Server Objects¶
Server objects represent an entity that exists on the Driverless AI server.
Dataset¶
Dataset objects correspond to existing datasets on a Driverless AI server. Dataset objects are retrievable using the Client.
API Reference:
-
class
Dataset
¶ Interact with a dataset on the Driverless AI server.
Examples:
# Import the iris dataset ds = dai.datasets.create( data='s3://h2o-public-test-data/smalldata/iris/iris.csv', data_source='s3' ) ds.columns ds.data_source ds.file_path ds.file_size ds.key ds.name ds.shape
-
column_summaries
(columns: Optional[List[str]] = None) DatasetColumnSummaryCollection ¶ Returns a collection of column summaries.
The collection can be indexed by number or column name:
dataset.column_summaries()[0]
dataset.column_summaries()[0:3]
dataset.column_summaries()['C1']
A column summary has the following attributes:
count
: count of non-missing valuesdata_type
: raw data type detected by Driverless AI when the data was importeddatetime_format
: user defined datetime format to be used by Driverless AI (seedataset.set_datetime_format()
)freq
: count of most frequent valuelogical_types
: list of user defined data types to be used by Driverless AI (overridesdata_type
, also seedataset.set_logical_types()
)max
: maximum value for numeric datamean
: mean of values for numeric datamin
: minimum value for numeric datamissing
: count of missing valuesname
: column namesd
: standard deviation of values for numeric dataunique
: count of unique values
Printing the collection or an individual summary displays a histogram along with summary information, like so:
--- C1 --- 4.3|███████ |█████████████████ |██████████ |████████████████████ |████████████ |███████████████████ |█████████████ |████ |████ 7.9|████ Data Type: real Logical Types: ['categorical', 'numerical'] Datetime Format: Count: 150 Missing: 0 Mean: 5.84 SD: 0.828 Min: 4.3 Max: 7.9 Unique: 35 Freq: 10
Parameters: columns ( Optional
[List
[str
]]) – list of column names to include in the collectionExamples:
# Import the iris dataset ds = dai.datasets.create( data='s3://h2o-public-test-data/smalldata/iris/iris.csv', data_source='s3' ) # print column summary for the first three columns print(ds.column_summaries()[0:3])
Return type: DatasetColumnSummaryCollection
-
property
columns
: List[str]¶ List of column names.
Return type: List
[str
]
-
property
creation_timestamp
: float¶ Creation timestamp in seconds since the epoch (POSIX timestamp).
Return type: float
-
property
data_source
: str¶ Original source of data.
Return type: str
-
delete
() None ¶ Delete dataset on Driverless AI server.
Examples:
# Import the iris dataset ds = dai.datasets.create( data='s3://h2o-public-test-data/smalldata/iris/iris.csv', data_source='s3' ) ds.delete()
Return type: None
-
download
(dst_dir: str = '.', dst_file: Optional[str] = None, file_system: Optional[fsspec.spec.AbstractFileSystem] = None, overwrite: bool = False, timeout: float = 30) str ¶ Download dataset from Driverless AI server as a csv.
Parameters: - dst_dir (
str
) – directory where csv will be saved - dst_file (
Optional
[str
]) – name of csv file (overrides default file name) - file_system (
Optional
[ForwardRef
]) – FSSPEC based file system to download to, instead of local file system - overwrite (
bool
) – overwrite existing file - timeout (
float
) – connection timeout in seconds
Examples:
# Import the iris dataset ds = dai.datasets.create( data='s3://h2o-public-test-data/smalldata/iris/iris.csv', data_source='s3' ) ds.download()
Return type: str
- dst_dir (
-
export
(**kwargs: Any) str ¶ Export dataset csv from the Driverless AI server. Returns a relative path for the exported csv.
Note
Export location is configured on the Driverless AI server.
Return type: str
-
property
file_path
: str¶ Path to dataset bin file on the server.
Return type: str
-
property
file_size
: int¶ Size in bytes of dataset bin file on the server.
Return type: int
-
get_used_in_experiments
() Dict[str, List[Experiment]] ¶ - Returns the completed experiments where this dataset has been used
- as the training, testing, or validation dataset.
Warning
Requires DriverlessAI server version 1.10.6 or higher.
Return type: Dict
[str
,List
[Experiment
]]
-
gui
() Hyperlink ¶ Get full URL for the Details page of a dataset on the Driverless AI server.
Return type: Hyperlink
-
head
(num_rows: int = 5) Table ¶ Return headers and first n rows of dataset in a Table.
Parameters: num_rows ( int
) – number of rows to showExamples:
# Load in the iris dataset ds = dai.datasets.create( data='s3://h2o-public-test-data/smalldata/iris/iris.csv', data_source='s3' ) # Print the headers and first 5 rows print(ds.head(num_rows=5))
Return type: Table
-
property
key
: str¶ Universally unique identifier.
Return type: str
-
property
log
: driverlessai._datasets.DatasetLog¶ Log of this dataset.
Return type: DatasetLog
-
merge_by_rows
(other_dataset: Dataset, new_dataset_name: str) Dataset ¶ Merge the specified dataset into this dataset.
- Args:
- other_dataset: dataset that will be merged into this new_dataset_name: name of the resulting dataset
Warning
Requires DriverlessAI server version 1.10.6 or higher.
Return type: Dataset
-
modify_by_code
(code: str, names: Optional[List[str]] = None) Dict[str, Dataset] ¶ Create a dictionary of new datasets from original dataset modified by a Python
code
string, that is the body of a function where:- there is an input variable
X
that represents the original dataset in the form of a datatable frame (dt.Frame) - return type is one of dt.Frame, pd.DataFrame, np.ndarray or a list of those
Parameters: - code (
str
) – Python code that modifiesX
- names (
Optional
[List
[str
]]) – optional list of names for the new dataset(s)
Examples:
# Import the iris dataset ds = dai.datasets.create( data='s3://h2o-public-test-data/smalldata/iris/iris.csv', data_source='s3' ) # Keep the first 4 columns new_dataset = ds.modify_by_code( 'return X[:, :4]', names=['new_dataset'] ) # Split on 4th column new_datasets = ds.modify_by_code( 'return [X[:, :4], X[:, 4:]]', names=['new_dataset_1', 'new_dataset_2'] )
The dictionary will map the dataset
names
to the returned element(s) from the Pythoncode
string.Return type: Dict
[str
,Dataset
]- there is an input variable
-
modify_by_code_preview
(code: str) Table ¶ Get a preview of the dataset modified by a Python
code
string, where:- there exists a variable
X
that represents the original dataset in the form of a datatable frame (dt.Frame) - return type is one of dt.Frame, pd.DataFrame, np.ndarray or a list of those (only first element of the list is shown in preview)
Parameters: code ( str
) – Python code that modifiesX
Examples:
# Import the iris dataset ds = dai.datasets.create( data='s3://h2o-public-test-data/smalldata/iris/iris.csv', data_source='s3' ) # Keep first 4 columns ds.modify_by_code_preview('return X[:, :4]')
Return type: Table
- there exists a variable
-
modify_by_recipe
(recipe: Optional[Union[str, DataRecipe]] = None, names: Optional[List[str]] = None) Dict[str, Dataset] ¶ Create a dictionary of new datasets from original dataset modified by a recipe.
The dictionary will map the dataset
names
to the returned element(s) from the recipe.Parameters: - recipe (
Union
[str
,DataRecipe
,None
]) – path to recipe or url for recipe or data recipe object - names (
Optional
[List
[str
]]) – optional list of names for the new dataset(s)
Examples:
# Import the airlines dataset ds = dai.datasets.create( data='s3://h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip', data_source='s3' ) # Modify original dataset with a recipe new_ds = ds.modify_by_recipe( recipe='https://github.com/h2oai/driverlessai-recipes/blob/master/data/airlines_multiple.py', names=['new_airlines1', 'new_airlines2'] )
Return type: Dict
[str
,Dataset
]- recipe (
-
property
name
: str¶ Display name.
Return type: str
-
rename
(name: str) Dataset ¶ Change dataset display name.
Parameters: name ( str
) – new display nameExamples:
# Import the iris dataset ds = dai.datasets.create( data='s3://h2o-public-test-data/smalldata/iris/iris.csv', data_source='s3' ) ds.name ds.rename(name='new-iris-name') ds.name
Return type: Dataset
-
set_datetime_format
(columns: Dict[str, str]) None ¶ Set datetime format of columns.
Parameters: columns ( Dict
[str
,str
]) – dictionary where the key is the column name and the value is a valid datetime formatExamples:
# Import the Eurodate dataset date = dai.datasets.create( data='s3://h2o-public-test-data/smalldata/jira/v-11-eurodate.csv', data_source='s3' ) # Set the date time format for column ‘ds5' date.set_datetime_format({'ds5': '%d-%m-%y %H:%M'})
Return type: None
-
set_logical_types
(columns: Dict[str, Union[str, List[str]]]) None ¶ Designate columns to have the specified logical types. The logical type is mainly used to determine which transformers to try on the column’s data.
Possible logical types:
'categorical'
'date'
'datetime'
'id'
'numerical'
'text'
Parameters: columns ( Dict
[str
,Union
[str
,List
[str
]]]) – dictionary where the key is the column name and the value is the logical type or a list of logical types for the column (to unset all logical types use a value ofNone
)Example:
# Import the prostate dataset prostate = dai.datasets.create( data='s3://h2o-public-test-data/smalldata/prostate/prostate.csv', data_source='s3' ) # Set the logical types prostate.set_logical_types( {'ID': 'id', 'AGE': ['categorical', 'numerical'], 'RACE': None} )
Return type: None
-
property
shape
: Tuple[int, int]¶ Dimensions (rows, cols).
Return type: Tuple
[int
,int
]
-
split_to_train_test
(train_size: float = 0.5, train_name: Optional[str] = None, test_name: Optional[str] = None, target_column: Optional[str] = None, fold_column: Optional[str] = None, time_column: Optional[str] = None, seed: int = 1234) Dict[str, Dataset] ¶ Split a dataset into train/test sets on the Driverless AI server and return a dictionary of Dataset objects with the keys
'train_dataset'
and'test_dataset'
.Parameters: - train_size (
float
) – proportion of dataset rows to put in the train split - train_name (
Optional
[str
]) – name for the train dataset - test_name (
Optional
[str
]) – name for the test dataset - target_column (
Optional
[str
]) – use stratified sampling to create splits - fold_column (
Optional
[str
]) – keep rows belonging to the same group together - time_column (
Optional
[str
]) – split rows such that the splits are sequential with respect to time - seed (
int
) – random seed
Note
Only one of
target_column
,fold_column
, ortime_column
can be passed at a time.Examples:
# Import the iris dataset ds = dai.datasets.create( data='s3://h2o-public-test-data/smalldata/iris/iris.csv', data_source='s3' ) # Split the iris dataset into train/test sets ds_split = ds.split_to_train_test(train_size=0.7)
Return type: Dict
[str
,Dataset
]- train_size (
-
split_to_train_test_async
(train_size: float = 0.5, train_name: Optional[str] = None, test_name: Optional[str] = None, target_column: Optional[str] = None, fold_column: Optional[str] = None, time_column: Optional[str] = None, seed: int = 1234) DatasetSplitJob ¶ Launch creation of a dataset train/test split on the Driverless AI server and return a DatasetSplitJob object to track the status.
