- AbstractBin - Class in hex.tree.dt.binning
-
Single bin holding limits (min excluded), count of samples and count of class 0.
- AbstractBin() - Constructor for class hex.tree.dt.binning.AbstractBin
-
- AbstractCompressedNode - Class in hex.tree.dt
-
- AbstractCompressedNode() - Constructor for class hex.tree.dt.AbstractCompressedNode
-
- AbstractCompressedNode - Class in hex.tree.isoforextended.isolationtree
-
- AbstractCompressedNode(int) - Constructor for class hex.tree.isoforextended.isolationtree.AbstractCompressedNode
-
- AbstractFeatureLimits - Class in hex.tree.dt
-
Limits for one feature.
- AbstractFeatureLimits() - Constructor for class hex.tree.dt.AbstractFeatureLimits
-
- AbstractSplittingRule - Class in hex.tree.dt
-
- AbstractSplittingRule() - Constructor for class hex.tree.dt.AbstractSplittingRule
-
- accumulateLeftStatistics(int, int) - Method in class hex.tree.dt.binning.SplitStatistics
-
- accumulateRightStatistics(int, int) - Method in class hex.tree.dt.binning.SplitStatistics
-
- accuracy(int) - Method in class hex.tree.drf.TreeMeasuresCollector.TreeMeasures
-
Returns a list of accuracies per tree.
- accuracy() - Method in class hex.tree.drf.TreeMeasuresCollector.TreeMeasures
-
- accuracy(int) - Method in class hex.tree.drf.TreeMeasuresCollector.TreeSSE
-
- accuracy(int) - Method in class hex.tree.drf.TreeMeasuresCollector.TreeVotes
-
Returns accuracy per individual trees.
- activation - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
The activation function (non-linearity) to be used by the neurons in the hidden layers.
- activeBC() - Method in class hex.glm.ComputationState
-
- activeCols() - Method in class hex.DataInfo
-
- activeConstraints(ConstrainedGLMUtils.LinearConstraints[], ConstrainedGLMUtils.LinearConstraints[]) - Static method in class hex.glm.ConstrainedGLMUtils
-
- activeData() - Method in class hex.glm.ComputationState
-
- activeDataMultinomial() - Method in class hex.glm.ComputationState
-
- activeDataMultinomial(int) - Method in class hex.glm.ComputationState
-
- actNBins() - Method in class hex.tree.DHistogram
-
- actual_best_model_key - Variable in class hex.deeplearning.DeepLearningModel
-
- actual_mtries() - Method in class hex.tree.DTree
-
- actual_train_samples_per_iteration - Variable in class hex.deeplearning.DeepLearningModel
-
- AdaBoost - Class in hex.adaboost
-
Implementation of AdaBoost algorithm based on
Raul Rojas, "Adaboost and the Super Bowl of Classifiers A Tutorial Introduction to Adaptive Boosting"
Alexandru Niculescu-Mizil and Richard A.
- AdaBoost(AdaBoostModel.AdaBoostParameters) - Constructor for class hex.adaboost.AdaBoost
-
- AdaBoost(boolean) - Constructor for class hex.adaboost.AdaBoost
-
- AdaBoostModel - Class in hex.adaboost
-
- AdaBoostModel(Key<AdaBoostModel>, AdaBoostModel.AdaBoostParameters, AdaBoostModel.AdaBoostOutput) - Constructor for class hex.adaboost.AdaBoostModel
-
- AdaBoostModel.AdaBoostOutput - Class in hex.adaboost
-
- AdaBoostModel.AdaBoostParameters - Class in hex.adaboost
-
- AdaBoostModel.Algorithm - Enum in hex.adaboost
-
- AdaBoostModelOutputV3() - Constructor for class hex.schemas.AdaBoostModelV3.AdaBoostModelOutputV3
-
- AdaBoostModelV3 - Class in hex.schemas
-
- AdaBoostModelV3() - Constructor for class hex.schemas.AdaBoostModelV3
-
- AdaBoostModelV3.AdaBoostModelOutputV3 - Class in hex.schemas
-
- AdaBoostOutput(AdaBoost) - Constructor for class hex.adaboost.AdaBoostModel.AdaBoostOutput
-
- AdaBoostParameters() - Constructor for class hex.adaboost.AdaBoostModel.AdaBoostParameters
-
- AdaBoostParametersV3() - Constructor for class hex.schemas.AdaBoostV3.AdaBoostParametersV3
-
- AdaBoostV3 - Class in hex.schemas
-
- AdaBoostV3() - Constructor for class hex.schemas.AdaBoostV3
-
- AdaBoostV3.AdaBoostParametersV3 - Class in hex.schemas
-
- adaptFrameForScore(Frame, boolean) - Method in class hex.generic.GenericModel
-
- adaptive_rate - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
The implemented adaptive learning rate algorithm (ADADELTA) automatically
combines the benefits of learning rate annealing and momentum
training to avoid slow convergence.
