public class ModelMetricsBinomial extends ModelMetricsSupervised
| Modifier and Type | Class and Description |
|---|---|
static class |
ModelMetricsBinomial.MetricBuilderBinomial<T extends ModelMetricsBinomial.MetricBuilderBinomial<T>> |
ModelMetricsSupervised.MetricBuilderSupervised<T extends ModelMetricsSupervised.MetricBuilderSupervised<T>>ModelMetrics.MetricBuilder<T extends ModelMetrics.MetricBuilder<T>>| Modifier and Type | Field and Description |
|---|---|
double |
_aic |
AUC2 |
_auc |
GainsLift |
_gainsLift |
double |
_loglikelihood |
double |
_logloss |
double |
_mean_per_class_error |
_domain, _sigma_custom_metric, _description, _MSE, _nobs, _scoring_time| Constructor and Description |
|---|
ModelMetricsBinomial(Model model,
Frame frame,
long nobs,
double mse,
java.lang.String[] domain,
double sigma,
AUC2 auc,
double logloss,
double loglikelihood,
double aic,
GainsLift gainsLift,
CustomMetric customMetric) |
ModelMetricsBinomial(Model model,
Frame frame,
long nobs,
double mse,
java.lang.String[] domain,
double sigma,
AUC2 auc,
double logloss,
GainsLift gainsLift,
CustomMetric customMetric) |
| Modifier and Type | Method and Description |
|---|---|
double |
aic() |
AUC2 |
auc_obj() |
double |
auc() |
double |
aucpr() |
ConfusionMatrix |
cm() |
ConfusionMatrix |
cm(AUC2.ThresholdCriterion criterion) |
GainsLift |
gainsLift() |
static ModelMetricsBinomial |
getFromDKV(Model model,
Frame frame) |
double |
lift_top_group() |
double |
loglikelihood() |
double |
logloss() |
static ModelMetricsBinomial |
make(Vec targetClassProbs,
Vec actualLabels)
Build a Binomial ModelMetrics object from target-class probabilities, from actual labels, and a given domain for both labels (and domain[1] is the target class)
|
static ModelMetricsBinomial |
make(Vec targetClassProbs,
Vec actualLabels,
java.lang.String[] domain) |
static ModelMetricsBinomial |
make(Vec targetClassProbs,
Vec actualLabels,
Vec weights,
java.lang.String[] domain)
Build a Binomial ModelMetrics object from target-class probabilities, from actual labels, and a given domain for both labels (and domain[1] is the target class)
|
double |
mean_per_class_error() |
double |
pr_auc() |
java.lang.String |
toString() |
r2appendToStringMetrics, buildKey, buildKey, calcVarImp, calcVarImp, calcVarImp, calcVarImp, checksum_impl, custom_increasing, custom, deepCloneWithDifferentModelAndFrame, defaultModelMetrics, frame, getAllowedMetrics, getMetricFromModel, getMetricFromModelMetric, hr, isForFrame, isForModel, model, mse, residual_degrees_of_freedom, rmse, setModelKey, sortModelsByMetric, sortModelsByMetric, withDescription, withModelAndFramechecksum_impl, checksum, checksum, getKey, makeSchema, readAll_impl, readAll, remove_impl, remove_impl, remove_self_key_impl, remove, remove, remove, remove, remove, remove, removeQuietly, writeAll_impl, writeAllasBytes, clone, copyOver, frozenType, read, readExternal, readJSON, reloadFromBytes, toJsonBytes, toJsonString, write, writeExternal, writeJSONpublic final AUC2 _auc
public final double _logloss
public final double _loglikelihood
public final double _aic
public double _mean_per_class_error
public final GainsLift _gainsLift
public ModelMetricsBinomial(Model model, Frame frame, long nobs, double mse, java.lang.String[] domain, double sigma, AUC2 auc, double logloss, double loglikelihood, double aic, GainsLift gainsLift, CustomMetric customMetric)
public ModelMetricsBinomial(Model model, Frame frame, long nobs, double mse, java.lang.String[] domain, double sigma, AUC2 auc, double logloss, GainsLift gainsLift, CustomMetric customMetric)
public static ModelMetricsBinomial getFromDKV(Model model, Frame frame)
public java.lang.String toString()
toString in class ModelMetricsSupervisedpublic double logloss()
public double loglikelihood()
public double aic()
public double mean_per_class_error()
public AUC2 auc_obj()
auc_obj in class ModelMetricspublic ConfusionMatrix cm()
cm in class ModelMetricspublic ConfusionMatrix cm(AUC2.ThresholdCriterion criterion)
public GainsLift gainsLift()
public double auc()
public double pr_auc()
public double aucpr()
public double lift_top_group()
public static ModelMetricsBinomial make(Vec targetClassProbs, Vec actualLabels)
targetClassProbs - A Vec containing target class probabilitiesactualLabels - A Vec containing the actual labels (can be for fewer labels than what's in domain, since the predictions can be for a small subset of the data)public static ModelMetricsBinomial make(Vec targetClassProbs, Vec actualLabels, java.lang.String[] domain)
public static ModelMetricsBinomial make(Vec targetClassProbs, Vec actualLabels, Vec weights, java.lang.String[] domain)
targetClassProbs - A Vec containing target class probabilitiesactualLabels - A Vec containing the actual labels (can be for fewer labels than what's in domain, since the predictions can be for a small subset of the data)weights - A Vec containing the observation weights.domain - The two class labels (domain[0] is the non-target class, domain[1] is the target class, for which probabilities are given)