Parameters: - train_size (
float
) – proportion of dataset rows to put in the train split - train_name (
Optional
[str
]) – name for the train dataset - test_name (
Optional
[str
]) – name for the test dataset - target_column (
Optional
[str
]) – use stratified sampling to create splits - fold_column (
Optional
[str
]) – keep rows belonging to the same group together - time_column (
Optional
[str
]) – split rows such that the splits are sequential with respect to time - seed (
int
) – random seed
Note
Only one of
target_column
,fold_column
, ortime_column
can be passed at a time.Examples:
# Import the iris dataset ds = dai.datasets.create( data='s3://h2o-public-test-data/smalldata/iris/iris.csv', data_source='s3' ) # Launch the creation of a dataset train/test split on the DAI server ds_split = ds.split_to_train_test_async(train_size=0.7)
Return type: DatasetSplitJob
- train_size (
-
summarize
() DatasetSummary ¶ Summarize this dataset using OpenAI GPT.
Warning
Requires DriverlessAI server version 1.10.6 or higher.
Warning
A beta API that is subject to future changes.
Return type: DatasetSummary
-
summarize_async
() DatasetSummarizeJob ¶ Summarize this dataset using OpenAI GPT.
- Args:
- openai_api_secret_key: OpenAI API secret key for connecting with OpenAI
Warning
Requires DriverlessAI server version 1.10.6 or higher.
Warning
A beta API that is subject to future changes.
Return type: DatasetSummarizeJob
-
tail
(num_rows: int = 5) Table ¶ Return headers and last n rows of dataset in a Table.
Parameters: num_rows ( int
) – number of rows to showExamples:
ds = dai.datasets.create( data='s3://h2o-public-test-data/smalldata/iris/iris.csv', data_source='s3' ) # Print the headers and last 5 rows print(ds.tail(num_rows=5))
Return type: Table
-
-
class
DatasetJob
¶ Monitor creation of a dataset on the Driverless AI server.
-
is_complete
() bool ¶ Return
True
if job completed successfully.Return type: bool
-
is_running
() bool ¶ Return
True
if job is scheduled, running, or finishing.Return type: bool
-
property
key
: str¶ Universally unique identifier.
Return type: str
-
property
name
: str¶ Display name.
Return type: str
-
result
(silent: bool = False) Dataset ¶ Wait for job to complete, then return a Dataset object.
Parameters: silent ( bool
) – if True, don’t display status updatesReturn type: Dataset
-
status
(verbose: int = 0) str ¶ Return job status string.
Parameters: verbose ( int
) –- 0: short description
- 1: short description with progress percentage
- 2: detailed description with progress percentage
Return type: str
-
Experiment¶
Experiment objects correspond to existing experiments on a Driverless AI server. Experiment objects are retrievable using the Client.
API Reference:
-
class
Experiment
¶ Interact with an experiment on the Driverless AI server.
-
abort
() None ¶ Terminate experiment immediately and only generate logs.
Return type: None
-
property
artifacts
: driverlessai._experiments.ExperimentArtifacts¶ Interact with artifacts that are created when the experiment completes.
Return type: ExperimentArtifacts
-
autodoc
() AutoDoc ¶ Returns the autodoc generated for this experiment. If it has not generated, creates a new autodoc and returns.
Return type: AutoDoc
-
property
creation_timestamp
: float¶ Creation timestamp in seconds since the epoch (POSIX timestamp).
Return type: float
-
property
datasets
: Dict[str, Optional[driverlessai._datasets.Dataset]]¶ Dictionary of
train_dataset
,validation_dataset
, andtest_dataset
used for the experiment.Return type: Dict
[str
,Optional
[Dataset
]]
-
delete
() None ¶ Permanently delete experiment from the Driverless AI server.
Return type: None
-
export_dai_file
(dst_dir: str = '.', dst_file: Optional[str] = None, file_system: Optional[fsspec.spec.AbstractFileSystem] = None, overwrite: bool = False, timeout: float = 30) str ¶ Export experiment from Driverless AI server in dai format.
- Args:
dst_dir: directory where dai file will be saved dst_file: name of dai file (overrides default file name) file_system: FSSPEC based file system to download to,
instead of local file systemoverwrite: overwrite existing file timeout: connection timeout in seconds
Warning
Requires DriverlessAI server version 1.10.0 or higher.
Return type: str
-
export_triton_model
(deploy_predictions: bool = True, deploy_shapley: bool = False, deploy_original_shapley: bool = False, enable_high_concurrency: bool = False) TritonModelArtifact ¶ Exports the model of this experiment as a Triton model.
- Args:
- deploy_predictions: whether to deploy model predictions deploy_shapley: whether to deploy model Shapley deploy_original_shapley: whether to deploy model original Shapley enable_high_concurrency: whether to enable handling multiple requests at once
Returns: a triton model
Warning
A beta API that is subject to future changes.
Return type: TritonModelArtifact
-
finish
() None ¶ Finish experiment by jumping to final pipeline training and generating experiment artifacts.
Return type: None
-
fit_and_transform
(training_dataset: Dataset, validation_split_fraction: float = 0, seed: int = 1234, fold_column: str = None, test_dataset: Dataset = None, validation_dataset: Dataset = None) FitAndTransformation ¶ Transform a dataset, then return a FitAndTransformation object.
Parameters: - training_dataset (
Dataset
) – dataset to be used for refitting the data transformation pipeline, - validation_split_fraction (
float
) – fraction of data used for validation, - seed (
int
) – random seed to use to start a random generator, - fold_column (
Optional
[str
]) – column to create a stratified validation split, - test_dataset (
Optional
[Dataset
]) – dataset to be used for final testing, - validation_dataset (
Optional
[Dataset
]) – dataset to be used for tune parameters of models
Return type: - training_dataset (
-
fit_and_transform_async
(training_dataset: Dataset, validation_split_fraction: float = 0, seed: int = 1234, fold_column: str = None, test_dataset: Dataset = None, validation_dataset: Dataset = None) FitAndTransformationJob ¶ Launch transform job on a dataset and return a FitAndTransformationJob object to track the status.
Parameters: - training_dataset (
Dataset
) – dataset to be used for refitting the data transformation pipeline, - validation_split_fraction (
float
) – fraction of data used for validation, - seed (
int
) – random seed to use to start a random generator, - fold_column (
Optional
[str
]) – column to create a stratified validation split, - test_dataset (
Optional
[Dataset
]) – dataset to be used for final testing, - validation_dataset (
Optional
[Dataset
]) – dataset to be used for tune parameters of models
Return type: - training_dataset (
-
gui
() Hyperlink ¶ Get full URL for the experiment’s page on the Driverless AI server.
Return type: Hyperlink
-
is_complete
() bool ¶ Return
True
if job completed successfully.Return type: bool
-
property
is_deprecated
: bool¶ True
if experiment was created by an old version of Driverless AI and is no longer fully compatible with the current server version.Return type: bool
-
is_running
() bool ¶ Return
True
if job is scheduled, running, or finishing.Return type: bool
-
property
key
: str¶ Universally unique identifier.
Return type: str
-
property
log
: driverlessai._experiments.ExperimentLog¶ Interact with experiment logs.
Return type: ExperimentLog
-
property
metric_plots
: Optional[driverlessai._experiments.ExperimentMetricPlots]¶ Metric plots of this model diagnostic.
Warning
Requires DriverlessAI server version 1.9.0 or higher.
Warning
A beta API that is subject to future changes.
Return type: Optional
[ExperimentMetricPlots
]
-
metrics
() Dict[str, Union[str, float]] ¶ Return dictionary of experiment scorer metrics and AUC metrics, if available.
Return type: Dict
[str
,Union
[str
,float
]]
-
property
name
: str¶ Display name.
Return type: str
-
notifications
() List[Dict[str, str]] ¶ Return list of experiment notification dictionaries.
Return type: List
[Dict
[str
,str
]]
-
predict
(dataset: Union[_datasets.Dataset, pandas.DataFrame], enable_mojo: bool = True, include_columns: Optional[List[str]] = None, include_labels: Optional[bool] = None, include_raw_outputs: Optional[bool] = None, include_shap_values_for_original_features: Optional[bool] = None, include_shap_values_for_transformed_features: Optional[bool] = None, use_fast_approx_for_shap_values: Optional[bool] = None) Prediction ¶ Predict on a dataset, then return a Prediction object.
Parameters: - dataset (
Union
[ForwardRef
,ForwardRef
]) – a Dataset object corresponding to a dataset on the Driverless AI server or a Pandas DataFrame - enable_mojo (
bool
) – use MOJO (if available) to make predictions (server versions >= 1.9.1) - include_columns (
Optional
[List
[str
]]) – list of columns from the dataset to append to the prediction csv - include_labels (
Optional
[bool
]) – append labels in addition to probabilities for classification, ignored for regression (server versions >= 1.10) - include_raw_outputs (
Optional
[bool
]) – append predictions as margins (in link space) to the prediction csv - include_shap_values_for_original_features (
Optional
[bool
]) – append original feature contributions to the prediction csv (server versions >= 1.9.1) - include_shap_values_for_transformed_features (
Optional
[bool
]) – append transformed feature contributions to the prediction csv - use_fast_approx_for_shap_values (
Optional
[bool
]) – speed up prediction contributions with approximation (server versions >= 1.9.1)
Return type: - dataset (
-
predict_async
(dataset: Union[_datasets.Dataset, pandas.DataFrame], enable_mojo: bool = True, include_columns: Optional[List[str]] = None, include_labels: Optional[bool] = None, include_raw_outputs: Optional[bool] = None, include_shap_values_for_original_features: Optional[bool] = None, include_shap_values_for_transformed_features: Optional[bool] = None, use_fast_approx_for_shap_values: Optional[bool] = None) PredictionJobs ¶ Launch prediction job on a dataset and return a PredictionJobs object to track the status.
Parameters: - dataset (
Union
[ForwardRef
,ForwardRef
]) – a Dataset object corresponding to a dataset on the Driverless AI server or a Pandas DataFrame - enable_mojo (
bool
) – use MOJO (if available) to make predictions (server versions >= 1.9.1) - include_columns (
Optional
[List
[str
]]) – list of columns from the dataset to append to the prediction csv - include_labels (
Optional
[bool
]) – append labels in addition to probabilities for classification, ignored for regression (server versions >= 1.10) - include_raw_outputs (
Optional
[bool
]) – append predictions as margins (in link space) to the prediction csv - include_shap_values_for_original_features (
Optional
[bool
]) – append original feature contributions to the prediction csv (server versions >= 1.9.1) - include_shap_values_for_transformed_features (
Optional
[bool
]) – append transformed feature contributions to the prediction csv - use_fast_approx_for_shap_values (
Optional
[bool
]) – speed up prediction contributions with approximation (server versions >= 1.9.1)
Return type: - dataset (
-
rename
(name: str) Experiment ¶ Change experiment display name.
Parameters: name ( str
) – new display nameReturn type: Experiment
-
result
(silent: bool = False) Experiment ¶ Wait for training to complete, then return self.