- adaptTestForJavaScoring(Frame, boolean) - Method in class hex.coxph.CoxPHModel
-
- adaptTestForTrain(Frame, boolean, boolean) - Method in class hex.coxph.CoxPHModel
-
- adaptTestForTrain(Frame, boolean, boolean) - Method in class hex.gam.GAMModel
-
This method will massage the input training frame such that it can be used for scoring for a GAM model.
- adaptTestForTrain(Frame, boolean, boolean) - Method in class hex.tree.isofor.IsolationForestModel
-
- adaptValidFrame(Frame, Frame, GAMModel.GAMParameters, String[][], double[][][], double[][][], double[][][], double[][][], int[][][], double[][], double[][], int[]) - Static method in class hex.gam.GAMModel
-
- add(int, int, double) - Method in class hex.coxph.Storage.DenseRowMatrix
-
- add(int, int, double) - Method in interface hex.coxph.Storage.Matrix
-
- add(DeepLearningModelInfo) - Method in class hex.deeplearning.DeepLearningModelInfo
-
Add another model info into this
This will add the weights/biases/learning rate helpers, and the number of processed training samples
Note: It will NOT add the elastic averaging helpers, which are always kept constant (they already are the result of a reduction)
- add(int, int, float) - Method in class hex.deeplearning.Storage.DenseColMatrix
-
- add(int, int, float) - Method in class hex.deeplearning.Storage.DenseRowMatrix
-
- add(int, double) - Method in class hex.deeplearning.Storage.DenseVector
-
- add(int, int, float) - Method in interface hex.deeplearning.Storage.Matrix
-
- add(int, int, float) - Method in class hex.deeplearning.Storage.SparseRowMatrix
-
- add(int, int, int, float) - Method in interface hex.deeplearning.Storage.Tensor
-
- add(int, double) - Method in interface hex.deeplearning.Storage.Vector
-
- add(double, double[], double, double) - Method in class hex.glm.GLMMetricBuilder
-
- add(double, double, double, double) - Method in class hex.glm.GLMMetricBuilder
-
- add(Gram) - Method in class hex.gram.Gram
-
- add(DHistogram) - Method in class hex.tree.DHistogram
-
- add(double[], double[]) - Static method in class hex.tree.FriedmanPopescusH
-
- add_processed_global(long) - Method in class hex.deeplearning.DeepLearningModelInfo
-
- add_processed_local(long) - Method in class hex.deeplearning.DeepLearningModelInfo
-
- addBCEqualityConstraint(List<ConstrainedGLMUtils.LinearConstraints>, GLM.BetaConstraint, String[], int) - Static method in class hex.glm.ConstrainedGLMUtils
-
This method will extract the equality constraint and add to equalityC from beta constraint by doing the following
transformation: val <= beta <= val: transformed to beta-val == 0, add to equalTo constraint.
- addBCGreaterThanConstraint(List<ConstrainedGLMUtils.LinearConstraints>, GLM.BetaConstraint, String[], int) - Static method in class hex.glm.ConstrainedGLMUtils
-
This method will extract the greater than constraint and add to lessThanC from beta constraint by doing the following
transformation: low_val <= beta <= Infinity: transformed to low_val - beta <= 0.
