20", type = "source", repos = "
http://h2o-release.s3.amazonaws.com/h20/rel-
zahradnik/7/R")

Install RSparkling

install.packages ("rsparkling", type = "source",
repos = "http://h2o-release.s3.amazonaws.com/

sparkling-water/spark-2.4/3.30.0.7-1-2.4/R")
Connect to Spark
sc <— spark_connect (method = "databricks")
Create H20Context
hc <— H20Context.getOrCreate ()

Running Sparkling Water in Kubernetes | 57

Running Sparkling Water in Kubernetes

Sparkling Water can be executed inside the Kubernetes cluster. Sparkling Water
supports Kubernetes since Spark version 2.4.

Before we start, please check the following:

1. Please make sure we are familiar with how to run Spark on Kubernetes at
https://spark.apache.org/docs/SUBST_SPARK_VERSION/
running-on-kubernetes.html.

2. Ensure that we have a working Kubernetes Cluster and kubect1 installed.

3. Ensure we have SPARK_HOME set up to a home directory of our Spark
distribution, for example of version 3.0.0.

4. Run kubectl cluster-info to obtain Kubernetes master URL.

5. Have internet connection so Kubernetes can download Sparkling Water
docker images.

6. If we have some non-default network policies applied to the namespace
where Sparkling Water is supposed to run, make sure that the following
ports are exposed: all Spark ports and ports 54321 and 54322 as these
are also necessary by H20 to be able to communicate.

The examples below are using the default Kubernetes namespace which we
enable for Spark as:

kubectl create clusterrolebinding default --
clusterrole=edit —--serviceaccount=default:default
—-—namespace=default

We can also use different namespace setup for Spark. In that case please don't
forget to pass the following option to your Spark start command:
spark.kubernetes.authenticate.driver.serviceAccountName
with a value equal to the serviceName.

Internal Backend

In the internal backend of Sparkling Water, we need to pass the option
spark.scheduler.minRegisteredResourcesRatio=1 to our Spark
job invocation. This ensures that Spark waits for all resources and therefore
Sparkling Water will start H20 on all requested executors.

Dynamic allocation must be disabled in Spark.

https://spark.apache.org/docs/SUBST_SPARK_VERSION/running-on-kubernetes.html
https://spark.apache.org/docs/SUBST_SPARK_VERSION/running-on-kubernetes.html

o B~ W N

(o)}

10

58 | Running Sparkling Water in Kubernetes

Scala

Both cluster and client deployment modes of Kubernetes are supported.

To submit Scala job in a cluster mode, run:

SSPARK_HOME/bin/spark—submit \

—--master "k8s://KUBERNETES_ENDPOINT" \

——deploy-mode cluster \

——conf spark.scheduler.minRegisteredResourcesRatio=1 \

——conf spark.kubernetes.container.image=h2o0ai/
sparkling-water—-scala:SUBST_SW_VERSION \

——conf spark.executor.instances=3 \

—-—conf spark.driver.host=sparkling-water—app \

——-conf spark.kubernetes.driver.pod.name=sparkling-
water—app \

——class ai.h2o.sparkling.KubernetesTest \

local:///opt/sparkling-water/tests/kubernetesTest. jar

To start an interactive shell in a client mode:

1. Create Headless service so Spark executors can reach the driver node

1 |cat <<EOF | kubectl apply -f -

2 |apiVersion: vl

3 |kind: Service

4 |metadata:

5 |name: sparkling-water-app

6 | spec:

7 |clusterIP: "None"

8 |selector:

9 |spark-driver-selector: sparkling-water-app
10 | EOF

2. Start pod from where we run the shell:

1 [kubectl run -n default -i --tty sparkling-water-
app —-restart=Never --labels spark-driver-
selector=sparkling-water—app —--image=h2ocai/
sparkling-water—scala:SUBST_SW_VERSION -—- /bin
/bash

3. Inside the container, start the shell:

S B WN

~

10
11

Running Sparkling Water in Kubernetes | 59

1 | $SPARK_HOME/bin/spark-shell \

2 —--master "k8s://KUBERNETES_ENDPOINT" \

3 | ——deploy-mode client \

4 ——conf spark.scheduler.
minRegisteredResourcesRatio=1 \

5 ——conf spark.kubernetes.container.image=h2ocai/
sparkling-water—-scala:SUBST_SW_VERSION \

6 —-—conf spark.executor.instances=3 \

7 -—-conf spark.driver.host=sparkling-water—-app \

8 —-—conf spark.kubernetes.driver.pod.name=sparkling
-water—app

4. Inside the shell, run:

1 |import ai.h2o.sparkling._
2 |[val hc = H20Context.getOrCreate ()

5. To access flow, we need to enable port-forwarding from the driver pod:

1 |kubectl port-forward sparkling-water—-app
54321:54321

To submit a batch job using client mode:

First, create the headless service as mentioned in the step 1 above and run:

kubectl run -n default -i --tty sparkling-water—-app —-—

restart=Never --labels spark-driver-selector=
sparkling-water—app —-—-image=h2oai/sparkling-water-
scala:SUBST_SW_VERSION —-- \

$SPARK_HOME/bin/spark-submit \

--master "k8s://KUBERNETES_ENDPOINT" \

——deploy-mode client \

——conf spark.scheduler.minRegisteredResourcesRatio=1 \

—--conf spark.kubernetes.container.image=h2o0ai/
sparkling-water—-scala:SUBST_SW_VERSION \

—--conf spark.executor.instances=3 \

—-—-conf spark.driver.host=sparkling-water-app \

—-—conf spark.kubernetes.driver.pod.name=sparkling-—
water—app \

—--class ai.h2o.sparkling.KubernetesTest \

local:///opt/sparkling-water/tests/kubernetesTest. jar

o~ W N

60 | Running Sparkling Water in Kubernetes

Python

Both cluster and client deployment modes of Kubernetes are supported.

To submit Python job in a cluster mode, run:

SSPARK_HOME/bin/spark—submit \

—--master "k8s://KUBERNETES_ENDPOINT" \

——deploy-mode cluster \

—--conf spark.scheduler.minRegisteredResourcesRatio=1 \

—-—conf spark.kubernetes.container.image=h2o0ai/
sparkling-water-python:SUBST_SW_VERSION \

—-—-conf spark.executor.instances=3 \

—-—conf spark.driver.host=sparkling-water—app \

——conf spark.kubernetes.driver.pod.name=sparkling-—
water—app \

local:///opt/sparkling-water/tests/initTest.py

To start an interactive shell in a client mode:

1. Create Headless service so Spark executors can reach the driver node:

1 |cat <<EOF | kubectl apply -f -

2 |apiVersion: vl

3 |kind: Service

4 |metadata:

5 |name: sparkling-water—-app

6 |spec:

7 |clusterIP: "None"

8 |selector:

9 |spark-driver-selector: sparkling-water-app
10 | EOF

2. Start pod from where we run the shell:

1 |kubectl run -n default -i --tty sparkling-water-
app —-restart=Never --labels spark-driver-
selector=sparkling-water—app —--image=h2o0ai/
sparkling-water-python:SUBST_SW_VERSION -- /
bin/bash

3. Inside the container, start the shell:

1 | $SPARK_HOME/bin/pyspark \

S B WN

~

10

Running Sparkling Water in Kubernetes | 61

2 |-——master "k8s://KUBERNETES_ENDPOINT" \

3 |-—deploy-mode client \

4 |——conf spark.scheduler.minRegisteredResourcesRatio
=1 \

5 | -—conf spark.kubernetes.container.image=h2o0ai/
sparkling-water—-python:SUBST_SW_VERSION \

6 |——conf spark.executor.instances=3 \

7 | ——conf spark.driver.host=sparkling-water—-app \

8 |——conf spark.kubernetes.driver.pod.name=sparkling-
water—-app

4. Inside the shell, run:

1 |from pysparkling import =
2 |hc = H20Context.getOrCreate ()

5. To access flow, we need to enable port-forwarding from the driver pod as:

1 |kubectl port-forward sparkling-water-app
54321:54321

To submit a batch job using client mode:

First, create the headless service as mentioned in the step 1 above and run:

kubectl run -n default -1 --tty sparkling-water-app —-—
restart=Never --labels spark-driver-selector=
sparkling-water—app —-—-image=h2oai/sparkling-water-
python:SUBST_SW_VERSION -- \

SSPARK_HOME/bin/spark—-submit \

--master "k8s://KUBERNETES_ENDPOINT" \

——deploy-mode client \

——conf spark.scheduler.minRegisteredResourcesRatio=1 \

——conf spark.kubernetes.container.image=h2o0ai/
sparkling-water-python:SUBST_SW_VERSION \