Parameters: silent ( bool
) – if True, don’t display status updatesReturn type: Experiment
-
retrain
(use_smart_checkpoint: bool = False, final_pipeline_only: bool = False, final_models_only: bool = False, **kwargs: Any) Experiment ¶ Create a new experiment using the same datasets and settings. Through
kwargs
it’s possible to pass new datasets or overwrite settings.Parameters: - use_smart_checkpoint (
bool
) – start experiment from last smart checkpoint - final_pipeline_only (
bool
) – trains final pipeline using smart checkpoint if available, otherwise uses default hyperparameters - final_models_only (
bool
) – trains final pipeline models (but not transformers) using smart checkpoint if available, otherwise uses default hyperparameters and transformers (overrides final_pipeline_only) - kwargs (
Any
) – datasets and experiment settings as defined inexperiments.create()
Return type: - use_smart_checkpoint (
-
retrain_async
(use_smart_checkpoint: bool = False, final_pipeline_only: bool = False, final_models_only: bool = False, **kwargs: Any) Experiment ¶ Launch creation of a new experiment using the same datasets and settings. Through kwargs it’s possible to pass new datasets or overwrite settings.
Parameters: - use_smart_checkpoint (
bool
) – start experiment from last smart checkpoint - final_pipeline_only (
bool
) – trains final pipeline using smart checkpoint if available, otherwise uses default hyperparameters - final_models_only (
bool
) – trains final pipeline models (but not transformers) using smart checkpoint if available, otherwise uses default hyperparameters and transformers (overrides final_pipeline_only) - kwargs (
Any
) – datasets and experiment settings as defined inexperiments.create()
Return type: - use_smart_checkpoint (
-
property
run_duration
: Optional[float]¶ Run duration in seconds.
Return type: Optional
[float
]
-
property
settings
: Dict[str, Any]¶ Experiment settings.
Return type: Dict
[str
,Any
]
-
property
size
: int¶ Size in bytes of all experiment’s files on the Driverless AI server.
Return type: int
-
status
(verbose: int = 0) str ¶ Return job status string.
Parameters: verbose ( int
) –- 0: short description
- 1: short description with progress percentage
- 2: detailed description with progress percentage
Return type: str
-
summary
() None ¶ Print experiment summary.
Warning
A deprecated API that will be removed from v1.10.6.2 onwards.
Return type: None
-
to_dict
() Union[Dict, object] ¶ Dump experiment meta data to a python dictionary
Warning
A beta API that is subject to future changes.
Return type: Union
[Dict
,object
]
-
transform
(dataset: Dataset, enable_mojo: bool = True, include_columns: Optional[List[str]] = None, include_labels: Optional[bool] = True) Transformation ¶ Transform a dataset, then return a Transformation object.
Parameters: - dataset (
Dataset
) – a Dataset object corresponding to a dataset on the Driverless AI server - enable_mojo (
bool
) – use MOJO (if available) to make transformation (server versions >= 1.9.1) - include_columns (
Optional
[List
[str
]]) – list of columns from the dataset to append to the prediction csv - include_labels (
Optional
[bool
]) – append labels in addition to probabilities for classification, ignored for regression (server versions >= 1.10)
Return type: - dataset (
-
transform_async
(dataset: Dataset, enable_mojo: bool = True, include_columns: Optional[List[str]] = None, include_labels: Optional[bool] = None) TransformationJob ¶ - Launch transform job on a dataset and return a TransformationJob object
to track the status.
- Args:
- dataset: a Dataset object corresponding to a dataset on the
- Driverless AI server
- enable_mojo: use MOJO (if available) to make transformations
- (server versions >= 1.9.1)
- include_columns: list of columns from the dataset to append to the
- prediction csv
- include_labels: append labels in addition to probabilities for
- classification, ignored for regression (server versions >= 1.10)
Warning
Requires DriverlessAI server version 1.10.4.1 or higher.
Return type: TransformationJob
-
variable_importance
(iteration: Optional[int] = None, model_index: Optional[int] = None) Optional[Table] ¶ Get variable importance of an iteration in a Table.
Parameters: - iteration (
Optional
[int
]) – which iteration of the experiment - model_index (
Optional
[int
]) – the zero-based index of model that was generated in a particular iteration
Return type: Optional
[Table
]- iteration (
-
-
class
ExperimentMetricPlots
¶ Interacts with metric plots of an experiment on the Driverless AI server.
-
property
actual_vs_predicted_chart
: Optional[Dict[str, Any]]¶ Actual vs predicted Chart of this model diagnostic.
Return type: Optional
[Dict
[str
,Any
]]Returns: an actual vs predicted chart in Vega Lite (v3) format
-
confusion_matrix
(threshold: Optional[float] = None) Optional[List[List[Any]]] ¶ Confusion Matrix of this model diagnostic.
Parameters: threshold ( Optional
[float
]) – a threshold valueReturn type: Optional
[List
[List
[Any
]]]Returns: the confusion matrix as a 2D list
-
property
gains_chart
: Optional[Dict[str, Any]]¶ Cumulative Gain Chart of this model diagnostic.
Return type: Optional
[Dict
[str
,Any
]]Returns: a gains chart in Vega Lite (v3) format
-
property
ks_chart
: Optional[Dict[str, Any]]¶ Kolmogorov-Smirnov Chart of this model diagnostic.
Return type: Optional
[Dict
[str
,Any
]]Returns: a Kolmogorov-Smirnov chart in Vega Lite (v3) format
-
property
lift_chart
: Optional[Dict[str, Any]]¶ Lift Chart of this model diagnostic.
Return type: Optional
[Dict
[str
,Any
]]Returns: a lift chart in Vega Lite (v3) format
-
property
prec_recall_curve
: Optional[Dict[str, Any]]¶ Precision-Recall Curve of this model diagnostic.
Return type: Optional
[Dict
[str
,Any
]]Returns: a precision-recall chart in Vega Lite (v3) format
-
property
residual_plot
: Optional[Dict[str, Any]]¶ Residual Plot with LOESS Curve of this model diagnostic.
Return type: Optional
[Dict
[str
,Any
]]Returns: a residual plot in Vega Lite (v3) format
-
property
roc_curve
: Optional[Dict[str, Any]]¶ ROC Curve of this model diagnostic.
Return type: Optional
[Dict
[str
,Any
]]Returns: a ROC curve in Vega Lite (v3) format
-
property
Experiment Artifacts¶
Experiment artifacts include anything outputted after a successfully completed experiment. These artificats include the autoreport, scoring pipelines, prediction csvs, experiment summary, and logs.
API Reference:
-
class
ExperimentArtifacts
¶ Interact with files created by an experiment on the Driverless AI server.
-
create
(artifact: str) None ¶ (Re)build certain artifacts, if possible.
(re)buildable artifacts:
'autodoc'
'mojo_pipeline'
'python_pipeline'
Parameters: artifact ( str
) – name of artifact to (re)buildReturn type: None
-
download
(only: Union[str, List[str]] = None, dst_dir: str = '.', file_system: Optional[fsspec.spec.AbstractFileSystem] = None, include_columns: Optional[List[str]] = None, overwrite: bool = False, timeout: float = 30) Dict[str, str] ¶ Download experiment artifacts from the Driverless AI server. Returns a dictionary of relative paths for the downloaded artifacts.
Parameters: - only (
Union
[str
,List
[str
]]) – specify specific artifacts to download, useexperiment.artifacts.list()
to see the available artifacts on the Driverless AI server - dst_dir (
str
) – directory where experiment artifacts will be saved - file_system (
Optional
[ForwardRef
]) – FSSPEC based file system to download to, instead of local file system - include_columns (
Optional
[List
[str
]]) – list of dataset columns to append to prediction csvs - overwrite (
bool
) – overwrite existing files - timeout (
float
) – connection timeout in seconds
Return type: Dict
[str
,str
]- only (
-
export
(only: Optional[Union[str, List[str]]] = None, include_columns: Optional[List[str]] = None, **kwargs: Any) Dict[str, str] ¶ Export experiment artifacts from the Driverless AI server. Returns a dictionary of relative paths for the exported artifacts.
Parameters: - only (
Union
[str
,List
[str
],None
]) – specify specific artifacts to export, useex.artifacts.list()
to see the available artifacts on the Driverless AI server - include_columns (
Optional
[List
[str
]]) – list of dataset columns to append to prediction csvs
Note
Export location is configured on the Driverless AI server.
Return type: Dict
[str
,str
]- only (
-
property
file_paths
: Dict[str, str]¶ Paths to artifact files on the server.
Return type: Dict
[str
,str
]
-
list
() List[str] ¶ List of experiment artifacts that exist on the Driverless AI server.
Return type: List
[str
]
-
Experiment Logs¶
Experiment logs list the events recorded during an experiment.
API Reference:
-
class
ExperimentLog
¶ Interact with experiment logs.
-
download
(archive: bool = True, dst_dir: str = '.', dst_file: Optional[str] = None, file_system: Optional[fsspec.spec.AbstractFileSystem] = None, overwrite: bool = False, timeout: float = 30) str ¶ Download experiment logs from the Driverless AI server.
Parameters: - archive (
bool
) – if available, prefer downloading an archive that contains multiple log files and stack traces if any were created - dst_dir (
str
) – directory where logs will be saved - dst_file (
Optional
[str
]) – name of log file (overrides default file name) - file_system (
Optional
[ForwardRef
]) – FSSPEC based file system to download to, instead of local file system - overwrite (
bool
) – overwrite existing file - timeout (
float
) – connection timeout in seconds
Return type: str
- archive (
-
property
file_name
: str¶ Filename of the log file.
Return type: str
-
head
(num_lines: int = 50) str ¶ Print first n lines of log.
Parameters: num_lines ( int
) – number of lines to printReturn type: str
-
tail
(num_lines: int = 50) str ¶ Print last n lines of log.
Parameters: num_lines ( int
) – number of lines to printReturn type: str
-
Predictions¶
Prediction objects are created when predicting on a new dataset.
API Reference:
-
class
Prediction
¶ Interact with predictions from the Driverless AI server.
-
download
(dst_dir: str = '.', dst_file: Optional[str] = None, file_system: Optional[fsspec.spec.AbstractFileSystem] = None, overwrite: bool = False, timeout: float = 30) str ¶ Download csv of predictions.
Parameters: - dst_dir (
str
) – directory where csv will be saved - dst_file (
Optional
[str
]) – name of csv file (overrides default file name) - file_system (
Optional
[ForwardRef
]) – FSSPEC based file system to download to, instead of local file system - overwrite (
bool
) – overwrite existing file - timeout (
float
) – connection timeout in seconds
Return type: str
- dst_dir (
-
property
file_paths
: List[str]¶ Paths to prediction csv files on the server.
Return type: List
[str
]
-
property
included_dataset_columns
: List[str]¶ Columns from dataset that are appended to predictions.
Return type: List
[str
]
-
property
includes_labels
: bool¶ Whether classification labels are appended to predictions.
Return type: bool
-
property
includes_raw_outputs
: bool¶ Whether predictions as margins (in link space) were appended to predictions.
Return type: bool
-
property
includes_shap_values_for_original_features
: bool¶ Whether original feature contributions are appended to predictions (server versions >= 1.9.1).
Return type: bool
-
property
includes_shap_values_for_transformed_features
: bool¶ Whether transformed feature contributions are appended to predictions.
Return type: bool
-
property
keys
: Dict[str, str]¶ Dictionary of unique IDs for entities related to the prediction: dataset: unique ID of dataset used to make predictions experiment: unique ID of experiment used to make predictions prediction: unique ID of predictions
Return type: Dict
[str
,str
]
-
to_pandas
() pandas.DataFrame ¶ Transfer predictions to a local Pandas DataFrame.
Return type: pandas.DataFrame
-
property
used_fast_approx_for_shap_values
: Optional[bool]¶ Whether approximation was used to calculate prediction contributions (server versions >= 1.9.1).