- addBCLessThanConstraint(List<ConstrainedGLMUtils.LinearConstraints>, GLM.BetaConstraint, String[], int) - Static method in class hex.glm.ConstrainedGLMUtils
-
This method will extract the less than constraint and add to lessThanC from beta constraint by doing the following
transformation: -Infinity <= beta <= high_val: transformed to beta - high_val <= 0.
- addCols(double[], int[], int[], ComputationState.GramXY, double[][], double[]) - Static method in class hex.glm.ComputationState.GramXY
-
- addConstraintGradient(double[], ConstrainedGLMUtils.ConstraintsDerivatives[], GLM.GLMGradientInfo) - Static method in class hex.glm.ConstrainedGLMUtils
-
Add contribution of constraints to objective/likelihood/gradient.
- addConstraintObj(double[], ConstrainedGLMUtils.LinearConstraints[], double) - Static method in class hex.glm.ComputationState
-
This method adds to objective function the contribution of
transpose(lambda)*constraint vector + ck/2*transpose(constraint vector)*constraint vector
- addContribToNewChunk(float[], NewChunk[]) - Method in class hex.tree.drf.DRFModel.ScoreContributionsTaskDRF
-
- addContribToNewChunk(float[], int[], NewChunk[]) - Method in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsSortingTask
-
- addContribToNewChunk(float[], NewChunk[]) - Method in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsTask
-
- addContribToNewChunk(double[], NewChunk[]) - Method in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsWithBackgroundTask
-
- AddCSGamColumns - Class in hex.gam.MatrixFrameUtils
-
Given a Frame, the class will generate all the gamified columns.
- AddCSGamColumns(double[][][], double[][][], double[][][], int[], Frame, int[]) - Constructor for class hex.gam.MatrixFrameUtils.AddCSGamColumns
-
- addCustomInfo(IsolationForestModel.IsolationForestOutput) - Method in class hex.tree.isofor.IsolationForest
-
- addCustomInfo(O) - Method in class hex.tree.SharedTree
-
- addCustomInfo(UpliftDRFModel.UpliftDRFOutput) - Method in class hex.tree.uplift.UpliftDRF
-
- addDiag(double[]) - Method in class hex.gram.Gram
-
- addDiag(double) - Method in class hex.gram.Gram
-
- addDiag(double, boolean) - Method in class hex.gram.Gram
-
- addExemplar(Aggregator.Exemplar[], Aggregator.Exemplar) - Static method in class hex.aggregator.Aggregator.Exemplar
-
Add a new exemplar to the input array (doubling it if necessary)
- addGAMPenalty(Integer[], double[][][], int[][]) - Method in class hex.gram.Gram
-
Add the effect of gam column smoothness factor.
- addGAMPenalty(double[][][], int[][], double[][]) - Method in class hex.gram.Gram
-
- addIndividualPred(String[], List<String[]>) - Static method in class hex.anovaglm.ANOVAGLMUtils
-
- AddISGamColumns - Class in hex.gam.MatrixFrameUtils
-
class to gamified all gam_columns with bs set to 2.
- AddISGamColumns(double[][][], int[], int[], int[], Frame) - Constructor for class hex.gam.MatrixFrameUtils.AddISGamColumns
-
- additionalParameters - Variable in class hex.schemas.GenericV3.GenericParametersV3
-
- addKTrees(DTree[]) - Method in class hex.tree.SharedTreeModel.SharedTreeOutput
-
- AddMSGamColumns - Class in hex.gam.MatrixFrameUtils
-
This task will gamified all gam predictors with bs=3.
- AddMSGamColumns(double[][][], double[][][], int[], int[], int[], Frame) - Constructor for class hex.gam.MatrixFrameUtils.AddMSGamColumns
-
- addNewPred2CPM(double[][], Frame, double[][], int[], int[][], boolean) - Static method in class hex.modelselection.ModelSelectionUtils
-
Given current CPM which has been swept already, we need to add the lastest predictor to the current CPM that have
not been swept.
