Driverless AI k-LIME MOJO Reason Code Pipeline - Java Runtime¶
For completed MLI experiments, you can download the k-LIME MOJO. The k-LIME MOJO Reason Code Pipeline is a reason code engine that can be deployed in any Java environment to generate reason codes in real time.
The following steps describe how to download the k-LIME MOJO scoring pipeline.
Run an interpretation with the k-LIME/LIME-SUP explainer recipe enabled. You can enable the k-LIME/LIME-SUP explainer recipe from the Completed Experiment page by clicking Interpret this model > With custom settings > Recipes.
Navigate to the explanations page for the interpretation and click the Surrogate Models tab.
Click Surrogates and Shapleys zip Archive to download a zip file that contains
klime_mojo.zip
.
참고
The k-LIME MOJO Reason Code pipeline does not support multinomial, natural language processing (NLP), and time series models.
Prerequisites¶
The following are required in order to run the k-LIME MOJO reason code pipeline.
Java: The DAI MOJO runtime supports the following range of Java runtimes.
Minimum supported version: Java 8
Maximum supported version: Java 17
Note: It is recommended to use Java 11+ due to a bug in Java. (For more information, see https://bugs.openjdk.java.net/browse/JDK-8186464.)
Valid Driverless AI license. You can download the
license.sig
file from the machine hosting Driverless AI (usually in the license folder). Copy the license file into the downloadedmojo-pipeline
folder.mojo2-runtime.jar file. This is available from the top navigation menu in the Driverless AI UI and in the downloaded mojo-pipeline.zip file for an experiment.
License Specification¶
Driverless AI requires a license to be specified in order to run any DAI/MLI MOJO. The license can be specified with one of the following:
An environment variable:
DRIVERLESS_AI_LICENSE_FILE
: Path to the Driverless AI license file, orDRIVERLESS_AI_LICENSE_KEY
: The Driverless AI license key (Base64 encoded string)
A system property of JVM (
-D
option):ai.h2o.mojos.runtime.license.file
: Path to the Driverless AI license file, orai.h2o.mojos.runtime.license.key
: The Driverless AI license key (Base64 encoded string)
An application classpath:
The license is loaded from a resource called
/license.sig
.The default resource name can be changed with the JVM system property
ai.h2o.mojos.runtime.license.filename
.
For example:
# Specify the license with a temporary environment variable
export DRIVERLESS_AI_LICENSE_FILE="path/to/license.sig"
k-LIME Reason Code Pipeline Files¶
The klime_mojo folder includes the following files/folders:
domains
experimental
model.ini
models
Quickstart¶
On the completed MLI page, click on the Download k-LIME MOJO Reason Code Pipeline button.
To run the Java application for reason code generation directly, use the following command:
java -Dai.h2o.mojos.runtime.license.file=license.sig -cp mojo2-runtime.jar ai.h2o.mojos.ExecuteMojo klime_mojo.zip example.csv
k-LIME MOJO Command Line Options¶
Executing the Java Runtime¶
The following are two general examples of how the Java runtime can be executed from the command-line.
With additional libraries:
java <JVM options> [options...] -cp mojo2-runtime.jar:your-other.jar:many-more-libs.jar ai.h2o.mojos.ExecuteMojo path-to/pipeline.mojo path-to/input.csv path-to/output.csv
Without additional libraries:
java <JVM options> -jar mojo2-runtime.jar path-to/pipeline.mojo path-to/input.csv path-to/output.csv
For JDK >= 16, the following JVM argument must be passed:
java <JVM options> --add-opens=java.base/java.lang=ALL-UNNAMED -jar mojo2-runtime.jar path-to/pipeline.mojo path-to/input.csv path-to/output.csv
So, for example, the sys.ai.h2o.mojos.parser.csv.separator
option can be passed with the following:
java -Dsys.ai.h2o.mojos.parser.csv.separator='|' -Dai.h2o.mojos.runtime.license.file=../license.sig -jar mojo2-runtime.jar pipeline.mojo input.csv output.csv
Similarly, the sys.ai.h2o.mojos.exposedInputs
option can be passed with:
java -Xmx5g -Dsys.ai.h2o.mojos.exposedInputs=ALL -Dai.h2o.mojos.runtime.license.file= -cp mojo2-runtime.jar ai.h2o.mojos.ExecuteMojo pipeline.mojo example.csv
Note: Data can be streamed from stdin to stdout by replacing both the input and output CSV arguments with `-`.