Return type: Optional
[bool
]
-
-
class
PredictionJobs
¶ Monitor creation of predictions on the Driverless AI server.
-
property
included_dataset_columns
: List[str]¶ Columns from dataset that are appended to predictions.
Return type: List
[str
]
-
property
includes_labels
: bool¶ Whether classification labels are appended to predictions.
Return type: bool
-
property
includes_raw_outputs
: bool¶ Whether predictions as margins (in link space) are appended to predictions.
Return type: bool
-
property
includes_shap_values_for_original_features
: bool¶ Whether original feature contributions are appended to predictions (server versions >= 1.9.1).
Return type: bool
-
property
includes_shap_values_for_transformed_features
: bool¶ Whether transformed feature contributions are appended to predictions.
Return type: bool
-
is_complete
() bool ¶ Return
True
if all jobs completed successfully.Return type: bool
-
is_running
() bool ¶ Return
True
if one or more jobs is running or finishing.Return type: bool
-
property
jobs
: Sequence[driverlessai._commons.ServerJob]¶ List of ServerJob objects.
Return type: Sequence
[ServerJob
]
-
property
keys
: Dict[str, str]¶ Dictionary of entity unique IDs: dataset: unique ID of dataset used to make predictions experiment: unique ID of experiment used to make predictions prediction: unique ID of predictions
Return type: Dict
[str
,str
]
-
result
(silent: bool = False) Prediction ¶ Wait for all jobs to complete.
Parameters: silent ( bool
) – if True, don’t display status updatesReturn type: Prediction
-
status
(verbose: int = 0) List[str] ¶ Returns list of job status strings.
Parameters: verbose ( int
) –- 0: short description
- 1: short description with progress percentage
- 2: detailed description with progress percentage
Return type: List
[str
]
-
property
used_fast_approx_for_shap_values
: Optional[bool]¶ Whether approximation was used to calculate prediction contributions (server versions >= 1.9.1).
Return type: Optional
[bool
]
-
property
Transformations¶
Transformation objects are created when transforming a new dataset using a trained model.
API Reference:
-
class
Transformation
¶ Interact with transformed data from the Driverless AI server.
-
download
(dst_dir: str = '.', dst_file: Optional[str] = None, file_system: Optional[fsspec.spec.AbstractFileSystem] = None, overwrite: bool = False, timeout: float = 30) str ¶ Download csv of transformed data.
Parameters: - dst_dir (
str
) – directory where csv will be saved - dst_file (
Optional
[str
]) – name of csv file (overrides default file name) - file_system (
Optional
[ForwardRef
]) – FSSPEC based file system to download to, instead of local file system - overwrite (
bool
) – overwrite existing file - timeout (
float
) – connection timeout in seconds
Return type: str
- dst_dir (
-
property
file_path
: str¶ Paths to transformed csv files on the server.
Return type: str
-
property
included_dataset_columns
: List[str]¶ Columns from dataset that are appended to transformed data.
Return type: List
[str
]
-
property
includes_labels
: bool¶ Whether classification labels are appended to transformed data.
Return type: bool
-
property
keys
: Dict[str, str]¶ Dictionary of unique IDs for entities related to the transformed data: dataset: unique ID of dataset used to make transformed data experiment: unique ID of experiment used to make transformed data transformed_data: unique ID of transformed data
Return type: Dict
[str
,str
]
-
to_pandas
() pandas.DataFrame ¶ Transfer transformed data to a local Pandas DataFrame.
Return type: pandas.DataFrame
-
-
class
TransformationJob
¶ Monitor creation of data transformation on the Driverless AI server.
-
property
included_dataset_columns
: List[str]¶ Columns from dataset that are appended to transformed data.
Return type: List
[str
]
-
property
includes_labels
: bool¶ Whether classification labels are appended to transformed data.
Return type: bool
-
is_complete
() bool ¶ Return
True
if job completed successfully.Return type: bool
-
is_running
() bool ¶ Return
True
if job is scheduled, running, or finishing.Return type: bool
-
property
key
: str¶ Universally unique identifier.
Return type: str
-
property
keys
: Dict[str, str]¶ Dictionary of entity unique IDs: dataset: unique ID of dataset used to make transformed data experiment: unique ID of experiment used to make transformed data transformed_data: unique ID of transformed_data
Return type: Dict
[str
,str
]
-
property
name
: str¶ Display name.
Return type: str
-
result
(silent: bool = False) Transformation ¶ Wait for job to complete, then return self.
Parameters: silent ( bool
) – if True, don’t display status updatesReturn type: Transformation
-
status
(verbose: Optional[int] = None) str ¶ Return short job status description string.
Return type: str
-
property
-
class
FitAndTransformation
¶ Interact with fit and transformed data from the Driverless AI server.
-
download_transformed_test_dataset
(dst_dir: str = '.', dst_file: Optional[str] = None, file_system: Optional[fsspec.spec.AbstractFileSystem] = None, overwrite: bool = False, timeout: float = 30) str ¶ Download fit and transformed test dataset in CSV format.
Parameters: - dst_dir (
str
) – directory where csv will be saved - dst_file (
Optional
[str
]) – name of csv file (overrides default file name) - file_system (
Optional
[ForwardRef
]) – FSSPEC based file system to download to, instead of local file system - overwrite (
bool
) – overwrite existing file - timeout (
float
) – connection timeout in seconds
Return type: str
- dst_dir (
-
download_transformed_training_dataset
(dst_dir: str = '.', dst_file: Optional[str] = None, file_system: Optional[fsspec.spec.AbstractFileSystem] = None, overwrite: bool = False, timeout: float = 30) str ¶ Download fit and transformed training dataset in CSV format.
Parameters: - dst_dir (
str
) – directory where csv will be saved - dst_file (
Optional
[str
]) – name of csv file (overrides default file name) - file_system (
Optional
[ForwardRef
]) – FSSPEC based file system to download to, instead of local file system - overwrite (
bool
) – overwrite existing file - timeout (
float
) – connection timeout in seconds
Return type: str
- dst_dir (
-
download_transformed_validation_dataset
(dst_dir: str = '.', dst_file: Optional[str] = None, file_system: Optional[fsspec.spec.AbstractFileSystem] = None, overwrite: bool = False, timeout: float = 30) str ¶ Download fit and transformed validation dataset in CSV format.
Parameters: - dst_dir (
str
) – directory where csv will be saved - dst_file (
Optional
[str
]) – name of csv file (overrides default file name) - file_system (
Optional
[ForwardRef
]) – FSSPEC based file system to download to, instead of local file system - overwrite (
bool
) – overwrite existing file - timeout (
float
) – connection timeout in seconds
Return type: str
- dst_dir (
-
property
fold_column
: str¶ Column that creates the stratified validation split.
Return type: str
-
property
seed
: int¶ Random seed that used to start a random generator.
Return type: int
-
property
test_dataset
: Optional[driverlessai._datasets.Dataset]¶ Test dataset used for this transformation.
Return type: Optional
[Dataset
]
-
property
training_dataset
: driverlessai._datasets.Dataset¶ Training dataset used for this transformation.
Return type: Dataset
-
property
validation_dataset
: Optional[driverlessai._datasets.Dataset]¶ Validation dataset used for this transformation.
Return type: Optional
[Dataset
]
-
property
validation_split_fraction
: float¶ Fraction of data used for validation.
Return type: float
-
-
class
FitAndTransformationJob
¶ -
is_complete
() bool ¶ Return
True
if job completed successfully.Return type: bool
-
is_running
() bool ¶ Return
True
if job is scheduled, running, or finishing.Return type: bool
-
property
key
: str¶ Universally unique identifier.
Return type: str
-
property
name
: str¶ Display name.
Return type: str
-
result
(silent: bool = False) FitAndTransformation ¶ Wait for job to complete, then return self.
Args: silent: if True, don’t display status updates
Return type: FitAndTransformation
-
status
(verbose: int = 0) str ¶ Return job status string.
Parameters: verbose ( int
) –- 0: short description
- 1: short description with progress percentage
- 2: detailed description with progress percentage
Return type: str
-
Interpretation¶
Interpretation objects correspond to existing interpretations on a Driverless AI server. Interpretation objects are retrievable using the Client.
API Reference:
-
class
Interpretation
¶ Interact with an MLI interpretation on the Driverless AI server.
-
property
artifacts
: driverlessai._mli.InterpretationArtifacts¶ Interact with artifacts that are created when the interpretation completes.
Return type: InterpretationArtifacts
-
property
creation_timestamp
: float¶ Creation timestamp in seconds since the epoch (POSIX timestamp).
Return type: float
-
property
dataset
: Optional[driverlessai._datasets.Dataset]¶ Dataset for the interpretation.
Return type: Optional
[Dataset
]
-
delete
() None ¶ Delete MLI interpretation on Driverless AI server.
Return type: None
-
property
experiment
: Optional[driverlessai._experiments.Experiment]¶ Experiment for the interpretation.
Return type: Optional
[Experiment
]
-
property
explainers
: Sequence[driverlessai._mli.Explainer]¶ Explainers that were ran as an
ExplainerList
object.Warning
Requires DriverlessAI server version 1.10.5 or higher.
Warning
A beta API that is subject to future changes.
Return type: Sequence
[Explainer
]
-
property
explanation_plots
: driverlessai._mli.ExplanationPlots¶ Explanations that were created for the interpretation.
Warning
Requires DriverlessAI server version 1.10.5 or higher.
Warning
A beta API that is subject to future changes.
Return type: ExplanationPlots
-
gui
() Hyperlink ¶ Get full URL for the interpretation’s page on the Driverless AI server.
Return type: Hyperlink
-
is_complete
() bool ¶ Return
True
if job completed successfully.Return type: bool
-
is_running
() bool ¶ Return
True
if job is scheduled, running, or finishing.Return type: bool
-
property
key
: str¶ Universally unique identifier.
Return type: str
-
property
name
: str¶ Display name.
Return type: str
-
rename
(name: str) Interpretation ¶ Change interpretation display name.
Parameters: name ( str
) – new display nameReturn type: Interpretation
-
result
(silent: bool = False) Interpretation ¶ Wait for job to complete, then return an Interpretation object.
Return type: Interpretation
-
property
run_duration
: Optional[float]¶ Run duration in seconds.
Return type: Optional
[float
]
-
property
settings
: Dict[str, Any]¶ Interpretation settings.
Return type: Dict
[str
,Any
]
-
status
(verbose: int = 0) str ¶ Return job status string.
Parameters: verbose ( int
) –- 0: short description
- 1: short description with progress percentage
- 2: detailed description with progress percentage
Return type: str
-
property
Interpretation Artifacts¶
Interpretation artifacts include anything available for download after a successfully completed interpretation.
API Reference:
-
class
InterpretationArtifacts
¶ Interact with files created by an MLI interpretation on the Driverless AI server.
-
download
(only: Union[str, List[str]] = None, dst_dir: str = '.', file_system: Optional[fsspec.spec.AbstractFileSystem] = None, overwrite: bool = False, timeout: float = 30) Dict[str, str] ¶ Download interpretation artifacts from the Driverless AI server. Returns a dictionary of relative paths for the downloaded artifacts.