- addNum(int, double) - Method in class hex.DataInfo.Row
-
- addOffset2Cols(int[]) - Method in class hex.glm.ComputationState
-
- addOneRow2ScoringHistory(TwoDimTable, TwoDimTable, int, int, int, int, int, boolean, boolean, List<Integer>, TwoDimTable, int) - Static method in class hex.glm.GLMUtils
-
- addOutput(String, Vec) - Method in class hex.DataInfo
-
- addPenaltyGradient(ConstrainedGLMUtils.ConstraintsDerivatives[], ConstrainedGLMUtils.LinearConstraints[], GLM.GLMGradientInfo, double) - Static method in class hex.glm.ConstrainedGLMUtils
-
This method adds the contribution to the gradient from the penalty term ck/2*transpose(h(beta))*h(beta)
- addPermutationList(List<Integer[]>, List<List<Integer>>) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
-
- addResponse(String[], Vec[]) - Method in class hex.DataInfo
-
- addRow(DataInfo.Row, double) - Method in class hex.gram.Gram
-
- addRowDense(DataInfo.Row, double) - Method in class hex.gram.Gram
-
- addRowSparse(DataInfo.Row, double) - Method in class hex.gram.Gram
-
- addScoringInfo(GLMModel.GLMParameters, int, long, int) - Method in class hex.glm.GLMModel
-
- addSingleVariableGamColumns(Frame, GAMModel.GAMParameters, String[][], double[][][], double[][][], double[][][], int[]) - Static method in class hex.gam.GAMModel
-
- addSubmodel(int, GLMModel.Submodel) - Method in class hex.glm.GLMModel
-
- addToArray(double, double[]) - Method in class hex.DataInfo.Row
-
- addTPGamCols(double[][], double[][]) - Method in class hex.gam.MatrixFrameUtils.AddTPKnotsGamColumns
-
- addTPGamColumns(Frame, GAMModel.GAMParameters, double[][][], double[][][], int[][][], double[][][], double[][], double[][]) - Static method in class hex.gam.GAMModel
-
- AddTPKnotsGamColumns - Class in hex.gam.MatrixFrameUtils
-
- AddTPKnotsGamColumns(GAMModel.GAMParameters, double[][][], double[][][], int[][][], double[][][], Frame) - Constructor for class hex.gam.MatrixFrameUtils.AddTPKnotsGamColumns
-
- AddTPKnotsGamColumns.ApplyTPRegressionSmootherWithKnots - Class in hex.gam.MatrixFrameUtils
-
- addWdataZiEtaOld2Response() - Method in class hex.glm.GLM.GLMDriver
-
Internal H2O method.
- adjustGradient(double[], double[]) - Method in class hex.glm.GLM.BetaConstraint
-
- ADMM - Class in hex.optimization
-
Created by tomasnykodym on 3/2/15.