JVM Options¶
sys.ai.h2o.mojos.parser.csv.keepCarriageReturn
(boolean) - Specify whether to keep the carriage return after parsing. This value defaults to True.sys.ai.h2o.mojos.parser.csv.stripCrFromLastColumn
(boolean) - Workaround for issues relating to the OpenCSV parser. This value defaults to True.sys.ai.h2o.mojos.parser.csv.quotedHeaders
(boolean) - Specify whether to quote header names in the output CSV file. This value defaults to False.sys.ai.h2o.mojos.parser.csv.separator
(char) - Specify the separator used between CSV fields. The special value `TAB` can be used for tab-separated values. This value defaults to `,`.sys.ai.h2o.mojos.parser.csv.escapeChar
(char) - Specify the escape character for parsing CSV fields. If this value is not specified, then no escaping is attempted. This value defaults to an empty string.sys.ai.h2o.mojos.parser.csv.batch
(int) - Specify the number of input records brought into memory for batch processing (determines consumed memory). This value defaults to 1000.sys.ai.h2o.mojos.pipelineFormats
(string) - When multiple formats are recognized, this option specifies the order in which they are tried. This value defaults to `pbuf,toml,klime,h2o3`.sys.ai.h2o.mojos.parser.csv.date.formats
(string) - Specify a format for dates. This value defaults to an empty string.sys.ai.h2o.mojos.exposedInputs
(string) - Specify a comma separated list of input cols that are needed on output. The special value `ALL` takes all inputs. This defaults to a null value.sys.ai.h2o.mojos.useWeakHash
(boolean) - Specify whether to use WeakHashMap. This is set to False by default. Enabling this setting may improve MOJO loading times.
JVM Options for Access Control
ai.h2o.mojos.runtime.license.key
- Specify a license key.ai.h2o.mojos.runtime.license.file
- Specify the location of a license key.ai.h2o.mojos.runtime.license.filename
- Override the default license file name.ai.h2o.mojos.runtime.signature.filename
- Override the default signature file name.ai.h2o.mojos.runtime.watermark.filename
- Override the default watermark file name.
JVM Options for Access Control
ai.h2o.mojos.runtime.license.key
- Specify a license key.ai.h2o.mojos.runtime.license.file
- Specify the location of a license key.ai.h2o.mojos.runtime.license.filename
- Override the default license file name.ai.h2o.mojos.runtime.signature.filename
- Override the default signature file name.ai.h2o.mojos.runtime.watermark.filename
- Override the default watermark file name.
Execute the MOJO from Java¶
Open a new terminal window. Create an experiment folder and change directories to that folder:
mkdir experiment && cd experiment
Create your main program in the experiment folder by creating a new file called DocsExample.java (for example, with
vim DocsExample.java
). Include the following content:
import ai.h2o.mojos.runtime.MojoPipeline; import ai.h2o.mojos.runtime.frame.MojoFrame; import ai.h2o.mojos.runtime.frame.MojoFrameBuilder; import ai.h2o.mojos.runtime.frame.MojoRowBuilder; import ai.h2o.mojos.runtime.lic.LicenseException; import ai.h2o.mojos.runtime.utils.CsvWritingBatchHandler; import com.opencsv.CSVWriter; import java.io.BufferedWriter; import java.io.IOException; import java.io.OutputStreamWriter; import java.io.Writer; public class DocsExample { public static void main(String[] args) throws IOException, LicenseException { // Load model and csv final MojoPipeline model = MojoPipelineService.loadPipeline("klime_mojo.zip"); // Get and fill the input columns final MojoFrameBuilder frameBuilder = model.getInputFrameBuilder(); final MojoRowBuilder rowBuilder = frameBuilder.getMojoRowBuilder(); rowBuilder.setValue("petal_wid", "0.2"); rowBuilder.setValue("class", "Iris-setosa"); rowBuilder.setValue("sepal_len", "5.1"); rowBuilder.setValue("petal_len", "1.4"); frameBuilder.addRow(rowBuilder); // Create a frame which can be transformed by MOJO pipeline final MojoFrame iframe = frameBuilder.toMojoFrame(); // Transform input frame by MOJO pipeline final MojoFrame oframe = model.transform(iframe); // `MojoFrame.debug()` can be used to view the contents of a Frame // oframe.debug(); // Output prediction as CSV final Writer writer = new BufferedWriter(new OutputStreamWriter(System.out)); final CSVWriter csvWriter = new CSVWriter(writer); CsvWritingBatchHandler.csvWriteFrame(csvWriter, oframe, true); } }
Compile the source code with the files of the MOJO runtime (mojo2-runtime.jar) copied into the experiment:
javac -cp mojo2-runtime.jar -J-Xms2g -J-XX:MaxPermSize=128m DocsExample.java
Run the MOJO example with the license (license.sig) copied into the experiment:
# Linux and OS X users java -Dai.h2o.mojos.runtime.license.file=license.sig -cp .:mojo2-runtime.jar DocsExample # Windows users java -Dai.h2o.mojos.runtime.license.file=license.sig -cp .;mojo2-runtime.jar DocsExample
The following output is displayed:
model_pred,cluster,petal_wid,class,sepal_len,petal_len 3.4530200678814422,1.0,-0.01619126014214789,1.3624817331603232E-6,2.5224436307972296,-0.5251985209647447