random_columns
¶
Available in: HGLM
Hyperparameter: yes
Description¶
Hierarchical GLM (HGLM) fits generalized linear models with random effects, where the random effect can come from a conjugate exponential-family distribution (for example, Gaussian). The random_columns
option specifies an array of random column indices to use in GLM when HGLM=True
.
Example¶
library(h2o)
h2o.init()
# Import the semiconductor dataset
h2odata <- h2o.importFile("https://s3.amazonaws.com/h2o-public-test-data/smalldata/glm_test/semiconductor.csv")
# Set the response, predictor, and random columns
yresp <- "y"
xlist <- c("x1", "x3", "x5", "x6")
z <- c(1)
# Convert the "Device" column to a factor
h2odata$Device <- h2o.asfactor(h2odata$Device)
# Train and view the model
h2o_glm <- h2o.glm(x = xlist,
y = yresp,
family = "gaussian",
rand_family = c("gaussian"),
rand_link = c("identity"),
training_frame = h2odata,
HGLM = TRUE,
random_columns = z,
calc_like = TRUE)
print(h2o_glm)
import h2o
from h2o.estimators.glm import H2OGeneralizedLinearEstimator
h2o.init()
# Import the semiconductor dataset
h2o_data = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/glm_test/semiconductor.csv")
# Set the response, predictor, and random columns
y = "y"
x = ["x1","x3","x5","x6"]
z = [0]
# Convert the "Device" column to a factor
h2o_data["Device"] = h2o_data["Device"].asfactor()
# Train and view the model
h2o_glm = H2OGeneralizedLinearEstimator(HGLM=True,
family="gaussian",
rand_family=["gaussian"],
random_columns=z,
rand_link=["identity"],
calc_like=True)
h2o_glm.train(x=x, y=y, training_frame=h2o_data)
print(h2o_glm)