public final class DeepLearningModelInfo extends water.Iced<DeepLearningModelInfo>
Modifier and Type | Class and Description |
---|---|
static class |
DeepLearningModelInfo.GradientCheck |
Modifier and Type | Field and Description |
---|---|
DataInfo |
data_info |
static DeepLearningModelInfo.GradientCheck |
gradientCheck |
static DeepLearningModelInfo.GradientCheck |
gradientCheckBias |
double[] |
mean_a |
DeepLearningModel.DeepLearningParameters |
parameters |
double[] |
rms_weight |
water.util.TwoDimTable |
summaryTable |
Constructor and Description |
---|
DeepLearningModelInfo(DeepLearningModel.DeepLearningParameters params,
water.Key model_id,
DataInfo dinfo,
int nClasses,
water.fvec.Frame train,
water.fvec.Frame valid)
Main constructor
|
Modifier and Type | Method and Description |
---|---|
void |
add_processed_global(long p) |
void |
add_processed_local(long p) |
void |
add(DeepLearningModelInfo other)
Add another model info into this
This will add the weights/biases/learning rate helpers, and the number of processed training samples
Note: It will NOT add the elastic averaging helpers, which are always kept constant (they already are the result of a reduction)
|
protected long |
checksum_impl()
Unique identifier for this model's state, based on raw numbers
|
void |
computeStats()
Compute statistics about this model on all nodes
|
float[] |
computeVariableImportances()
Compute Variable Importance, based on
GEDEON: DATA MINING OF INPUTS: ANALYSING MAGNITUDE AND FUNCTIONAL MEASURES
|
DataInfo |
data_info() |
protected void |
div(double N)
Divide all weights/biases by a real-valued number
|
water.Key |
elasticAverageModelInfoKey() |
Storage.DenseRowMatrix |
get_ada_dx_g(int i) |
Storage.DenseVector |
get_avg_activations(int i) |
Storage.DenseVector |
get_biases_ada_dx_g(int i) |
Storage.DenseVector |
get_biases_momenta(int i) |
Storage.DenseVector |
get_biases(int i) |
DeepLearningModel.DeepLearningParameters |
get_params() |
long |
get_processed_global() |
long |
get_processed_local() |
long |
get_processed_total() |
Storage.DenseRowMatrix |
get_weights_momenta(int i) |
Storage.DenseRowMatrix |
get_weights(int i) |
boolean |
isUnstable() |
water.Key |
localModelInfoKey(water.H2ONode node) |
protected void |
mult(double N)
Multiply all weights/biases by a real-valued number
|
void |
set_params(DeepLearningModel.DeepLearningParameters p,
water.Key<hex.Model> model_id) |
void |
set_processed_global(long p) |
void |
set_processed_local(long p) |
void |
setUnstable() |
long |
size() |
static DeepLearningModelInfo |
timeAverage(DeepLearningModelInfo nodeAverageModel)
TimeAveraging as part of Elastic Averaging Algorithm
Cf.
|
java.lang.String |
toString()
Print a summary table
|
java.lang.String |
toStringAll()
Debugging printout
|
public water.util.TwoDimTable summaryTable
public DataInfo data_info
public DeepLearningModel.DeepLearningParameters parameters
public double[] rms_weight
public double[] mean_a
public static DeepLearningModelInfo.GradientCheck gradientCheck
public static DeepLearningModelInfo.GradientCheck gradientCheckBias
public DeepLearningModelInfo(DeepLearningModel.DeepLearningParameters params, water.Key model_id, DataInfo dinfo, int nClasses, water.fvec.Frame train, water.fvec.Frame valid)
params
- Model parametersdinfo
- Data InfonClasses
- number of classes (1 for regression, 0 for autoencoder)train
- User-given training data frame, prepared by AdaptTestTrainvalid
- User-specified validation data frame, prepared by AdaptTestTrainpublic DataInfo data_info()
public long size()
public final Storage.DenseRowMatrix get_weights(int i)
public final Storage.DenseVector get_biases(int i)
public final Storage.DenseRowMatrix get_weights_momenta(int i)
public final Storage.DenseVector get_biases_momenta(int i)
public final Storage.DenseRowMatrix get_ada_dx_g(int i)
public final Storage.DenseVector get_biases_ada_dx_g(int i)
public final Storage.DenseVector get_avg_activations(int i)
public final DeepLearningModel.DeepLearningParameters get_params()
public final void set_params(DeepLearningModel.DeepLearningParameters p, water.Key<hex.Model> model_id)
public boolean isUnstable()
public void setUnstable()
public long get_processed_global()
public void set_processed_global(long p)
public void add_processed_global(long p)
public long get_processed_local()
public void set_processed_local(long p)
public void add_processed_local(long p)
public long get_processed_total()
public java.lang.String toString()
toString
in class java.lang.Object
public java.lang.String toStringAll()
public void add(DeepLearningModelInfo other)
other
- Other DeepLearningModelInfo to add into this oneprotected void mult(double N)
N
- multiplication factorprotected void div(double N)
N
- divisorpublic float[] computeVariableImportances()
public void computeStats()
protected long checksum_impl()
public static DeepLearningModelInfo timeAverage(DeepLearningModelInfo nodeAverageModel)
nodeAverageModel
- current average of per-node modelspublic water.Key localModelInfoKey(water.H2ONode node)
public water.Key elasticAverageModelInfoKey()