—-conf spark.executor.instances=3 \

—-—conf spark.driver.host=sparkling-water—app \

—-—conf spark.kubernetes.driver.pod.name=sparkling-—
water—app \

local:///opt/sparkling-water/tests/initTest.py

10
11

12
13

62 | Running Sparkling Water in Kubernetes

R

First, make sure that RSparkling is installed on the node we want to run
RSparkling from. You can install RSparkling as:

Download, install, and initialize the H20 package
for R.
In this case we are using rel-SUBST_H20_ RELEASE_NAME
SUBST _H20 BUILD NUMBER (SUBST_H20 VERSION)
install.packages ("h20", type = "source", repos = "http
://h2o-release.s3.amazonaws.com/h20/rel-SUBST_H20__
RELEASE_NAME/SUBST_H20_BUILD_NUMBER/R")

Download, install, and initialize the RSparkling

install.packages ("rsparkling”, type = "source", repos
= "http://h2o-release.s3.amazonaws.com/sparkling—
water/spark-SUBST_SPARK_MAJOR_VERSION/SUBST_SW_
VERSION/R")

To start 20Context in an interactive shell, run the following code in R or
RStudio:

library (sparklyr)
library (rsparkling)
config <- spark_config_kubernetes ("k8s://KUBERNETES_

ENDPOINT",

image = "h2oai/sparkling-water-r:SUBST_SW_VERSION"
14

account = "default",

executors = 3,

conf = list ("spark.kubernetes.file.upload.path"="
file:///tmp"),
version = "SUBST_SPARK_VERSION",
ports = c (8880, 8881, 4040, 54321))
config["spark.home"] <— Sys.getenv ("SPARK_HOME")
sc <— spark_connect (config = config, spark_home = Sys.
getenv ("SPARK_HOME"))
hc <— H20Context.getOrCreate ()
spark_disconnect (sc)

You can also submit RSparkling batch job. In that case, create a file called
batch.R with the content from the code box above and run:

o B~ W N

(o)}

Running Sparkling Water in Kubernetes | 63

Rscript —--default-packages=methods,utils batch.R

Note: In the case of RSparkling, SparklyR automatically sets the Spark deploy-
ment mode and it is not possible to specify it.

Manual Mode of External Backend

Sparkling Water External backend can be also used in Kubernetes. First, we need
to start an external H20 backend on Kubernetes. To achieve this, please follow
the steps on the H20 on Kubernetes Documentation available at https://
h2o-release.s3.amazonaws.com/h20/rel-zahradnik/7/docs~-
website/h2o0-docs/welcome.html#kubernetes—integration/>

with one important exception. The image to be used needs to be h2oai/sparkling-

water-external-backend:3.30.0.7-1-3.0 for Sparkling Water 3.30.0.7-1 and
not the base H20 image as mentioned in H20 documentation as Sparkling
Water enhances the H20 image with additional dependencies.

In order for Sparkling Water to be able to connect to the H20 cluster, we need
to get the address of the leader node of the H2O cluster. If we followed the
H20 documentation on how to start H20 cluster on Kubernetes, the address is
h2o-service.default.svc.cluster.local:54321 where the first
part is the H20 headless service name and the second part is the name of the
namespace.

After we created the external H20 backend, we can connect to it from Sparkling
Water clients as:

Scala

Both cluster and client deployment modes of Kubernetes are supported.

To submit Scala job in a cluster mode, run:

SSPARK_HOME/bin/spark—submit \

—--master "k8s://KUBERNETES_ENDPOINT" \

——deploy-mode cluster \

—--conf spark.scheduler.minRegisteredResourcesRatio=1 \

—-—conf spark.kubernetes.container.image=h2o0ai/
sparkling-water—-scala:SUBST_SW_VERSION \

—--conf spark.executor.instances=2 \

—-—conf spark.driver.host=sparkling-water—app \

https://h2o-release.s3.amazonaws.com/h2o/rel-zahradnik/7/docs-website/h2o-docs/welcome.html#kubernetes-integration/>
https://h2o-release.s3.amazonaws.com/h2o/rel-zahradnik/7/docs-website/h2o-docs/welcome.html#kubernetes-integration/>
https://h2o-release.s3.amazonaws.com/h2o/rel-zahradnik/7/docs-website/h2o-docs/welcome.html#kubernetes-integration/>

10
11
12

13
14
15

64 |

Running Sparkling Water in Kubernetes

—-—conf spark.kubernetes.driver.pod.name=sparkling-—

water—app \

—-—conf spark.ext.h2o.backend.cluster.mode=external \
—--conf spark.ext.h2o.external.start.mode=manual \
—-—-conf spark.ext.h2o.external.memory=2G \

—-—conf spark.ext.h2o.cloud.representative=h2o-service.

default.svc.cluster.local:54321 \

—-—conf spark.ext.h2o.cloud.name=root \
—--class ai.h2o.sparkling.KubernetesTest \
local:///opt/sparkling-water/tests/kubernetesTest. jar

To start an interactive shell in a client mode:

1.

© 0 N o o b~ W N =

sy
o

S~ W =

Create Headless service so Spark executors can reach the driver node:

cat <<EOF | kubectl apply -f -
apiVersion: vl
kind: Service

metadata:

name: sparkling-water-app
spec:

clusterIP: "None"
selector:

spark-driver-selector: sparkling-water-app
EOF

Start pod from where we run the shell:

kubectl run -n default -i —--tty sparkling-water-
app ——restart=Never --labels spark-driver-
selector=sparkling-water—app —--image=h2o0ai/
sparkling-water—-scala:SUBST_SW_VERSION -- /bin
/bash

Inside the container, start the shell:

S$SPARK_HOME /bin/spark-shell \

--master "k8s://KUBERNETES_ENDPOINT" \

-—-deploy-mode client \

—-—conf spark.scheduler.minRegisteredResourcesRatio
=1\

—--conf spark.kubernetes.container.image=h2o0ai/
sparkling-water—-scala:SUBST_SW_VERSION \

S B W N

~

10
11
12

Running Sparkling Water in Kubernetes | 65

6 |——conf spark.executor.instances=2 \

7 | ——conf spark.driver.host=sparkling-water—-app \

8 |——conf spark.kubernetes.driver.pod.name=sparkling-
water—-app \

9 |——conf spark.ext.hZ2o.backend.cluster.mode=external

\

10 |-—conf spark.ext.h2o.external.start.mode=manual \

11 |-—-conf spark.ext.h2o.external.memory=2G \

12 |——conf spark.ext.h2o.cloud.representative=h2o-
service.default.svc.cluster.local:54321 \

13 |——conf spark.ext.h2o.cloud.name=root

4. Inside the shell, run:

1 |import ai.h2o.sparkling._

2 |[val hc = H20Context.getOrCreate ()

5. To access flow, we need to enable port-forwarding from the driver pod:

1 |kubectl port-forward sparkling-water-—-app
54321:54321

To submit a batch job using client mode:

First, create the headless service as mentioned in the step 1 above and run:

kubectl run -n default -i --tty sparkling-water—-app —-—

restart=Never —--labels spark-driver-selector=
sparkling-water—app —-—-image=h2oai/sparkling-water-
scala:SUBST_SW_VERSION —-— \

SSPARK_HOME/bin/spark—-submit \

—--master "k8s://KUBERNETES_ENDPOINT" \

——deploy-mode client \

——conf spark.scheduler.minRegisteredResourcesRatio=1 \

——conf spark.kubernetes.container.image=h2o0ai/
sparkling-water—-scala:SUBST_SW_VERSION \

——-conf spark.executor.instances=2 \

—-—conf spark.driver.host=sparkling-water-app \

—-—-conf spark.kubernetes.driver.pod.name=sparkling-
water—app \

——conf spark.ext.h2o.backend.cluster.mode=external \

—-—conf spark.ext.h2o.external.start.mode=manual \

—-—conf spark.ext.h2o.external.memory=2G \

13

14
15
16

o B~ W

(o)}

10
11
12

13
14

66 |

Running Sparkling Water in Kubernetes

—-—conf spark.ext.h2o.cloud.representative=h2o-service.

default.svc.cluster.local:54321 \

—-—conf spark.ext.h2o.cloud.name=root \
--class ai.h2o.sparkling.KubernetesTest \
local:///opt/sparkling-water/tests/kubernetesTest. jar

Python

Both cluster and client deployment modes of Kubernetes are supported.