Parameters: - only (
Union
[str
,List
[str
]]) – specify specific artifacts to download, useinterpretation.artifacts.list()
to see the available artifacts on the Driverless AI server - dst_dir (
str
) – directory where interpretation artifacts will be saved - file_system (
Optional
[ForwardRef
]) – FSSPEC based file system to download to, instead of local file system - overwrite (
bool
) – overwrite existing files - timeout (
float
) – connection timeout in seconds
Return type: Dict
[str
,str
]- only (
-
property
file_paths
: Dict[str, str]¶ Paths to interpretation artifact files on the server.
Return type: Dict
[str
,str
]
-
list
() List[str] ¶ List of interpretation artifacts that exist on the Driverless AI server.
Return type: List
[str
]
-
Explainer¶
Explainer objects correspond to explainers that were run as part an interpretation on a Driverless AI server.
API Reference:
-
class
Explainer
¶ Interact with an MLI explainers on the Driverless AI server.
-
property
artifacts
: driverlessai._mli.ExplainerArtifacts¶ Artifacts of this explainer.
Return type: ExplainerArtifacts
-
property
frames
: Optional[driverlessai._mli.ExplainerFrames]¶ An
ExplainerFrames
object that contains the paths to the explainer frames retrieved from Driverless AI Server. If the explainer frame is not available, the value of this propertiy isNone
.Return type: Optional
[ExplainerFrames
]
-
get_data
(**kwargs: Any) ExplainerData ¶ Retrieve the
ExplainerData
from the Driverless AI server. Raises aRuntimeError
exception if the explainer has not been completed successfully.Use
help(explainer.get_data)
to view help on available keyword arguments.Return type: ExplainerData
-
property
id
: str¶ This explainer’s Id.
Return type: str
-
is_complete
() bool ¶ Return
True
if job completed successfully.Return type: bool
-
is_running
() bool ¶ Return
True
if job is scheduled, running, or finishing.Return type: bool
-
property
key
: str¶ Universally unique identifier.
Return type: str
-
property
name
: str¶ Display name.
Return type: str
-
result
(silent: bool = False) Explainer ¶ Wait for the explainer to complete, then return self.
Parameters: silent ( bool
) – if True, don’t display status updatesReturn type: Explainer
-
status
(verbose: int = 0) str ¶ Return job status string.
Parameters: verbose ( int
) –- 0: short description
- 1: short description with progress percentage
- 2: detailed description with progress percentage
Return type: str
-
property
-
class
ExplainerArtifacts
¶ Interact with artifacts created by an explainer during interpretation on the Driverless AI server.
-
download
(only: Union[str, List[str]] = None, dst_dir: str = '.', file_system: Optional[fsspec.spec.AbstractFileSystem] = None, overwrite: bool = False, timeout: float = 30) Dict[str, str] ¶ Download explainer artifacts from the Driverless AI server. Returns a dictionary of relative paths for the downloaded artifacts.
Parameters: - only (
Union
[str
,List
[str
]]) – specify specific artifacts to download, useexplainer.artifacts.list()
to see the available artifacts on the Driverless AI server - dst_dir (
str
) – directory where interpretation artifacts will be saved - file_system (
Optional
[ForwardRef
]) – FSSPEC based file system to download to, instead of local file system - overwrite (
bool
) – overwrite existing files - timeout (
float
) – connection timeout in seconds
Return type: Dict
[str
,str
]- only (
-
property
file_paths
: Dict[str, str]¶ Paths to explainer artifact files on the server.
Return type: Dict
[str
,str
]
-
list
() List[str] ¶ List of explainer artifacts that exist on the Driverless AI server.
Return type: List
[str
]
-
-
class
ExplainerData
¶ Interact with the result data of an explainer on the Driverless AI server.
-
property
data
: str¶ The explainer result data as string.
Return type: str
-
data_as_dict
() Optional[Union[List, Dict]] ¶ Return the explainer result data as a dictionary.
Return type: Union
[List
,Dict
,None
]
-
data_as_pandas
() Optional[pandas.DataFrame] ¶ Return the explainer result data as a pandas frame.
Warning
A beta API that is subject to future changes.
Return type: Optional
[ForwardRef
]
-
property
data_format
: str¶ The explainer data format.
Return type: str
-
property
data_type
: str¶ The explainer data type.
Return type: str
-
property
-
class
ExplainerFrames
¶ Interact with explanation frames created by an explainer during interpretation on the Driverless AI server.
-
download
(frame_name: Union[str, List[str]] = None, dst_dir: str = '.', file_system: Optional[fsspec.spec.AbstractFileSystem] = None, overwrite: bool = False, timeout: float = 30) Dict[str, str] ¶ Download explainer frames from the Driverless AI server. Returns a dictionary of relative paths for the downloaded artifacts.
Parameters: - frame_name (
Union
[str
,List
[str
]]) – specify specific frame to download, useexplainer.frames.list()
to see the available artifacts on the Driverless AI server - dst_dir (
str
) – directory where interpretation artifacts will be saved - file_system (
Optional
[ForwardRef
]) – Optional[“fsspec.spec.AbstractFileSystem”] = None, - overwrite (
bool
) – overwrite existing files - timeout (
float
) – connection timeout in seconds
Return type: Dict
[str
,str
]- frame_name (
-
frame_as_pandas
(frame_name: str, custom_tmp_dir: Optional[str] = None, keep_downloaded: bool = False) pandas.DataFrame ¶ - Download a frame with the given frame name to a temporary directory and
return it as a
pandas.DataFrame
.- Args:
frame_name: The name of the frame to open. custom_tmp_dir: If specified, use this directory as the temporary
directory instead of the default.- keep_downloaded: If
True
, do not delete the downloaded frame. Otherwise, - the downloaded frame is deleted before returning from this method.
- keep_downloaded: If
Warning
A beta API that is subject to future changes.
Return type: pandas.DataFrame
-
frame_names
() List[str] ¶ List of explainer frames that exist on the Driverless AI server.
Return type: List
[str
]
-
property
frame_paths
: Dict[str, str]¶ Frame names and paths to artifact files on the server.
Return type: Dict
[str
,str
]
-
-
class
ExplainerList
¶ List that lazy loads Explainer objects.
-
count
(value) integer – return number of occurrences of value ¶
-
get_by_key
(key: str) Explainer ¶ - Finds the explainer object that corresponds to the given key, and
initializes it if it is not already initialized.
- Args:
- key: The job key of the desired explainer
Warning
A beta API that is subject to future changes.
Return type: Explainer
-
get_by_name
(name: str) Explainer ¶ - Finds the explainer object that corresponds to the given explainer name, and
initializes it if it is not already initialized.
- Args:
- key: The name of the desired explainer
Warning
A beta API that is subject to future changes.
Return type: Explainer
-
index
(value[, start[, stop]]) integer – return first index of value. ¶ Raises ValueError if the value is not present.
Supporting start and stop arguments is optional, but recommended.
-
Explanation Plots¶
API Reference:
-
class
ExplanationPlots
¶ Interact with an MLI explanation plots on the DriverlessAI server.
-
DT_ID
= 'h2oaicore.mli.byor.recipes.surrogates.dt_surrogate_explainer.DecisionTreeSurrogateExplainer'¶
-
ORIG_SHAP_ID
= 'h2oaicore.mli.byor.recipes.original_contrib_explainer.NaiveShapleyExplainer'¶
-
PD_ID
= 'h2oaicore.mli.byor.recipes.dai_pd_ice_explainer.DaiPdIceExplainer'¶
-
SHAP_SUM_ID
= 'h2oaicore.mli.byor.recipes.shapley_summary_explainer.ShapleySummaryOrigFeatExplainer'¶
-
TRANS_SHAP_ID
= 'h2oaicore.mli.byor.recipes.transformed_shapley_explainer.TransformedShapleyExplainer'¶
-
partial_dependence_plot
(partial_dependence_type: Optional[str] = None, feature_name: Optional[str] = None, class_name: Optional[str] = None, row_number: Optional[int] = None) Dict[str, Any] ¶ Partial dependence plot of this interpretation.
Parameters: - partial_dependence_type (
Optional
[str
]) – type of the partial dependence (either categorical or numeric) - feature_name (
Optional
[str
]) – feature name - class_name (
Optional
[str
]) – name of the class - row_number (
Optional
[int
]) – row number
Return type: Dict
[str
,Any
]Returns: - a partial dependence plot
in Vega Lite (v3) format
- partial_dependence_type (
-
shapley_summary_plot_for_original_features
(class_name: Optional[str] = None) Dict[str, Any] ¶ Shapley summary plot for original features of this interpretation
Parameters: class_name ( Optional
[str
]) – class nameReturn type: Dict
[str
,Any
]Returns: - a shapley summary plot for original features
- in Vega Lite (v3) format
-
shapley_values_for_original_features
(row_number: Optional[int] = None, class_name: Optional[str] = None) Dict[str, Any] ¶ shapley values for transformed features plot of this interpretation.
Parameters: - row_number (
Optional
[int
]) – row number - class_name (
Optional
[str
]) – class name
Return type: Dict
[str
,Any
]Returns: - a shapley values for original features plot
in Vega Lite (v3) format
- row_number (
-
shapley_values_for_transformed_features
(class_name: Optional[str] = None, row_number: Optional[int] = None) Dict[str, Any] ¶ shapley values for transformed features plot of this interpretation.
Parameters: - class_name (
Optional
[str
]) – class name - row_number (
Optional
[int
]) – row number of data
Return type: Dict
[str
,Any
]Returns: - a shapley values for transformed features plot
in Vega Lite (v3) format
- class_name (
-
surrogate_decision_tree
(row_number: Optional[int] = None, class_name: Optional[str] = None) Dict[str, Any] ¶ Surrogate decision tree of this interpretation.
Parameters: - row_number (
Optional
[int
]) – row number - class_name (
Optional
[str
]) – class name
Return type: Dict
[str
,Any
]Returns: a surrogate decision tree in Vega (v3) format
- row_number (
-
Project¶
Project objects correspond to existing projects on a Driverless AI server. Project objects are retrievable using the Client.
API Reference:
-
class
Project
¶ Interact with a project on the Driverless AI server.
-
property
datasets
: Dict[str, Sequence[driverlessai._datasets.Dataset]]¶ Datasets linked to the project.
Return type: Dict
[str
,Sequence
[Dataset
]]
-
delete
(include_experiments: bool = False) None ¶ Permanently delete project from the Driverless AI server.
Parameters: include_experiments ( bool
) – unlink & delete experiments linked to this project.Return type: None
-
property
description
: Optional[str]¶ Project description.
Return type: Optional
[str
]
-
property
experiments
: Sequence[driverlessai._experiments.Experiment]¶ Experiments linked to the project.
Return type: Sequence
[Experiment
]
-
gui
() Hyperlink ¶ Get full URL for the project’s page on the Driverless AI server.
Return type: Hyperlink
-
property
key
: str¶ Universally unique identifier.
Return type: str
-
link_dataset
(dataset: Dataset, dataset_type: str, link_associated_experiments: bool = False) Project ¶ Link a dataset to the project.
Parameters: - dataset (
Dataset
) – a Dataset object corresponding to a dataset on the Driverless AI server - dataset_type (
str
) – can be one of:'train_dataset(s)'
,'validation_dataset(s)'
, or'test_dataset(s)'
- link_associated_experiments (
bool
) – also link experiments that used the dataset (server versions >= 1.9.1)
Return type: - dataset (
-
link_experiment
(experiment: Experiment) Project ¶ Link an experiment to the project.
Parameters: experiment ( Experiment
) – an Experiment object corresponding to an experiment on the Driverless AI serverReturn type: Project
-
property
name
: str¶ Display name.