- ADMM() - Constructor for class hex.optimization.ADMM
-
- ADMM.L1Solver - Class in hex.optimization
-
- ADMM.ProximalSolver - Interface in hex.optimization
-
- aggregate_method - Variable in class hex.schemas.Word2VecTransformV3
-
- Aggregator - Class in hex.aggregator
-
- Aggregator(AggregatorModel.AggregatorParameters) - Constructor for class hex.aggregator.Aggregator
-
- Aggregator(boolean) - Constructor for class hex.aggregator.Aggregator
-
- Aggregator.Exemplar - Class in hex.aggregator
-
- AggregatorModel - Class in hex.aggregator
-
- AggregatorModel(Key, AggregatorModel.AggregatorParameters, AggregatorModel.AggregatorOutput) - Constructor for class hex.aggregator.AggregatorModel
-
- AggregatorModel.AggregatorOutput - Class in hex.aggregator
-
- AggregatorModel.AggregatorParameters - Class in hex.aggregator
-
- AggregatorModelMetrics(int) - Constructor for class hex.aggregator.ModelMetricsAggregator.AggregatorModelMetrics
-
- AggregatorModelOutputV99() - Constructor for class hex.schemas.AggregatorModelV99.AggregatorModelOutputV99
-
- AggregatorModelV99 - Class in hex.schemas
-
- AggregatorModelV99() - Constructor for class hex.schemas.AggregatorModelV99
-
- AggregatorModelV99.AggregatorModelOutputV99 - Class in hex.schemas
-
- AggregatorOutput(Aggregator) - Constructor for class hex.aggregator.AggregatorModel.AggregatorOutput
-
- AggregatorParameters() - Constructor for class hex.aggregator.AggregatorModel.AggregatorParameters
-
- AggregatorParametersV99() - Constructor for class hex.schemas.AggregatorV99.AggregatorParametersV99
-
- AggregatorV99 - Class in hex.schemas
-
- AggregatorV99() - Constructor for class hex.schemas.AggregatorV99
-
- AggregatorV99.AggregatorParametersV99 - Class in hex.schemas
-
- aic(double) - Method in class hex.generic.GenericModel
-
- algoName() - Method in class hex.adaboost.AdaBoostModel.AdaBoostParameters
-
- algoName() - Method in class hex.aggregator.AggregatorModel.AggregatorParameters
-
- algoName() - Method in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
-
- algoName() - Method in class hex.coxph.CoxPHModel.CoxPHParameters
-
- algoName() - Method in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
-
- algoName() - Method in class hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters
-
- algoName() - Method in class hex.gam.GAMModel.GAMParameters
-
- algoName() - Method in class hex.generic.GenericModelParameters
-
- algoName() - Method in class hex.glm.GLMModel.GLMParameters
-
- algoName() - Method in class hex.glrm.GLRMModel.GLRMParameters
-
- algoName() - Method in class hex.grep.GrepModel.GrepParameters
-
- algoName() - Method in class hex.isotonic.IsotonicRegressionModel.IsotonicRegressionParameters
-
- algoName() - Method in class hex.kmeans.KMeansModel.KMeansParameters
-
- algoName() - Method in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
-
- algoName() - Method in class hex.naivebayes.NaiveBayesModel.NaiveBayesParameters
-
- algoName() - Method in class hex.pca.PCAModel.PCAParameters
-
- algoName() - Method in class hex.psvm.PSVMModel.PSVMParameters
-
- algoName() - Method in class hex.rulefit.RuleFitModel.RuleFitParameters
-
- algoName() - Method in class hex.svd.SVDModel.SVDParameters
-
- algoName() - Method in class hex.tree.drf.DRFModel.DRFParameters
-
- algoName() - Method in class hex.tree.dt.DTModel.DTParameters
-
- algoName() - Method in class hex.tree.gbm.GBMModel.GBMParameters
-
- algoName() - Method in class hex.tree.isofor.IsolationForestModel.IsolationForestParameters
-
- algoName() - Method in class hex.tree.isoforextended.ExtendedIsolationForestModel.ExtendedIsolationForestParameters
-
- algoName() - Method in class hex.tree.uplift.UpliftDRFModel.UpliftDRFParameters
-
- algoName() - Method in class hex.word2vec.Word2VecModel.Word2VecParameters
-
- algorithm - Variable in class hex.schemas.RuleFitV3.RuleFitParametersV3
-