To submit Python job in a cluster mode, run:

SSPARK_HOME /bin/spark-submit \

--master "k8s://KUBERNETES_ENDPOINT" \

——deploy-mode cluster \

——conf spark.scheduler.minRegisteredResourcesRatio=1 \

—--conf spark.kubernetes.container.image=h2o0ai/

sparkling-water-python:SUBST_SW_VERSION \

—-conf spark.executor.instances=2 \
—-—conf spark.driver.host=sparkling-water—app \
—-—conf spark.kubernetes.driver.pod.name=sparkling-—

water—app \

——conf spark.ext.h2o.backend.cluster.mode=external \
—-—conf spark.ext.h2o.external.start.mode=manual \
—-—conf spark.ext.h2o.external.memory=2G \

——conf spark.ext.hZ2o.cloud.representative=h2o0-service.

default.svc.cluster.local:54321 \

——conf spark.ext.h2o.cloud.name=root \
local:///opt/sparkling-water/tests/initTest.py

To start an interactive shell in a client mode:

1.

0 N O o b~ W N =

Create Headless service so Spark executors can reach the driver node:

cat <<EOF | kubectl apply -f -
apiVersion: vl

kind: Service

metadata:

name: sparkling-water—-app
spec:

clusterIP: "None"

selector:

Running Sparkling Water in Kubernetes | 67

10

A W N =

10
11
12

13

spark-driver-selector: sparkling-water—-app
EOF

. Start pod from where we run the shell:

kubectl run -n default -i —--tty sparkling-water-
app —-restart=Never --labels spark-driver-
selector=sparkling-water—app —--image=h2o0ai/
sparkling-water-python:SUBST_SW_VERSION -- /
bin/bash

Inside the container, start the shell:

SSPARK_HOME/bin/pyspark \

—--master "k8s://KUBERNETES_ENDPOINT" \

——deploy-mode client \

——-conf spark.scheduler.minRegisteredResourcesRatio
=1 \

——conf spark.kubernetes.container.image=h2ocai/
sparkling-water—-python:SUBST_SW_VERSION \

——conf spark.executor.instances=2 \

—-—conf spark.driver.host=sparkling-water—app \

——conf spark.kubernetes.driver.pod.name=sparkling—
water—app \

—-—conf spark.ext.h2o.backend.cluster.mode=external

\

—-—conf spark.ext.h2o.external.start.mode=manual \

-—conf spark.ext.h2o.external.memory=2G \

——conf spark.ext.h2o.cloud.representative=h2o-
service.default.svc.cluster.local:54321 \

—-—conf spark.ext.h2o.cloud.name=root

. Inside the shell, run:

from pysparkling import =
hc = H20Context.getOrCreate ()

. To access flow, we need to enable port-forwarding from the driver pod as:

kubectl port-forward sparkling-water—app
54321:54321

S 0B wWwN

10
11
12
13

14
15

68 | Running Sparkling Water in Kubernetes

To submit a batch job using client mode:

First, create the headless service as mentioned in the step 1 above and run:

kubectl run -n default -i —--tty sparkling-water-app —--
restart=Never --labels spark-driver-selector=
sparkling-water—app —--image=h2ocai/sparkling-water—
python:SUBST_SW_VERSION —- \

S$SSPARK_HOME/bin/spark—-submit \

——master "k8s://KUBERNETES_ENDPOINT" \

——deploy-mode client \

——conf spark.scheduler.minRegisteredResourcesRatio=1 \

—-—conf spark.kubernetes.container.image=h2ocai/
sparkling-water-python:SUBST_SW_VERSION \

—-—conf spark.executor.instances=2 \

——conf spark.driver.host=sparkling-water—-app \

——conf spark.kubernetes.driver.pod.name=sparkling-—
water—-app \

--conf spark.ext.h2o.backend.cluster.mode=external \

—-—conf spark.ext.h2o.external.start.mode=manual \

——conf spark.ext.h2o0.external.memory=2G \

——-conf spark.ext.h2o.cloud.representative=h2o0-service.
default.svc.cluster.local:54321 \

—--conf spark.ext.h2o.cloud.name=root \

local:///opt/sparkling-water/tests/initTest.py

R

First, make sure that RSparkling is installed on the node we want to run
RSparkling from. You can install RSparkling as:

Download, install, and initialize the H20 package
for R.
In this case we are using rel-SUBST_H20_ RELEASE_NAME
SUBST _H20_ BUILD NUMBER (SUBST_H20 VERSION)
install.packages ("h20", type = "source", repos = "http
://h2o-release.s3.amazonaws.com/h20/rel-SUBST_H20_
RELEASE_NAME/SUBST_H20_BUILD_NUMBER/R")

Download, install, and initialize the RSparkling
install.packages ("rsparkling”, type = "source", repos
= "http://h2o0-release.s3.amazonaws.com/sparkling—

© 0 N o O

10
11
12

13
14

15
16
17

18
19

Running Sparkling Water in Kubernetes | 69

water/spark—SUBST_SPARK_MAJOR_VERSION/SUBST_SW_
VERSION/R")

To start H20Context in an interactive shell, run the following code in R or
RStudio:

library (sparklyr)
library (rsparkling)
config <— spark_config kubernetes ("k8s://KUBERNETES_
ENDPOINT",
image = "h2oai/sparkling-water-r:SUBST_SW_VERSION"
14
account = "default",
executors = 2,
version = "SUBST_SPARK_VERSION",
conf = list(

"spark.ext.h2o.backend.cluster.mode"="external

n
14

"spark.ext.h2o.external.start.mode"="manual",

"spark.ext.h2o.external .memory"="2G",

"spark.ext.h2o.cloud.representative"="h20-
service.default.svc.cluster.local:54321",

"spark.ext.h2o0.cloud.name"="root",

"spark.kubernetes.file.upload.path"="file:///
tmp"),

ports = c (8880, 8881, 4040, 54321))
config["spark.home"] <— Sys.getenv ("SPARK_HOME")
sc <— spark_connect (config = config, spark_home = Sys.
getenv ("SPARK_HOME"))
hc <-— H20Context.getOrCreate ()
spark_disconnect (sc)

You can also submit RSparkling batch job. In that case, create a file called
batch.R with the content from the code box above and run:

Rscript —--default-packages=methods,utils batch.R

Note: In the case of RSparkling, SparklyR automatically sets the Spark deploy-
ment mode and it is not possible to specify it.

a0 A W N =

[=)]

10
11

12
13
14

15
16

70 | Running Sparkling Water in Kubernetes

Automatic Mode of External Backend

In the automatic mode, Sparkling Water starts external H20 on Kubernetes
automatically. The requirement is that the driver node is configured to commu-
nicate with the Kubernetes cluster. Docker image for the external H20 backend
is specified using the “spark.ext.h2o.external.k8s.docker.image“ option.

Scala

Both cluster and client deployment modes of Kubernetes are supported.

To submit Scala job in a cluster mode, run:

SSPARK_HOME/bin/spark—submit \

——master "k8s://KUBERNETES_ENDPOINT" \

——deploy-mode cluster \

——conf spark.scheduler.minRegisteredResourcesRatio=1 \

-—conf spark.kubernetes.container.image=h2cai/
sparkling-water—-scala:SUBST_SW_VERSION \

—-—conf spark.executor.instances=2 \

——conf spark.driver.host=sparkling-water—-app \

——conf spark.kubernetes.driver.pod.name=sparkling-—
water—app \

—--conf spark.ext.h2o.backend.cluster.mode=external \

——conf spark.ext.h2o.external.start.mode=auto \

—-—conf spark.ext.h2o.external.auto.start.backend=
kubernetes \

—-conf spark.ext.h2o.external.cluster.size=2 \

—-—conf spark.ext.h2o.external.memory=2G \

——conf spark.ext.h2o.external.k8s.docker.image=h2cai/
sparkling-water-external-backend:SUBST_SW_VERSION
\

—--class ai.h2o.sparkling.KubernetesTest \

local:///opt/sparkling-water/tests/kubernetesTest. jar

To start an interactive shell in a client mode:

1. Create Headless service so Spark executors can reach the driver node:

cat <<EOF | kubectl apply -f -
apiVersion: vl

kind: Service

metadata:

A W N =

Running Sparkling Water in Kubernetes | 71

© 0 N o O

A W N =

10
11

12
13
14

name: sparkling-water—-app
spec:
clusterIP: "None"
selector:
spark-driver-selector: sparkling-water-app
EOF

. Start pod from where we run the shell:

kubectl run -n default -i —--tty sparkling-water-
app —-restart=Never --labels spark-driver-
selector=sparkling-water—app —--image=h2ocai/
sparkling-water—-scala:SUBST_SW_VERSION -- /bin
/bash