Return type: str
-
redescribe
(description: str) Project ¶ Change project description.
- Args:
- description: new description
Warning
Requires DriverlessAI server version 1.9.1 or higher.
Return type: Project
-
rename
(name: str) Project ¶ Change project display name.
Parameters: name ( str
) – new display nameReturn type: Project
- Share a project.
Storage connected.
- Args:
- username: Driverless AI username of user to share with role: one of “Default” or “Reader”
Warning
Requires DriverlessAI server version 1.9.3 or higher.
Return type: None
-
property
sharings
: List[Dict[str, Optional[str]]]¶ - Users the project is shared with.
- with H2O.ai Storage connected.
Warning
Requires DriverlessAI server version 1.9.3 or higher.
Return type: List
[Dict
[str
,Optional
[str
]]]
-
unlink_dataset
(dataset: Dataset, dataset_type: str) Project ¶ Unlink a dataset from the project.
Parameters: - dataset (
Dataset
) – a Dataset object corresponding to a dataset on the Driverless AI server - dataset_type (
str
) – can be one of:'train_dataset(s)'
,'validation_dataset(s)'
, or'test_dataset(s)'
Return type: - dataset (
-
unlink_experiment
(experiment: Experiment) Project ¶ Unlink an experiment from the project.
Parameters: experiment ( Experiment
) – an Experiment object corresponding to an experiment on the Driverless AI serverReturn type: Project
Unshare a project Storage connected.
- Args:
- username: Driverless AI username of user to unshare with
Warning
Requires DriverlessAI server version 1.9.3 or higher.
Return type: None
-
property
Recipe¶
Recipe objects correspond to existing recipes on a Driverless AI server. Recipe objects are retrievable using the Client.
API Reference:
-
class
ExplainerRecipe
¶ Interact with an explainer recipe on the Driverless AI server.
-
activate
() Recipe ¶ - Activate this custom recipe if it is inactive, and returns the newly activated custom recipe.
Warning
Requires DriverlessAI server version 1.10.0 or higher.
Return type: Recipe
-
property
code
: str¶ Code for this custom recipe.
Warning
Requires DriverlessAI server version 1.10.3 or higher.
Return type: str
-
deactivate
() None ¶ Deactivate this custom recipe if it is active.
Warning
Requires DriverlessAI server version 1.10.3 or higher.
Return type: None
-
property
for_binomial
: bool¶ True
if explainer works for binomial models.Return type: bool
-
property
for_iid
: bool¶ True
if explainer works for I.I.D. models.Return type: bool
-
property
for_multiclass
: bool¶ True
if explainer works for multiclass models.Return type: bool
-
property
for_regression
: bool¶ True
if explainer works for regression models.Return type: bool
-
property
for_timeseries
: bool¶ True
if explainer works for time series models.Return type: bool
-
property
id
: str¶ Identifier.
Return type: str
-
property
is_active
: bool¶ Whether this recipe is active or not.
Return type: bool
-
property
is_custom
: bool¶ Whether this recipe is a custom recipe or not.
Return type: bool
-
property
key
: str¶ Warning
Requires DriverlessAI server version 1.10.3 or higher.
Return type: str
-
property
name
: str¶ Display name.
Return type: str
-
search_settings
(search_term: str = '', show_description: bool = False, show_dai_name: bool = False, show_valid_values: bool = False) Table ¶ Search explainer settings and print results. Useful when looking for explainer kwargs (see
explainer.with_settings()
) to use when creating interpretations.Parameters: - search_term (
str
) – term to search for (case-insensitive) - show_description (
bool
) – include description in results - show_dai_name (
bool
) – include settings name used by Driverless in the results - show_valid_values (
bool
) – include valid values that can be set for each setting in the results
Return type: - search_term (
-
property
settings
: Dict[str, Any]¶ Explainer settings set by user.
Return type: Dict
[str
,Any
]
-
show_settings
(show_dai_name: bool = False) Table ¶ Display the modified settings and their corresponding values.
Parameters: show_dai_name ( bool
) – include settings name used by Driverless in the resultsReturn type: Table
-
update_code
(code: str) Recipe ¶ - Update the code of this custom recipe and returns the newly created recipe with the updated code.
Warning
Requires DriverlessAI server version 1.10.0 or higher.
Return type: Recipe
-
with_settings
(validate_value: bool = True, **kwargs: Any) ExplainerRecipe ¶ Changes the explainer settings from defaults. Settings reset to defaults everytime this is called.
Parameters: validate_value ( bool
) – Enable value validation. Default is True.Note
To search possible explainer settings for your server version, use
explainer.search_settings(search_term)
.Return type: ExplainerRecipe
-
-
class
ModelRecipe
¶ Interact with a model recipe on the Driverless AI server.
-
activate
() Recipe ¶ - Activate this custom recipe if it is inactive, and returns the newly activated custom recipe.
Warning
Requires DriverlessAI server version 1.10.0 or higher.
Return type: Recipe
-
property
code
: str¶ Code for this custom recipe.
Warning
Requires DriverlessAI server version 1.10.3 or higher.
Return type: str
-
deactivate
() None ¶ Deactivate this custom recipe if it is active.
Warning
Requires DriverlessAI server version 1.10.3 or higher.
Return type: None
-
property
is_active
: bool¶ Whether this recipe is active or not.
Return type: bool
-
property
is_custom
: bool¶ Whether this recipe is a custom recipe or not.
Return type: bool
-
property
is_unsupervised
: bool¶ True
if recipe doesn’t require a target column.Return type: bool
-
property
key
: str¶ Warning
Requires DriverlessAI server version 1.10.3 or higher.
Return type: str
-
property
name
: str¶ Display name.
Return type: str
-
update_code
(code: str) Recipe ¶ - Update the code of this custom recipe and returns the newly created recipe with the updated code.
Warning
Requires DriverlessAI server version 1.10.0 or higher.
Return type: Recipe
-
-
class
ScorerRecipe
¶ Interact with a scorer recipe on the Driverless AI server.
-
activate
() Recipe ¶ - Activate this custom recipe if it is inactive, and returns the newly activated custom recipe.
Warning
Requires DriverlessAI server version 1.10.0 or higher.
Return type: Recipe
-
property
code
: str¶ Code for this custom recipe.
Warning
Requires DriverlessAI server version 1.10.3 or higher.
Return type: str
-
deactivate
() None ¶ Deactivate this custom recipe if it is active.
Warning
Requires DriverlessAI server version 1.10.3 or higher.
Return type: None
-
property
description
: str¶ Recipe description.
Return type: str
-
property
for_binomial
: bool¶ True
if scorer works for binomial models.Return type: bool
-
property
for_multiclass
: bool¶ True
if scorer works for multiclass models.Return type: bool
-
property
for_regression
: bool¶ True
if scorer works for regression models.Return type: bool
-
property
is_active
: bool¶ Whether this recipe is active or not.
Return type: bool
-
property
is_custom
: bool¶ Whether this recipe is a custom recipe or not.
Return type: bool
-
property
key
: str¶ Warning
Requires DriverlessAI server version 1.10.3 or higher.
Return type: str
-
property
name
: str¶ Display name.
Return type: str
-
update_code
(code: str) Recipe ¶ - Update the code of this custom recipe and returns the newly created recipe with the updated code.
Warning
Requires DriverlessAI server version 1.10.0 or higher.
Return type: Recipe
-
-
class
TransformerRecipe
¶ Interact with a transformer recipe on the Driverless AI server.
-
activate
() Recipe ¶ - Activate this custom recipe if it is inactive, and returns the newly activated custom recipe.
Warning
Requires DriverlessAI server version 1.10.0 or higher.
Return type: Recipe
-
property
code
: str¶ Code for this custom recipe.
Warning
Requires DriverlessAI server version 1.10.3 or higher.
Return type: str
-
deactivate
() None ¶ Deactivate this custom recipe if it is active.
Warning
Requires DriverlessAI server version 1.10.3 or higher.
Return type: None
-
property
is_active
: bool¶ Whether this recipe is active or not.
Return type: bool
-
property
is_custom
: bool¶ Whether this recipe is a custom recipe or not.
Return type: bool
-
property
key
: str¶ Warning
Requires DriverlessAI server version 1.10.3 or higher.
Return type: str
-
property
name
: str¶ Display name.
Return type: str
-
update_code
(code: str) Recipe ¶ - Update the code of this custom recipe and returns the newly created recipe with the updated code.
Warning
Requires DriverlessAI server version 1.10.0 or higher.
Return type: Recipe
-
Utility¶
API Reference:
-
class
Hyperlink
¶ Renders clickable link in notebooks but otherwise behaves the same as
str
.
Visualization¶
Visualization objects correspond to existing dataset visualizations on a Driverless AI server. Visualization objects are retrievable using the Client.
API Reference:
-
class
Visualization
¶ Interact with a dataset visualization on the Driverless AI server.
-
add_bar_chart
(x_variable_name: str, y_variable_name: str = '', transpose: bool = False, mark: str = 'bar') CustomPlot ¶ Adds a custom bar chart to this visualization and returns it.
Parameters: - x_variable_name (
str
) – column for the X axis - y_variable_name (
str
) – column for the Y axis, if omitted then number of occurrences is considered - transpose (
bool
) – set toTrue
to flip axes - mark (
str
) – mark type used for the chart, use"point"
to get a Cleveland dot plot
Return type: Returns: a bar chart in Vega Lite (v3) format
- x_variable_name (
-
add_box_plot
(variable_name: str, transpose: bool = False) CustomPlot ¶ Adds a custom box plot to this visualization and returns it.
- Args:
- variable_name: column for the plot
transpose: set to
True
to flip axes - Returns:
- a box plot in Vega Lite (v3) format
Warning
Requires DriverlessAI server version 1.9.0.6 or higher.
Return type: CustomPlot
-
add_dot_plot
(variable_name: str, mark: str = 'point') CustomPlot ¶ Adds a custom dot plot to this visualization and returns it.
- Args:
variable_name: column for the plot mark: mark type used for the plot,
possible values are"point"
,"square"
or"bar"
- Returns:
- a dot plot in Vega Lite (v3) format
Warning
Requires DriverlessAI server version 1.9.0.6 or higher.
Return type: CustomPlot
-
add_grouped_box_plot
(variable_name: str, group_variable_name: str, transpose: bool = False) CustomPlot ¶ Adds a custom grouped box plot to this visualization and returns it.
- Args:
- variable_name: column for the plot
group_variable_name: grouping column
transpose: set to
True
to flip axes - Returns:
- a grouped box plot in Vega Lite (v3) format
Warning
Requires DriverlessAI server version 1.9.0.6 or higher.
Return type: CustomPlot
-
add_heatmap
(variable_names: Optional[List[str]] = None, permute: bool = False, transpose: bool = False, matrix_type: str = 'rectangular') CustomPlot ¶ Adds a custom heatmap to this visualization and returns it.
- Args:
- variable_names: columns for the Heatmap,
- if omitted then all columns are used
- permute: set to
True
to permute rows and columns - using singular value decomposition (SVD)
transpose: set to
True
to flip axes matrix_type: matrix type,possible values are"rectangular"
or"symmetric"
- Returns:
- a heatmap in Vega Lite (v3) format
Warning
Requires DriverlessAI server version 1.9.0.6 or higher.
Return type: CustomPlot
-
add_histogram
(variable_name: str, number_of_bars: int = 0, transformation: str = 'none', mark: str = 'bar') CustomPlot ¶ Adds a custom histogram to this visualization and returns it.
- Args:
variable_name: column for the histogram number_of_bars: number of bars in the histogram transformation: a transformation applied to the column,
possible values are"none"
,"log"
or"square_root"
- mark: mark type used for the histogram, possible values are
"bar"
or"area"
. Use"area"
to get a density polygon.
- Return:
- a histogram in Vega Lite (v3) format
Warning
Requires DriverlessAI server version 1.9.0.6 or higher.
Return type: CustomPlot
-
add_linear_regression
(x_variable_name: str, y_variable_name: str, mark: str = 'point') CustomPlot ¶ Adds a custom linear regression to this visualization and returns it.
- Args:
x_variable_name: column for the X axis y_variable_name: column for the Y axis mark: mark type used for the plot,
possible values are"point"
or"square"
- Return:
- a linear regression in Vega Lite (v3) format
Warning
Requires DriverlessAI server version 1.9.0.6 or higher.
Return type: CustomPlot
-
add_loess_regression
(x_variable_name: str, y_variable_name: str, mark: str = 'point', bandwidth: float = 0.5) CustomPlot ¶ Adds a custom loess regression to this visualization and returns it.
- Args:
x_variable_name: column for the X axis y_variable_name: column for the Y axis,
if omitted then number of occurrences is considered- mark: mark type used for the plot,
- possible values are
"point"
or"square"
bandwidth: interval denoting proportion of cases in smoothing window
- Return:
- a loess regression in Vega Lite (v3) format
Warning
Requires DriverlessAI server version 1.9.0.6 or higher.
Return type: CustomPlot
-
add_parallel_coordinates_plot
(variable_names: List[str] = None, permute: bool = False, transpose: bool = False, cluster: bool = False) CustomPlot ¶ Adds a custom parallel coordinates plot to this visualization and returns it.
- Args:
- variable_names: columns for the plot,
- if omitted then all columns will be used
- permute: set to
True
to permute rows and columns - using singular value decomposition (SVD)
transpose: set to
True
to flip axes cluster: set toTrue
to k-means cluster variables andcolor plot by cluster IDs- Return:
- a parallel coordinates plot in Vega Lite (v3) format
Warning
Requires DriverlessAI server version 1.9.0.6 or higher.
Return type: CustomPlot
-
add_probability_plot
(x_variable_name: str, distribution: str = 'normal', mark: str = 'point', transpose: bool = False) CustomPlot ¶ Adds a custom probability plot to this visualization and returns it.
- Args:
x_variable_name: column for the X axis distribution: type of distribution,
possible values are"normal"
or"uniform"
- mark: mark type used for the plot,
- possible values are
"point"
or"square"
transpose: set to
True
to flip axes- Return:
- a probability plot in Vega Lite (v3) format
Warning
Requires DriverlessAI server version 1.9.0.6 or higher.
Return type: CustomPlot
-
add_quantile_plot
(x_variable_name: str, y_variable_name: str, distribution: str = 'normal', mark: str = 'point', transpose: bool = False) CustomPlot ¶ Adds a custom quantile plot to this visualization and returns it.
- Args:
x_variable_name: column for the X axis y_variable_name: column for the Y axis distribution: type of distribution,
possible values are"normal"
or"uniform"
- mark: mark type used for the plot,
- possible values are
"point"
or"square"
transpose: set to
True
to flip axes- Return:
- a quantile plot in Vega Lite (v3) format
Warning
Requires DriverlessAI server version 1.9.0.6 or higher.
Return type: CustomPlot
-
add_scatter_plot
(x_variable_name: str, y_variable_name: str, mark: str = 'point') CustomPlot ¶ Adds a custom scatter plot to this visualization and returns it.
- Args:
x_variable_name: column for the X axis y_variable_name: column for the Y axis,
if omitted then number of occurrences is considered- mark: mark type used for the plot,
- possible values are
"point"
or"square"
- Return:
- a scatter plot in Vega Lite (v3) format
Warning
Requires DriverlessAI server version 1.9.0.6 or higher.
Return type: CustomPlot
-
property
box_plots
: Dict[str, List[Dict[str, Any]]]¶ Disparate box plots and heteroscedastic box plots of this visualization.
Return type: Dict
[str
,List
[Dict
[str
,Any
]]]
-
property
custom_plots
: List[driverlessai._autoviz.CustomPlot]¶ Custom plots added to this visualization.
Warning
Requires DriverlessAI server version 1.9.0.6 or higher.
Return type: List
[CustomPlot
]
-
delete
() None ¶ Permanently delete visualization from the Driverless AI server.
Return type: None
-
gui
() Hyperlink ¶ Get full URL for the visualization’s page on the Driverless AI server.
Return type: Hyperlink
-
property
heatmaps
: Dict[str, Dict[str, Any]]¶ Data heatmap and Missing values heatmap of this visualization.
Return type: Dict
[str
,Dict
[str
,Any
]]
-
property
histograms
: Dict[str, List[Dict[str, Any]]]¶ Spikes, skewed, and gaps histograms of this visualization.
Return type: Dict
[str
,List
[Dict
[str
,Any
]]]
-
property
is_deprecated
: bool¶ True
if visualization was created by an old version of Driverless AI and is no longer fully compatible with the current server version.Return type: bool
-
property
key
: str¶ Universally unique identifier.
Return type: str
-
property
log
: driverlessai._autoviz.VisualizationLog¶ Log of this visualization.
Return type: VisualizationLog
-
property
name
: str¶ Display name.
Return type: str
-
property
outliers
: List[Dict[str, Any]]¶ Outlier plots of this visualization.
Return type: List
[Dict
[str
,Any
]]
-
property
parallel_coordinates_plot
: Dict[str, Any]¶ Parallel coordinates plot of this visualization.
Return type: Dict
[str
,Any
]
-
property
recommendations
: Optional[Dict[str, Dict[str, str]]]¶ Recommended feature transformations and deletions by this visualization.
Return type: Optional
[Dict
[str
,Dict
[str
,str
]]]
-
remove_custom_plot
(custom_plot: CustomPlot) None ¶ Removes a previously added custom plot from this visualization.
- Args:
- custom_plot: custom plot to be removed & deleted
Warning
Requires DriverlessAI server version 1.9.0.6 or higher.
Return type: None
-
property
scatter_plot
: Optional[Dict[str, Any]]¶ Scatter plot of this visualization.
Return type: Optional
[Dict
[str
,Any
]]
-
-
class
VisualizationJob
¶ Monitor creation of a visualization on the Driverless AI server.
-
is_complete
() bool ¶ Return
True
if job completed successfully.Return type: bool
-
is_running
() bool ¶ Return
True
if job is scheduled, running, or finishing.Return type: bool
-
property
key
: str¶ Universally unique identifier.
Return type: str
-
property
name
: str¶ Display name.
Return type: str
-
result
(silent: bool = False) Visualization ¶ Wait for job to complete, then return a Visualization object.
Parameters: silent ( bool
) – if True, don’t display status updatesReturn type: Visualization
-
status
(verbose: int = 0) str ¶ Return job status string.
Parameters: verbose ( int
) –- 0: short description
- 1: short description with progress percentage
- 2: detailed description with progress percentage
Return type: str
-
-
class
CustomPlot
¶ Interact with a custom plot added into a visualization on the Driverless AI server.
-
property
key
: str¶ Universally unique identifier.
Return type: str
-
property
name
: str¶ Display name.
Return type: str
-
property
plot_data
: Dict[str, Any]¶ Plot in Vega Lite (v3) format.
Return type: Dict
[str
,Any
]
-
property
Admin API¶
The Admin API performs administrative tasks on the Driverless AI server. The Admin API is accessible using the Client.
API Reference:
-
class
Admin
¶ -
property
is_admin
: Optional[bool]¶ Returns
True
if the user is an admin.Return type: Optional
[bool
]
-
list_current_users
() List[str] ¶ - Returns a list of users who are currently
- logged-in to the Driverless AI server.
Warning
Requires DriverlessAI server version 1.10.5 or higher.
Warning
A beta API that is subject to future changes.
Return type: List
[str
]
-
list_datasets
(username: str) List[DatasetProxy] ¶ List datasets of the specified user.
Warning
A beta API that is subject to future changes.
Return type: List
[DatasetProxy
]
-
list_experiments
(username: str) List[ExperimentProxy] ¶ List experiments of the specified user.
Warning
A beta API that is subject to future changes.
Return type: List
[ExperimentProxy
]
-
list_server_logs
() List[DAIServerLog] ¶ Lists the server logs of Driverless AI server.
Warning
Requires DriverlessAI server version 1.10.5 or higher.
Return type: List
[DAIServerLog
]
-
list_users
() List[str] ¶ Returns a list of users in the Driverless AI server.
Return type: List
[str
]
-
transfer_data
(from_user: str, to_user: str) None ¶ Transfer all data of
from_user
toto_user
.Return type: None
-
property
-
class
DatasetProxy
¶ A Proxy for admin access for a dataset in the Driverless AI server.
-
delete
() None ¶ Delete this entity.
Return type: None
-
property
key
: str¶ Universally unique identifier.
Return type: str
-
property
name
: str¶ Display name.
Return type: str
-
property
owner
: str¶ Owner of the object.
Return type: str
-
-
class
ExperimentProxy
¶ A Proxy for admin access for an experiment in the Driverless AI server.
-
property
creation_timestamp
: float¶ Creation timestamp in seconds since the epoch (POSIX timestamp).
Return type: float
-
property
datasets
: Dict[str, Optional[driverlessai._admin.DatasetProxy]]¶ Dictionary of
train_dataset
,``validation_dataset``, andtest_dataset
used for this experiment.Return type: Dict
[str
,Optional
[DatasetProxy
]]
-
delete
() None ¶ Delete this entity.
Return type: None
-
is_complete
() bool ¶ Returns
True
if this job completed successfully.Return type: bool
-
is_running
() bool ¶ Returns
True
if this job is scheduled, running, or finishing.Return type: bool
-
property
key
: str¶ Universally unique identifier.
Return type: str
-
property
name
: str¶ Display name.
Return type: str
-
property
owner
: str¶ Owner of the object.
Return type: str
-
property
run_duration
: Optional[float]¶ Run duration in seconds.
Return type: Optional
[float
]
-
property
settings
: Dict[str, Any]¶ Experiment settings.
Return type: Dict
[str
,Any
]
-
property
size
: int¶ Size in bytes of all experiment’s files on the Driverless AI server.
Return type: int
-
status
(verbose: int = 0) str ¶ Returns the status of this job.
Parameters: verbose ( int
) –- 0: short description
- 1: short description with progress percentage
- 2: detailed description with progress percentage
Return type: str
-
property
-
class
DAIServerLog
¶ An entity to represent a log file in the server.
-
property
created
: str¶ Time of created.
Return type: str
-
download
(dst_dir: str = '.', dst_file: Optional[str] = None, file_system: Optional[fsspec.spec.AbstractFileSystem] = None, overwrite: bool = False, timeout: float = 30) str ¶ Return type: str
-
property
file_name
: str¶ Filename of the log file.
Return type: str
-
head
(num_lines: int = 50) str ¶ Print first n lines of log.
Parameters: num_lines ( int
) – number of lines to printReturn type: str
-
property
last_modified
: str¶ Time of last modification
Return type: str
-
property
size
: int¶ Size of the file in bytes.