Inside the container, start the shell:

SSPARK_HOME /bin/spark-shell \

——master "k8s://KUBERNETES_ENDPOINT" \

——deploy-mode client \

——conf spark.scheduler.minRegisteredResourcesRatio
=1 \

-—conf spark.kubernetes.container.image=h2cai/
sparkling-water—-scala:SUBST_SW_VERSION \

——conf spark.executor.instances=2 \

——conf spark.driver.host=sparkling-water—-app \

——conf spark.kubernetes.driver.pod.name=sparkling-—
water—-app \

——-conf spark.ext.hZ2o.backend.cluster.mode=external

\

——conf spark.ext.h2o.external.start.mode=auto \

—-—conf spark.ext.hZo.external.auto.start.backend=
kubernetes \

—--conf spark.ext.h2o.external.cluster.size=2 \

-—-conf spark.ext.h2o.external.memory=2G \

—-—conf spark.ext.h2o.external.k8s.docker.image=
h2cai/sparkling-water-external-backend:
SUBST_SW_VERSION

. Inside the shell, run:

import ai.h2o.sparkling._
val hc = H20Context.getOrCreate ()

S 0B W

10
11
12

13
14
15

16
17

72 | Running Sparkling Water in Kubernetes

5. To access flow, we need to enable port-forwarding from the driver pod:

1 |kubectl port-forward sparkling-water-app
54321:54321

To submit a batch job using client mode:

First, create the headless service as mentioned in the step 1 above and run:

kubectl run -n default -i --tty sparkling-water-app —-—

restart=Never --labels spark-driver-selector=
sparkling-water—app --image=h2o0ai/sparkling-water-
scala:SUBST_SW_VERSION -- \

SSPARK_HOME/bin/spark-submit \

——master "k8s://KUBERNETES_ENDPOINT" \

——deploy-mode client \

——conf spark.scheduler.minRegisteredResourcesRatio=1 \

—-conf spark.kubernetes.container.image=h2o0ai/
sparkling-water-scala:SUBST_SW_VERSION \

—--conf spark.executor.instances=2 \

—-—conf spark.driver.host=sparkling-water—-app \

—-—conf spark.kubernetes.driver.pod.name=sparkling-—
water—-app \

—--conf spark.ext.h2o.backend.cluster.mode=external \

—--conf spark.ext.h2o.external.start.mode=auto \

—-—conf spark.ext.h2o.external.auto.start.backend=
kubernetes \

——conf spark.ext.h2o.external.cluster.size=2 \

—-—conf spark.ext.h2o.external.memory=2G \

——conf spark.ext.h2o.external.k8s.docker.image=h20ai/
sparkling-water-external-backend:SUBST_SW_VERSION
\

——class ai.h2o.sparkling.KubernetesTest \

local:///opt/sparkling-water/tests/kubernetesTest. jar

Python

Both cluster and client deployment modes of Kubernetes are supported.

To submit Python job in a cluster mode, run:

1 | SSPARK_HOME/bin/spark—-submit \

o B~ W N

10
11

12

13
14

15

Running Sparkling Water in Kubernetes | 73

——master "k8s://KUBERNETES_ENDPOINT" \

——deploy-mode cluster \

——conf spark.scheduler.minRegisteredResourcesRatio=1 \

-—conf spark.kubernetes.container.image=h2cai/
sparkling-water-python:SUBST_SW_VERSION \

—-—conf spark.executor.instances=2 \

——conf spark.driver.host=sparkling-water—-app \

——conf spark.kubernetes.driver.pod.name=sparkling-—
water—app \

--conf spark.ext.h2o.backend.cluster.mode=external \

——conf spark.ext.h2o.external.start.mode=auto \

—-—conf spark.ext.h2o.external.auto.start.backend=
kubernetes \

—-conf spark.ext.h2o.external.cluster.size=2 \

—-—conf spark.ext.h2o.external.memory=2G \

——conf spark.ext.h2o.external.k8s.docker.image=h2cai/
sparkling-water-external-backend:SUBST_SW_VERSION
\

local:///opt/sparkling-water/tests/initTest.py

To start an interactive shell in a client mode:

1. Create Headless service so Spark executors can reach the driver node:

1 |cat <<EOF | kubectl apply -f -

2 |apiVersion: vl

3 |kind: Service

4 |metadata:

5 name: sparkling-water-app

6 | spec:

7 clusterIP: "None"

8 selector:

9 spark-driver-selector: sparkling-water-app
10 | EOF

2. Start pod from where we run the shell:

1 |kubectl run -n default -i --tty sparkling-water-
app —-restart=Never --labels spark-driver-
selector=sparkling-water—app —--image=h2ocai/
sparkling-water-python:SUBST_SW_VERSION —-- /
bin/bash

74 | Running Sparkling Water in Kubernetes

3. Inside the container, start the shell:

1 | $SPARK_HOME/bin/pyspark \

2 |-—-master "k8s://KUBERNETES_ENDPOINT" \

3 |-—deploy-mode client \

4 |——conf spark.scheduler.minRegisteredResourcesRatio
=1\

5 | -—conf spark.kubernetes.container.image=h2o0ai/
sparkling-water—-python:SUBST_SW_VERSION \

6 |——conf spark.executor.instances=2 \

7 | ——conf spark.driver.host=sparkling-water—app \

8 |——conf spark.kubernetes.driver.pod.name=sparkling-
water—app \

9 |-—conf spark.ext.hZ2o.backend.cluster.mode=external

\

10 |——conf spark.ext.h2o.external.start.mode=auto \

11 |——conf spark.ext.h2o.external.auto.start.backend=
kubernetes \

12 |-—conf spark.ext.h2o.external.cluster.size=2 \

13 |-—conf spark.ext.h2o.external.memory=2G \

14 |—-—conf spark.ext.h2o0.external.k8s.docker.image=
h2oai/sparkling-water—-external-backend:
SUBST_SW_VERSION

4. Inside the shell, run:

1 | from pysparkling import =

2 |hc = H20Context.getOrCreate ()

5. To access flow, we need to enable port-forwarding from the driver pod as:

kubectl port-forward sparkling-water-app
54321:54321

To submit a batch job using client mode:

First, create the headless service as mentioned in the step 1 above and run:

kubectl run -n default -1 --tty sparkling-water-app —-—

restart=Never --labels spark-driver-selector=
sparkling-water—app —-—-image=h2oai/sparkling-water-—
python:SUBST_SW_VERSION —— \

SSPARK_HOME/bin/spark-submit \
--master "k8s://KUBERNETES_ENDPOINT" \

10
11
12

13

14
15

16

Running Sparkling Water in Kubernetes | 75

——deploy-mode client \

——conf spark.scheduler.minRegisteredResourcesRatio=1 \

—-—conf spark.kubernetes.container.image=h2ocai/
sparkling-water—-python:SUBST_SW_VERSION \

—--conf spark.executor.instances=2 \

—-—conf spark.driver.host=sparkling-water—-app \

—-—conf spark.kubernetes.driver.pod.name=sparkling-
water—app \

—--conf spark.ext.h2o.backend.cluster.mode=external \

—--conf spark.ext.h2o.external.start.mode=auto \

—-—conf spark.ext.h2o.external.auto.start.backend=
kubernetes \

—-—conf spark.ext.h2o.external.cluster.size=2 \

—-—conf spark.ext.h2o.external.memory=2G \

—-—conf spark.ext.h2o.external.k8s.docker.image=h20ai/
sparkling-water—-external-backend:SUBST_SW_VERSION
\

local:///opt/sparkling-water/tests/initTest.py

R

First, make sure that RSparkling is installed on the node we want to run
RSparkling from. You can install RSparkling as:

Download, install, and initialize the H20 package
for R.
In this case we are using rel-SUBST_H20_ RELEASE_NAME
SUBST _H20_ BUILD NUMBER (SUBST_H20_ VERSION)
install.packages ("h20", type = "source", repos = "http
://h2o-release.s3.amazonaws.com/h20/rel-SUBST_H20
RELEASE_NAME/SUBST_H20_BUILD_NUMBER/R")

Download, install, and initialize the RSparkling

install.packages ("rsparkling"”, type = "source", repos
= "http://h2o-release.s3.amazonaws.com/sparkling-
water/spark—-SUBST_SPARK_MAJOR_VERSION/SUBST_SW_
VERSION/R")

To start H20Context in an interactive shell, run the following code in R or
RStudio:

© 0 N o O

10
11

12
13
14

15

16

17

18

19
20

76 | Running Sparkling Water in Kubernetes

library (sparklyr)

library (rsparkling)

config <— spark_config_ kubernetes ("k8s://KUBERNETES_
ENDPOINT",
image = "h2oai/sparkling-water-r:SUBST_SW_VERSION"
4

account = "default",

executors = 2,

version = "SUBST_SPARK_VERSION",

conf = list(
"spark.ext.h2o.backend.cluster.mode"="external

n
14

"spark.ext.h2o0.external.
"spark.ext.h2o.external.
kubernetes",
"spark.ext.h2o0.external.
"spark.ext.h2o0.external.
"spark.ext.h2o0.external.

start .mode"="auto",
auto.start.backend"="

memory"="2G",
cluster.size"="2",
k8s.docker.image"="

h2o0ai/sparkling-water—-external-backend:
SUBST_SW_VERSION",
"spark.kubernetes.file.upload.path"="file:///
tmp") ’
ports = c (8880, 8881, 4040, 54321))
config["spark.home"] <— Sys.getenv ("SPARK_HOME")
sc <- spark_connect (config = config, spark_home =
getenv ("SPARK_HOME"))
hc <— H20Context.getOrCreate ()
spark_disconnect (sc)

SYS o

You can also submit RSparkling batch job. In that case, create a file called
‘batch.R" with the content from the code box above and run:

Rscript --default-packages=methods,utils batch.R

Note: In the case of RSparkling, SparklyR automatically sets the Spark deploy-
ment mode and it is not possible to specify it.

Sparkling Water Configuration Properties | 77

Sparkling Water Configuration Properties

The following configuration properties can be passed to Spark to configure
Sparkling Water:

Configuration Properties Independent of Selected
Backend

Property name Default Description

spark.ext.h2o.backend.cluster.mode internal This option can be set ei-
ther to “internal” or “ex-
ternal”. When set to

“external”, “H20 Con-
text" is created by con-
necting to existing H20
cluster, otherwise H20
cluster located inside
Spark is created. That
means that each Spark
executor will have one
H20 instance running in
it. The “internal” mode
is not recommended for
big clusters and clusters
where Spark executors
are not stable.

spark.ext.h2o0.cloud.name None Name of H20 cluster. If
this option is not set,
the name is automati-
cally generated

78 | Sparkling Water Configuration Properties

spark.ext.h2o.nthreads -1 Limit for number
of threads wused by
H20. Default “-1“
using internal backend
means: Use the value
of “spark.executor.cores "
if the property is set,
otherwise use H20's
default value Run-
time.getRuntime().availablePrc
Default “-1" using au-
tomatically started
external backend on
Hadoop means: Use
H20's default value Run-
time.getRuntime().availablePrc
Default “-1" using au-
tomatically started
external backend on
Kubernetes means: Use
just one cpu.

spark.ext.h20.progressbar.enabled true Decides whether to dis-
play progress bar related
to H20 jobs on stdout
or not.

spark.ext.h2o.model.print.after.training.enabled true Decides whether to dis-
play model info on std-
out after training or not.

spark.ext.h2o.repl.enabled true Decides whether H20
REPL is initiated or not.

spark.ext.scala.int.default.num 1 Number of parallel REPL
sessions started at the
start of Sparkling Water.

spark.ext.h2o.topology.change.listener.enabled true Decides whether listener
which kills H20 cluster
on the change of the un-
derlying cluster’s topol-
ogy is enabled or not.
This configuration has
effect only in non-local
mode.

spark.ext.h2o.spark.version.check.enabled true Enables check if run-
time Spark version
matches build time
Spark version.

spark.ext.h2o.fail.on.unsupported.spark.param true If unsupported Spark pa-
rameter is detected, then
application is forced to
shutdown.

Sparkling Water Configuration Properties | 79

spark.ext.h20.jks None Path to a Java keystore
file with certificates
securing H20 Flow
Ul and internal REST
connections between
instances (driver + ex-
ecutors) and H20 nodes.
When configuring this
property, you must
consider that a Spark
executor can commu-
nicate to any of H20
nodes and verifies H20
node according to the
hostname specified in
the keystore certificate.
You can consider usage
of a wildcard certificate
or you can disable the
hostname verification
completely with the
“spark.ext.h2o.verify_ss|_hostna
property.

spark.ext.h20.jks.pass None Password for the Java
keystore file.

spark.ext.h2o.jks.alias None Alias to certificate in the
to the Java keystore file
to secure H20 Flow Ul
and internal REST con-
nections between Spark
instances (driver + ex-
ecutors) and H20 nodes.

spark.ext.h2o.ssl.ca.cert None A path to a CA bundle
file or a directory with
certificates of trusted
CAs. This path is used
by RSparkling or PyS-
parking for connecting to
a Sparkling Water back-

end.
spark.ext.h2o0.hash.login false Enable hash login.
spark.ext.h2o0.ldap.login false Enable LDAP login.
spark.ext.h2o0.proxy.login.only false Enable proxy only lo-
gin for the chosen login
method.

spark.ext.h20.kerberos.login false Enable Kerberos login.

80 | Sparkling Water Configuration Properties

spark.ext.h20.pam.login

spark.ext.h2o.login.conf

spark.ext.h2o0.user.name

spark.ext.h2o.password

spark.ext.h2o.internal_security_conf

spark.ext.h2o0.auto.flow.ss|

spark.ext.h2o.log.level

spark.ext.h2o.log.dir

spark.ext.h20.backend.heartbeat.interval

spark.ext.h2o.cloud.timeout

spark.ext.h20.node.network.mask

false

None

None

None

None

false

INFO

None

10000

60000

None

Enable PAM login. PAM
has to be configured on
the system where Spark
driver is running.

Login configuration file.

Username used for the
backend H20O cluster
and to authenticate the
client against the back-
end.

Password used to authen-
ticate the client against
the backend.

Path to a file containing
H20 or Sparkling Water
internal security configu-
ration.

Automatically generate
the required key store
and password to secure
secure H20 Flow Ul and
internal REST connec-
tions between Spark ex-
ecutors and H20 nodes.
Hostname verification is
disabled when creating
SSL connections to H20
nodes.

H20 log level.

Location of H20
logs. When not
specified, it uses

user.dir/h2ologs/Appld
or YARN container dir

Interval (in msec) for get-
ting heartbeat from the
H20 backend.

Timeout (in msec) for
cluster formation.

Subnet selector for H20
running inside park ex-
ecutors. This disables us-
ing IP reported by Spark
but tries to find IP based
on the specified mask.

Sparkling Water Configuration Properties | 81

spark.ext.h2o.stacktrace.collector.interval

spark.ext.h2o0.context.path

spark.ext.h2o.flow.scala.cell.async

spark.ext.h2o.flow.scala.cell.max.parallel

spark.ext.h2o.internal.port.offset

spark.ext.h2o0.base.port

spark.ext.h20.mojo.destroy.timeout

spark.ext.h2o.extra.properties

spark.ext.h2o.flow.dir

None

false

54321

600000

None

None

Interval specifying how
often stack traces are
taken on each H20 node.
-1 means that no stack
traces will be taken

Context path to expose
H20 web server.

Decide whether the
Scala cells in H20 Flow
will run synchronously or
Asynchronously. Default
is synchronously.

Number of max paral-
lel Scala cell jobs. The
value -1 means not lim-
ited.

Offset between the
API(=web) port and the
internal communication
port on the client node;
“api_port + port_offset
= h2o_port"

Base port used for indi-
vidual H20 nodes

If a scoring MOJO in-
stance is not used within
a Spark executor JVM
for a given timeout in
milliseconds, it's evicted
from executor’s cache.
Default timeout value is
10 minutes.

A string containing ex-
tra parameters passed
to H20 nodes during
startup. This parame-
ter should be configured
only if H20 parameters
do not have any corre-
sponding parameters in
Sparkling Water.

Directory where flows
from H20 Flow are
saved.

82 | Sparkling Water Configuration Properties

spark.ext.h2o.flow.extra.http.headers

spark.ext.h2o.flow.proxy.request. maxSize

spark.ext.h2o.flow.proxy.response.maxSize

spark.ext.h2o.internal_secure_connections

spark.ext.h2o.allow_insecure_xgboost

spark.ext.h2o.client.ip

None

32768

32768

false

false

None

Extra HTTP headers
that will be used in
communication be-
tween the front-end
and back-end part of
Flow Ul. The headers
should be delimited
by a new line. Don't
forget to escape special
characters when passing
the parameter from a
command line. Example:
“"spark.ext.h2o.flow.extra.http
Transport-Security:max-
age=31536000" “

The maximum size of a
request coming to flow
Ul proxy running on the
Spark driver. The re-
quest is forwarded to
Flow Ul on H20 leader
node.