Return type: int
-
tail
(num_lines: int = 50) str ¶ Print last n lines of log.
Parameters: num_lines ( int
) – number of lines to printReturn type: str
-
property
Model Diagnostics¶
Model Diagnostic objects correspond to existing model diagnostics on a Driverless AI server. Model Diagnostic objects are retrievable using the Client.
API Reference:
-
class
ModelDiagnostics
¶ Interact with model diagnostics on the Driverless AI server.
-
create
(diagnose_experiment: Experiment, test_dataset: Dataset) ModelDiagnostic ¶ Create a new model diagnostic.
Parameters: - diagnose_experiment (
Experiment
) – experiment that created the diagnosing model - test_dataset (
Dataset
) – test dataset for the diagnosis
Return type: - diagnose_experiment (
-
create_async
(diagnose_experiment: Experiment, test_dataset: Dataset) ModelDiagnosticJob ¶ Launch creation of a new model diagnostic.
Parameters: - diagnose_experiment (
Experiment
) – experiment that created the diagnosing model - test_dataset (
Dataset
) – test dataset for the diagnosis
Return type: ModelDiagnosticJob
- diagnose_experiment (
-
get
(key: str) ModelDiagnostic ¶ Get a ModelDiagnostic object corresponding to a model diagnostic on the Driverless AI server.
Parameters: key ( str
) – Driverless AI server’s unique ID for the model diagnosticReturn type: ModelDiagnostic
-
gui
() Hyperlink ¶ Get full URL for the Model Diagnostics page on the Driverless AI server.
Return type: Hyperlink
-
list
(start_index: int = 0, count: Optional[int] = None) Sequence[ModelDiagnostic] ¶ Return list of ModelDiagnostic objects on the Driverless AI server.
Parameters: - start_index (
int
) – index on Driverless AI server of first model diagnostic in list - count (
Optional
[int
]) – number of model diagnostics to request from the Driverless AI server
Return type: Sequence
[ModelDiagnostic
]- start_index (
-
-
class
ModelDiagnostic
¶ Interact with a model diagnostic on the Driverless AI server.
-
delete
() None ¶ Delete this model diagnostic on Driverless AI server.
Return type: None
-
download_predictions
(dst_dir: str = '.', dst_file: Optional[str] = None, file_system: Optional[fsspec.spec.AbstractFileSystem] = None, overwrite: bool = False, timeout: float = 30) str ¶ Downloads the predictions into a csv file.
Return type: str
-
property
experiment
: driverlessai._experiments.Experiment¶ Diagnosed experiment by this model diagnostic.
Return type: Experiment
-
gui
() Hyperlink ¶ Get full URL for this model diagnostic’s page on the Driverless AI server.
Return type: Hyperlink
-
property
key
: str¶ Universally unique identifier.
Return type: str
-
property
metric_plots
: driverlessai._model_diagnostics.ModelDiagnosticMetricPlots¶ Metric plots of this model diagnostic.
Warning
Requires DriverlessAI server version 1.9.0 or higher.
Warning
A beta API that is subject to future changes.
Return type: ModelDiagnosticMetricPlots
-
property
name
: str¶ Display name.
Return type: str
-
property
scores
: Dict[str, Dict[str, float]]¶ Scores of this model diagnostic.
Return type: Dict
[str
,Dict
[str
,float
]]
-
-
class
ModelDiagnosticMetricPlots
¶ Interacts with metric plots of a model diagnostic on the Driverless AI server.
-
property
actual_vs_predicted_chart
: Optional[Dict[str, Any]]¶ Actual vs predicted Chart of this model diagnostic.
Return type: Optional
[Dict
[str
,Any
]]Returns: an actual vs predicted chart in Vega Lite (v3) format
-
confusion_matrix
(threshold: Optional[float] = None) Optional[List[List[Any]]] ¶ Confusion Matrix of this model diagnostic.
Parameters: threshold ( Optional
[float
]) – a threshold valueReturn type: Optional
[List
[List
[Any
]]]Returns: the confusion matrix as a 2D list
-
property
gains_chart
: Optional[Dict[str, Any]]¶ Cumulative Gain Chart of this model diagnostic.
Return type: Optional
[Dict
[str
,Any
]]Returns: a gains chart in Vega Lite (v3) format
-
property
ks_chart
: Optional[Dict[str, Any]]¶ Kolmogorov-Smirnov Chart of this model diagnostic.
Return type: Optional
[Dict
[str
,Any
]]Returns: a Kolmogorov-Smirnov chart in Vega Lite (v3) format
-
property
lift_chart
: Optional[Dict[str, Any]]¶ Lift Chart of this model diagnostic.
Return type: Optional
[Dict
[str
,Any
]]Returns: a lift chart in Vega Lite (v3) format
-
property
prec_recall_curve
: Optional[Dict[str, Any]]¶ Precision-Recall Curve of this model diagnostic.
Return type: Optional
[Dict
[str
,Any
]]Returns: a precision-recall chart in Vega Lite (v3) format
-
property
residual_histogram
: Optional[Dict[str, Any]]¶ Residual Histogram of this model diagnostic.
Return type: Optional
[Dict
[str
,Any
]]Returns: a residual histogram in Vega Lite (v3) format
-
property
residual_plot
: Optional[Dict[str, Any]]¶ Residual Plot with LOESS Curve of this model diagnostic.
Return type: Optional
[Dict
[str
,Any
]]Returns: a residual plot in Vega Lite (v3) format
-
property
roc_curve
: Optional[Dict[str, Any]]¶ ROC Curve of this model diagnostic.
Return type: Optional
[Dict
[str
,Any
]]Returns: a ROC curve in Vega Lite (v3) format
-
property
AutoDoc¶
AutoDoc objects correspond to existing experiments on a Driverless AI server. AutoDoc objects are retrievable using the Client.
API Reference:
-
class
AutoDocs
¶ Interact with AutoDocs on the Driverless AI server.
-
create
(experiment: Experiment, **config_overrides: Any) AutoDoc ¶ Create a new AutoDoc.
Parameters: - experiment (
Experiment
) – Experiment to create AutoDoc - **config_overrides – Config overrides for AutoDoc that needs to be generated. Please refer below page for available autodoc configs https://docs.h2o.ai/driverless-ai/1-10-lts/docs/userguide/expert_settings/autodoc_settings.html
Return type: - experiment (
-
create_async
(experiment: Experiment, **config_overrides: Any) AutoDocJob ¶ Launch creation of a new AutoDoc.
Parameters: - experiment (
Experiment
) – Experiment to create AutoDoc - **config_overrides – Config overrides for AutoDoc that needs to be generated. Please refer below page for available autodoc configs https://docs.h2o.ai/driverless-ai/1-10-lts/docs/userguide/expert_settings/autodoc_settings.html
Return type: AutoDocJob
- experiment (
-
-
class
AutoDoc
¶ Interact with a AutoDoc on the Driverless AI server.
-
property
creation_time
: float¶ Creation timestamp in seconds since the epoch (POSIX timestamp).
Return type: float
-
download
(dst_dir: str = '.', dst_file: Optional[str] = None, file_system: Optional[fsspec.spec.AbstractFileSystem] = None, overwrite: bool = False, timeout: float = 30) str ¶ Downloads the AutoDoc.
Return type: str
-
property
experiment
: driverlessai._experiments.Experiment¶ Experiment associated with this AutoDoc.
Return type: Experiment
-
property
key
: str¶ Universally unique identifier.
Return type: str
-
property
name
: str¶ Display name.
Return type: str
-
property
Deployment¶
TritonDeployment objects correspond to existing deployments in a Triton inference server on a Driverless AI server. TritonDeployment objects are retrievable using the Client.
API Reference:
-
class
Deployments
¶ Interact with deployments on the Driverless AI server.
-
deploy_to_triton_in_local
(experiment: Experiment, deploy_predictions: bool = True, deploy_shapley: bool = False, deploy_original_shapley: bool = False, enable_high_concurrency: bool = False) TritonDeployment ¶ Deploys the model created by the specified experiment in the local Triton server on the Driverless AI server.
- Args:
- experiment: experiment model deploy_predictions: whether to deploy model predictions deploy_shapley: whether to deploy model Shapley deploy_original_shapley: whether to deploy model original Shapley enable_high_concurrency: whether to enable handling several requests at once
Warning
A beta API that is subject to future changes.
Return type: TritonDeployment
-
deploy_to_triton_in_remote
(experiment: Experiment, deploy_predictions: bool = True, deploy_shapley: bool = False, deploy_original_shapley: bool = False, enable_high_concurrency: bool = False) TritonDeployment ¶ Deploys the model created by the specified experiment in a remote Triton server configured on the Driverless AI server.
- Args:
- experiment: experiment model deploy_predictions: whether to deploy model predictions deploy_shapley: whether to deploy model Shapley deploy_original_shapley: whether to deploy model original Shapley enable_high_concurrency: whether to enable handling several requests at once
Warning
A beta API that is subject to future changes.
Return type: TritonDeployment
-
get_from_triton_in_local
(key: str) TritonDeployment ¶ Get the Triton deployment specified by the key, deployed in the local Triton server on the Driverless AI server.
Parameters: key ( str
) – Driverless AI server’s unique ID for the Triton deploymentReturn type: TritonDeployment
-
get_from_triton_in_remote
(key: str) TritonDeployment ¶ Get the Triton deployment specified by the key, deployed in a remote Triton server configured on the Driverless AI server.
Parameters: key ( str
) – Driverless AI server’s unique ID for the Triton deploymentReturn type: TritonDeployment
-
gui
() Hyperlink ¶ Get full URL for the deployments page on Driverless AI server.
Return type: Hyperlink
-
list_triton_deployments
(start_index: int = 0, count: int = None) Sequence[TritonDeployment] ¶ Returns a list of Triton deployments on the Driverless AI server.
- Args:
- start_index: index on Driverless AI server of first deployment in list count: number of deployment to request from the Driverless AI server
Warning
A beta API that is subject to future changes.
Return type: Sequence
[TritonDeployment
]
-
-
class
TritonDeployment
¶ Interact with a deployment in a Triton inference server on the Driverless AI server.
-
delete
() None ¶ Delete this local Triton deployment.
Warning
A beta API that is subject to future changes.
Return type: None
-
property
is_local_deployment
: bool¶ Whether this Triton deployment is deployed in the embedded (local) Triton server in the Driverless AI server or in a remote Triton server.
Return type: bool
-
property
key
: str¶ Universally unique identifier.
Return type: str
-
load
() None ¶ Load this Triton deployment.
Warning
A beta API that is subject to future changes.
Return type: None
-
property
name
: str¶ Display name.
Return type: str
-
property
state
: str¶ Current state of this Triton deployment.
Return type: str
-
property
triton_model
: driverlessai._deployments.TritonModel¶ Triton model created by this Triton deployment.
Warning
A beta API that is subject to future changes.
Return type: TritonModel
-
property
triton_server_hostname
: str¶ Hostname of the Triton server that this Triton deployment occurred.
Return type: str
-
-
class
TritonModel
¶ A Triton model created by a Triton deployment.
-
inputs
: List[str]¶ Inputs of this Triton model.
-
name
: str¶ Name of this Triton model.
-
outputs
: List[str]¶ Outputs of this Triton model.
-
platform
: str¶ Supported platform of this Triton model.
-
versions
: List[str]¶ Versions of this Triton model.
-