The maximum size of
a response coming from
flow Ul proxy running on
the Spark driver. The
content for the response
comes from Flow Ul
H20 leader node.

Enables secure com-
munications among
H20O nodes. The
security is based on
automatically generated
keystore and truststore.
This is equivalent for “-
internal_secure_conections "
option in H20 Hadoop.
More information s
available in the H20
documentation.

If the property set to
true, insecure commu-
nication among H20
nodes is allowed for the
XGBoost algorithm even
if the other security op-
tions are enabled

IP of H20 client node.

Sparkling Water Configuration Properties | 83

spark.ext.h2o.client.web.port

spark.ext.h2o.client.verbose

spark.ext.h2o.client.network.mask

spark.ext.h2o.client.flow.baseurl.override

spark.ext.h2o.cluster.client.retry.timeout

spark.ext.h2o.verify_ss|_certificates

spark.ext.h2o.internal.rest.verify_ssl_certificates

false

None

None

60000

true

true

Exact client port to
access web Ul. The
value “-1" means au-
tomatic search for a
free port starting at

“spark.ext.h20.base.port“.

The client outputs ver-
bose log output di-
rectly into console. En-
abling the flag increases
the client log level to
“INFO*.

Subnet selector for H20
client, this disables using
IP reported by Spark but
tries to find IP based on
the specified mask.

Allows to override the
base URL address of
Flow Ul, including the
scheme, which is showed
to the user.

Timeout in milliseconds
specifying how often we
check whether the the
client is still connected.

If the property is en-
abled, Pysparkling or
RSparkling client will ver-
ify certificates when con-
necting Sparkling Water
Flow UL

If the property is enabled,
Sparkling Water will ver-
ify ssl certificates dur-
ing establishing secured
http connections to one
of H20 nodes. Such
connections are utilized
for delegation of Flow Ul
calls to H20 leader node
or during data exchange
between Spark executors
and H20 nodes. If
the property is disabled,
hostname verification is
disabled as well.

84 | Sparkling Water Configuration Properties

spark.ext.h2o.internal.rest.verify_ss|_hostnames true If the property is enabled,
Sparkling Water will ver-
ify a hostname during
establishing of secured
http connections to one
of H20 nodes. Such
connections are utilized
for delegation of Flow Ul
calls to H20 leader node
or during data exchange
between Spark executors
and H20 nodes.

spark.ext.h20.kerberized.hive.enabled false If enabled, H20 in-
stances will create JDBC
connections to a Ker-
berized Hive so that all
clients can read data
from HiveServer2. Don't
forget to put a jar with
Hive driver on Spark
classpath if the internal
backend is used.

spark.ext.h20.hive.host None The full address of
HiveServer2, for example
hostname:10000.

spark.ext.h2o.hive.principal None Hiveserver2 Ker-
beros principal, for
example hive/host-
name@DOMAIN.COM

spark.ext.h2o.hive.jdbc_url_pattern None A pattern of JDBC

URL used for connecting
to Hiveserver2. Example:
“jdbc:hive2://host/;auth "

spark.ext.h2o.hive.token None An authorization token
to Hive.
spark.ext.h2o.iced.dir None Location of iced direc-

tory for H20 nodes.

spark.ext.h2o.rest.api.timeout 300000 Timeout in milliseconds
for Rest API requests.

Internal Backend Configuration Properties

Property name Default Description

Sparkling Water Configuration Properties | 85

spark.ext.h2o.cluster.size None
spark.ext.h2o0.extra.cluster.nodes false
spark.ext.h2o.dummy.rdd.mul.factor 10
spark.ext.h2o.spreadrdd.retries 10
spark.ext.h2o.default.cluster.size 20
spark.ext.h2o0.subseq.tries 5

Expected number of
workers of H20 cluster.
Value None means
automatic detection of
cluster size. This num-
ber must be equal to
number of Spark execu-
tors. If Spark property
“spark.executor.instances "
is specified, this
Sparkling Water prop-
erty is set to its value.

If the property is set
true and the Sparkling
Water internal back-
end identifies more
executors than specified

in the Spark property
“spark.executor.instances "
or in the Sparkling
Water property
“spark.ext.h2o.cluster.size ",
Sparkling Water deploys
H20 nodes to all
discovered Spark ex-
ecutors. Otherwise,
Sparkling Water de-
ploys just a number of
executors specified in
“spark.ext.h2o.cluster.size
(or
“spark.executor.instances).

Multiplication factor for
dummy RDD generation.
Size of dummy RDD is
“spark.ext.h2o.cluster.size "
multiplied by this option.

Number of retries for cre-
ation of an RDD spread
across all existing Spark
executors

Starting size of cluster in
case that size is not ex-
plicitly configured.

Subsequent successful
tries to figure out size
of Spark cluster, which
are producing the same
number of nodes.

86 | Sparkling Water Configuration Properties

spark.ext.h2o0.hdfs_conf

spark.ext.h2o.spreadrdd.retries.timeout

spark.ext.h2o.direct.configuration.ip

spark.ext.h2o.jetty.aes.login.module.key

spark.ext.h2o0.jetty.aes.login.module.iv

None

true

None

None

Either a string with
the Path to a file
with Hadoop HDFS
configuration or the
hadoop.conf.Configuration
object in the org.apache
package. Useful for
HDFS credentials
settings and other
HDFS-related con-
figurations. Default
value None means use
‘sc.hadoopConfig'.

Specifies how long the
discovering of Spark ex-
ecutors should last. This
option has precedence
over other options in-
fluencing the discovery
mechanism. That means
that as long as the time-
out hasn't expired, we
keep trying to discover
new executors. This
option might be useful
in environments where
Spark executors might
join the cloud with some
delays.

If the property is dis-
abled, Spark executor
doesn't assign its IP ad-
dress to H20 node di-
rectly. The IP address is
suggested to H20 node
and its bootstrap logic
performs additional net-
work interface availabil-
ity checks before the IP
is assigned to the node.

Specific to wa-
ter.webserver.jetty9.LdapAesEncrypte
AES CBC Key

Specific to wa-
ter.webserver.jetty9.LdapAesEncrypte
AES CBC IV. When no

IV is provided an all zero

1V is used.

Sparkling Water Configuration Properties | 87

External Backend Configuration Properties

Property name

Default

Description

spark.ext.h2o0.external.driver.if

spark.ext.h2o.external.driver.port

spark.ext.h2o0.external.driver.port.range

spark.ext.h2o.external.extra.memory.percent

spark.ext.h2o.cloud.representative

spark.ext.h2o.external.cluster.size

spark.ext.h2o.cluster.start.timeout

spark.ext.h2o.cluster.info.name

spark.ext.h2o0.external.memory

spark.ext.h2o0.external.hdfs.dir

None

None

None

None

None

120

None

6G

None

Ip address or network of
mapper-)driver callback
interface. Default value
means automatic detec-
tion.

Port of mapper-)driver
callback interface. De-
fault value means auto-
matic detection.

Range portX-portY of
mapper-)driver callback
interface; eg: 50000~
55000.

This option is a per-
centage of external mem-
ory option and speci-
fies memory for internal
JVM use outside of Java
heap.

ip:port of a H20 cluster
leader node to identify
external H20 cluster.

Number of H20 nodes
to start when “auto"
mode of the external
backend is set.

Timeout in seconds for
starting H2O external
cluster

Full path to a file which
is used as the notifica-
tion file for the startup
of external H20 cluster.

Amount of memory as-
signed to each external
H20 node

Path to the directory on
HDFS used for storing
temporary files.

88 | Sparkling Water Configuration Properties

spark.ext.h2o0.external.start.mode

spark.ext.h20.external.h2o.driver

spark.ext.h2o.external.yarn.queue

spark.ext.h2o.external.kill.on.unhealthy

spark.ext.h2o.external.kerberos.principal
spark.ext.h2o.external.kerberos.keytab

spark.ext.h2o.external.run.as.user

spark.ext.h2o0.external.backend.stop.timeout

spark.ext.h20.external.hadoop.executable

spark.ext.h2o.external.extra.jars

spark.ext.h2o.external.communication.compression

manual

None

None

true

None
None

None

10000

hadoop

None

SNAPPY

If this option is set to
“auto” then H20 ex-
ternal cluster is auto-
matically started using
the provided H20 driver
JAR on YARN, other-
wise it is expected that
the cluster is started by
the user manually

Path to H20 driver
used during “auto” start
mode.

Yarn queue on which
external H2O cluster is
started.

If true, the client will try
to kill the cluster and
then itself in case some
nodes in the cluster re-
port unhealthy status.

Kerberos Principal
Kerberos Keytab

Impersonated Hadoop
user

Timeout for confirma-
tion from worker nodes
when stopping the ex-
ternal backend. It is
also possible to pass -
1" to ensure the indefi-
nite timeout. The unit is
milliseconds.

Name or path to path
to a hadoop executable
binary which is used to
start external H20 back-
end on YARN.

Comma-separated paths
to jars that will be placed
onto classpath of each
H20 node.

The type of compression
used for data transfer be-
tween Spark and H20
node. Possible values are
“NONE", “DEFLATE",
“GZIP", "“SNAPPY".

Sparkling Water Configuration Properties | 89

spark.ext.h20.external.auto.start.backend

spark.ext.h2o0.external.k8s.h20.service.name

spark.ext.h2o0.external.k8s.h20.statefulset.name

spark.ext.h2o.external.k8s.h2o.label

spark.ext.h2o.external.k8s.h20.api.port

spark.ext.h2o.external.k8s.namespace

spark.ext.h2o.external.k8s.docker.image

spark.ext.h2o.external.k8s.domain

spark.ext.h2o.external.k8s.svc.timeout

yarn

h2o-service

h2o-statefulset

app=h2o

8081
default

See doc

cluster.local

300

The backend on which
the external H20 back-
end will be started in
auto start mode. Pos-
sible values are “YARN"
and "KUBERNETES".

Name of H20 service re-
quired to start H20 on
K8s.

Name of H20O stateful
set required to start H20
on K8s.

Label used to select node
for H20 cluster forma-
tion.

Kubernetes API port.

Kubernetes namespace
where external H20 is
started.

Docker image contain-
ing Sparkling Water
external H20 back-
end. Default value
is h2oai/sparkling-
water-external-

backend:3.46.0.6-1-3.0

Domain of the Kuber-
netes cluster.

[Deprecated] Timeout in
seconds used as a limit
for K8s service creation.

90 | Building a Standalone Application

Building a Standalone Application

Sparkling Water Example Project

This is a structure of a simple example project to start coding with Sparkling
Water. The source code is available at https://github.com/h20ai/
h2o-droplets/tree/master/sparkling-water—-droplet

Project structure

+— gradle/ Gradle definition files
— SrC/ e, Source code
main/ Main implementation code
Lfscala/
test/ ... Test code
L scala/
+— build.gradle ... Build file for this project
«— gradlew Gradle wrapper

Project building

For building, please, use provided gradlew command:

./gradlew build

Run demo

For running a simple application:

./gradlew run

Running tests

To run tests, please, run:

./gradlew test

Checking code style

To check codestyle:

https://github.com/h2oai/h2o-droplets/tree/master/sparkling-water-droplet
https://github.com/h2oai/h2o-droplets/tree/master/sparkling-water-droplet

Building a Standalone Application | 91

./gradlew scalaStyle

Creating and Running Spark Application

Create application assembly which can be directly submitted to Spark cluster:

./gradlew shadowJar

The command creates jar filebuild/libs/sparkling-water—droplet-—
app . jar containing all necessary classes to run application on top of Spark
cluster.

Submit application to Spark cluster (in this case, local cluster is used):

export MASTER="local[*x]"

$SPARK_HOME/bin/spark—submit —--class water.droplets.
SparklingWaterDroplet build/libs/sparkling-water—
droplet-all. jar

A W N =

92 | A Use Case Example

A Use Case Example

Predicting Arrival Delay in Minutes - Regression
What is the task?

As a chief air traffic controller, your job is to come up with a prediction engine
that can be used to tell passengers whether an incoming flight will be delayed
by X number of minutes. To accomplish this task, we have an airlines dataset
containing ~44k flights since 1987 with features such as: origin and destination
codes, distance traveled, carrier, etc. The key variable we are trying to predict
is " ArrDelay”" (arrival delay) in minutes. We will do this leveraging H20 and
the Spark SQL library.

SQL queries from Spark

One of the many cool features about the Spark is the ability to initiate a Spark
Session within our application that enables us to write SQL-like queries against
an existing DataFrame. Given the ubiquitous nature of SQL, this is very
appealing to data scientists who may not be comfortable yet with Scala / Java
/ Python, but want to perform complex manipulations of their data.

Within the context of this example, we are going to first read in the airlines
dataset and then process a weather file that contains the weather data at the
arriving city. Joining the two tables will require a Spark Session such that we
can write an INNER JOIN against the two independent DataFrames.

The full source for the application is here: http://bit.ly/1mo3X02
Let's get started!

First, create Spark Session and H20Context:

import org.apache.spark.SparkConf

import ai.h2o.sparkling._

import org.apache.spark.sqgl.SparkSession

val conf = new SparkConf () .setAppName ("Sparkling Water
Join of Airlines with Weather Data")

val spark = SparkSession.builder () .config(conf).

getOrCreate ()
import spark.implicits._
val h2oContext = H20Context.getOrCreate ()

http://bit.ly/1mo3XO2

o B~ WN

A Use Case Example | 93

Read the weather data:

val weatherDataFile = "examples/smalldata/chicago/
Chicago_Ohare_International_ Airport.csv"
val weatherTable = spark.read.option("header", "true")

.option("inferSchema", "true")

.csv (weatherDataFile)

.withColumn ("Date", to_date(regexp_replace (’'Date,
" (\N\d+) / (\\d+) / (\\d+) ", "$3-$2-51")))

.withColumn ("Year", year (’'Date))

.withColumn ("Month", month (’Date))

.withColumn ("DayofMonth", dayofmonth ('Date))

Also read the airlines data:

val airlinesDataFile = "examples/smalldata/airlines/
allyears2k_headers.csv"
val airlinesTable = spark.read.option("header", "true"

)

.option("inferSchema", "true")
.option("nullvalue", "NA")
.csv(airlinesDataFile)

We load the data tables using Spark and also use Spark to do some data
scrubbing.

Select flights destined for Chicago (ORD):

val flightsToORD = airlinesTable.filter (’'Dest === "ORD
"w
)

println(s"\nFlights to ORD: ${flightsToORD.count}\n")

At this point, we are ready to join these two tables which are currently Spark
DataFrames:

val joined = flightsToORD. join (weatherTable, Seqg("Year
", "Month", "DayofMonth"))

B W ON =

0 N o o

94 | A Use Case Example

Run deep learning to produce a model estimating arrival delay:

import ai.h2o.sparkling.ml.algos.H20DeeplLearning
val dl = new H20DeepLearning ()
.setLabelCol ("ArrDelay")
.setColumnsToCategorical (Array ("Year", "Month", "
DayofMonth"))
.setEpochs (5)
.setActivation ("RectifierWithDropout")
.setHidden (Array (100, 100))
val model = dl.fit (joined)

More parameters for Deep Learning and all other algorithms can be found in
H20 documentation at http://docs.h20.ai.

Now we can run this model on our test dataset to score the model against our
holdout dataset:

val predictions = model.transform(joined)

http://docs.h2o.ai

FAQ | 95

FAQ

Where do | find the Spark logs?

e Standalone mode: Spark executor logs are located in the directory
$SPARK_HOME/work/app—<AppName> (where <AppName> is the
name of your application). The location contains also stdout/stderr from
H20.

e YARN mode: YARN mode: The executor logs are available via the
Syarn logs -applicationId <appId> command. Driver logs
are by default printed to console, however, H20 also writes logs into
current_dir/h2ologs.

The location of H20 driver logs can be controlled via the Spark property
spark.ext.h2o.client.log.dir (pass via ——conf) option.

How can | display Sparkling Water information in the Spark History
Server?

Sparkling Water reports the information already, you just need to add the
sparkling-water classes on the classpath of the Spark history server. To see how
to configure the spark application for logging into the History Server, please see
Spark Monitoring Configuration at http://spark.apache.org/docs/
latest/monitoring.html.

Spark is very slow during initialization, or H20 does not form a cluster.
What should | do?

Configure the Spark variable SPARK_LOCAL_IP. For example:

export SPARK_LOCAL_IP="127.0.0.1’

How do | increase the amount of memory assigned to the Spark execu-
tors in Sparkling Shell?

Sparkling Shell accepts common Spark Shell arguments. For example, to in-

crease the amount of memory allocated by each executor, use the

spark.executor.memory parameter: bin/sparkling-shell --conf
"spark.executor.memory=4g"

How do | change the base port H20 uses to find available ports?

H20 accepts the spark.ext.h2o0.port .base parameter via Spark config-
uration properties: bin/sparkling-shell —--conf "spark.ext.h2o
.port.base=13431". For a complete list of configuration options, refer to
section 11.

http://spark.apache.org/docs/latest/monitoring.html
http://spark.apache.org/docs/latest/monitoring.html

9 | FAQ

How do | use Sparkling Shell to launch a Scala test.script that | created?

Sparkling Shell accepts common Spark Shell arguments. To pass your script,
please use —1i option of Spark Shell: bin/sparkling-shell -i test.
script

How do | add Apache Spark classes to Python path?
Configure the Python path variable PYTHONPATH:

export PYTHONPATH=$SPARK_HOME/python:$SPARK_HOME/
python/build: $PYTHONPATH

export PYTHONPATH=$SPARK_HOME/python/lib/py4j-*-src.
zip:$PYTHONPATH

Trying to import a class from the hex package in Sparkling Shell but
getting weird error:

error: missing arguments for method hex in object
functions; follow this method with ’_’ if you want
to treat it as a partially applied

Please use the following syntax to import a class from the hex package:

import _root_.hex.tree.gbm.GBM

Trying to run Sparkling Water on HDP Yarn cluster, but getting error:

java.lang.NoClassDefFoundError: com/sun/jersey/api/
client/config/ClientConfig

The YARN time service is not compatible with libraries provided by Spark.
Please disable time service via setting
spark.hadoop.yarn.timeline-service.enabled=false. For more
details, please visit https://issues.apache.org/jira/browse/
SPARK-15343.

How can | configure the Hive metastore location?

Spark SQL context (in fact Hive) requires the use of metastore, which stores
metadata about Hive tables. In order to ensure this works correctly, the
$S{SPARK_HOME}/conf/hive-site.xml needs to contain the following
configuration. We provide two examples, how to use MySQL and Derby as the
metastore.

https://issues.apache.org/jira/browse/SPARK-15343
https://issues.apache.org/jira/browse/SPARK-15343

© 0 N o O

11
12
13
14
15
16

17
18
19
20
21
22

23

FAQ | 97

For MySQL, the following configuration needs to be located in the $ { SPARK_HOME
}/conf/hive-site.xml configuration file:

<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>ijdbc:mysqgl://{mysgl_host}:${mysqgl_port}/{
metastore_db}?createDatabaseIfNotExist=true</
value>
<description>JDBC connect string for a JDBC
metastore</description>
</property>

<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysqgl. jdbc.Driver</value>
<description>Driver class name for a JDBC
metastore</description>
</property>

<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>{username}</value>
<description>username to use against metastore
database</description>
</property>

<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>{password}</value>
<description>password to use against metastore
database</description>
</property>

where:

e {mysql_host} and {mysql_port} are the host and port of the MySQL
database

e {metastore_db} is the name of the MySQL database holding all the
metastore tables.

e {username} and {password} are the username and password to MySQL
database with read and write access to the {metastore_db} database.

© 0 N o o

10

11

1

98 | FAQ

For Derby, the following configuration needs to be located in the $ { SPARK_HOME
}/conf/hive-site.xml configuration file:

<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:derby://{file_location}/metastore_db;
create=true</value>
<description>JDBC connect string for a JDBC
metastore</description>

</property>

<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>org.apache.derby.jdbc.ClientDriver</value>
<description>Driver class name for a JDBC

metastore</description>
</property>
where:

e {file_location} is the location to the metastore_db database file.

After conversion of Spark Data Frame to H20 Frame, | see only 100
columns on the console?

If your Spark Data Frame has more than 100 columns, we don't treat it any
different. We always fully convert the Spark Data Frame to H20 Frame. We
just limit the number of columns we send to the client as it's hard to read that
many columns in the console plus it optimizes the amount of data we transfer
betweeen the client and backend. If you wish to configure how many columns
are sent to the client, you can specify it as part of the conversion method as:

h2o_context.asH20Frame (dataframe, "Frame_Name", 200) :

The last parameter specifies the number of columns to sent for the preview.
Getting exception about given invalid locale:

When getting java.lang.reflect.InvocationTargetException via
java.lang.IllegalArgumentException saying that

YOUR_SPARK_ML_STAGE parameter locale given invalid value *YOUR_LOCALE*.

when using a Spark stage in my ML pipeline, set the default locale for JVM of
Spark driver to a valid combination of a language and country:

——-conf spark.driver.extradavaOptions="-Duser.language=
en —-Duser.country=US"

FAQ | 99

100 | References

References

H20.ai Team. H20 website, 2024. URL http://h20.ai H20.ai Team.
H20 documentation, 2024. URL http://docs.h20.ai H20.ai Team.
H20 GitHub Repository, 2024. URL https://github.com/h2o0ai
H20.ai Team. H20 Datasets, 2024. URL http://data.h20.ai H20.ai
Team. H20 JIRA, 2024. URL https://jira.h2o0.ai H20.ai Team.
H2O0stream, 2024. URL https://groups.google.com/d/forum/
h2ostream H20.ai Team. H20 R Package Documentation, 2024. URL
http://h2o-release.s3.amazonaws.com/h20/latest_stable_
Rdoc.html

http://h2o.ai
http://docs.h2o.ai
https://github.com/h2oai
http://data.h2o.ai
https://jira.h2o.ai
https://groups.google.com/d/forum/h2ostream
https://groups.google.com/d/forum/h2ostream
http://h2o-release.s3.amazonaws.com/h2o/latest_stable_Rdoc.html
http://h2o-release.s3.amazonaws.com/h2o/latest_stable_Rdoc.html

	What is H2O?
	Sparkling Water Introduction
	Typical Use Cases
	Model Building
	Data Munging
	Stream Processing

	Features
	Supported Data Sources
	Supported Data Formats
	Supported Spark Execution Environments
	Sparkling Water Clients
	Sparkling Water Requirements

	Design
	Data Sharing between Spark and H2O
	H2OContext

	Starting Sparkling Water
	Setting up the Environment
	Starting Interactive Shell with Sparkling Water
	Starting Sparkling Water in Internal Backend
	External Backend
	Automatic Mode of External Backend
	Manual Mode of External Backend on Hadoop
	Manual Mode of External Backend without Hadoop (standalone)

	Memory Management

	Data Manipulation
	Creating H2O Frames
	Convert from RDD, DataFrame or Dataset
	Creating H2OFrame from an Existing Key
	Create H2O Frame Directly

	Converting H2O Frames to Spark entities
	Convert to RDD
	Convert to DataFrame

	Mapping between H2OFrame And Data Frame Types
	Mapping between H2OFrame and RDD[T] Types
	Using Spark Data Sources with H2OFrame
	Reading from H2OFrame
	Saving to H2OFrame
	Specifying Saving Mode

	Calling H2O Algorithms
	Productionizing MOJOs from H2O-3
	Loading the H2O-3 MOJOs
	Exporting the loaded MOJO model using Sparkling Water
	Importing the previously exported MOJO model from Sparkling Water
	Accessing additional prediction details
	Customizing the MOJO Settings
	Methods available on MOJO Model
	Obtaining Domain Values
	Obtaining Model Category
	Obtaining Feature Types
	Obtaining Feature Importances
	Obtaining Scoring History
	Obtaining Training Params
	Obtaining Metrics
	Obtaining Leaf Node Assignments
	Obtaining Stage Probabilities

	Productionizing MOJOs from Driverless AI
	Requirements
	Loading and Score the MOJO
	Predictions Format
	Customizing the MOJO Settings
	Troubleshooting

	Deployment
	Referencing Sparkling Water
	Using Assembly Jar
	Using PySparkling Zip
	Using the Spark Package

	Target Deployment Environments
	Local cluster
	On a Standalone Cluster
	On a YARN Cluster

	DataBricks Cloud
	Creating a Cluster
	Running Sparkling Water
	Running PySparkling
	Running RSparkling

	Running Sparkling Water in Kubernetes
	Internal Backend
	Scala
	Python
	R

	Manual Mode of External Backend
	Scala
	Python
	R

	Automatic Mode of External Backend
	Scala
	Python
	R

	Sparkling Water Configuration Properties
	Configuration Properties Independent of Selected Backend
	Internal Backend Configuration Properties
	External Backend Configuration Properties

	Building a Standalone Application
	A Use Case Example
	Predicting Arrival Delay in Minutes - Regression

	FAQ
	References