- AlgorithmValuesProvider() - Constructor for class hex.schemas.StackedEnsembleV99.StackedEnsembleParametersV99.AlgorithmValuesProvider
-
- allocate2DArray(GamUtils.AllocateType, int) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
-
- allocate3DArray(int, GAMModel.GAMParameters, GamUtils.AllocateType) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
-
- allocate3DArrayCS(int, GAMModel.GAMParameters, GamUtils.AllocateType) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
-
- allocate3DArrayTP(int, GAMModel.GAMParameters, int[], int[]) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
-
- allocateRow(int[]) - Static method in class hex.anovaglm.GenerateTransformColumns
-
- allowedInteractionContainsColumn(int) - Method in class hex.tree.GlobalInteractionConstraints
-
- alpha() - Method in class hex.glm.ComputationState
-
- alpha - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
-
- alpha - Variable in class hex.schemas.GAMV3.GAMParametersV3
-
- alpha - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- alpha - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
- alpha_best() - Method in class hex.glm.GLMModel.GLMOutput
-
- alpha_key - Variable in class hex.schemas.PSVMModelV3.PSVMModelOutputV3
-
- alpha_value - Variable in class hex.glm.GLMModel.Submodel
-
- alphas - Variable in class hex.adaboost.AdaBoostModel.AdaBoostOutput
-
- alphas - Variable in class hex.schemas.GLMRegularizationPathV3
-
- ANOVAGLM - Class in hex.anovaglm
-
- ANOVAGLM(boolean) - Constructor for class hex.anovaglm.ANOVAGLM
-
- ANOVAGLM(ANOVAGLMModel.ANOVAGLMParameters) - Constructor for class hex.anovaglm.ANOVAGLM
-
- ANOVAGLM(ANOVAGLMModel.ANOVAGLMParameters, Key<ANOVAGLMModel>) - Constructor for class hex.anovaglm.ANOVAGLM
-
- ANOVAGLMModel - Class in hex.anovaglm
-
- ANOVAGLMModel(Key<ANOVAGLMModel>, ANOVAGLMModel.ANOVAGLMParameters, ANOVAGLMModel.ANOVAGLMModelOutput) - Constructor for class hex.anovaglm.ANOVAGLMModel
-
- ANOVAGLMModel.ANOVAGLMModelOutput - Class in hex.anovaglm
-
- ANOVAGLMModel.ANOVAGLMParameters - Class in hex.anovaglm
-
- ANOVAGLMModelOutput(ANOVAGLM, DataInfo) - Constructor for class hex.anovaglm.ANOVAGLMModel.ANOVAGLMModelOutput
-
- ANOVAGLMModelOutputV3() - Constructor for class hex.schemas.ANOVAGLMModelV3.ANOVAGLMModelOutputV3
-
- ANOVAGLMModelV3 - Class in hex.schemas
-
- ANOVAGLMModelV3() - Constructor for class hex.schemas.ANOVAGLMModelV3
-
- ANOVAGLMModelV3.ANOVAGLMModelOutputV3 - Class in hex.schemas
-
- ANOVAGLMParameters() - Constructor for class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
-
- ANOVAGLMParametersV3() - Constructor for class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
-
- ANOVAGLMUtils - Class in hex.anovaglm
-
- ANOVAGLMUtils() - Constructor for class hex.anovaglm.ANOVAGLMUtils
-
- ANOVAGLMV3 - Class in hex.schemas
-
- ANOVAGLMV3() - Constructor for class hex.schemas.ANOVAGLMV3
-
- ANOVAGLMV3.ANOVAGLMParametersV3 - Class in hex.schemas
-
- append(T) - Method in class hex.tree.drf.TreeMeasuresCollector.TreeMeasures
-
- append(TreeMeasuresCollector.TreeSSE) - Method in class hex.tree.drf.TreeMeasuresCollector.TreeSSE
-
- append(float, double) - Method in class hex.tree.drf.TreeMeasuresCollector.TreeSSE
-
Append a tree sse to a list of trees.
- append(double, double) - Method in class hex.tree.drf.TreeMeasuresCollector.TreeVotes
-
Append a tree votes to a list of trees.
- append(TreeMeasuresCollector.TreeVotes) - Method in class hex.tree.drf.TreeMeasuresCollector.TreeVotes
-
- appendToStringMetrics(StringBuilder) - Method in class hex.tree.isofor.ModelMetricsAnomaly
-
- apply(Env, Env.StackHelp, AstRoot[]) - Method in class water.rapids.prims.AstPredictedVsActualByVar
-
- apply(Env, Env.StackHelp, AstRoot[]) - Method in class water.rapids.prims.AstSetCalibrationModel
-
- apply(Env, Env.StackHelp, AstRoot[]) - Method in class water.rapids.prims.isotonic.AstPoolAdjacentViolators
-
- apply(Env, Env.StackHelp, AstRoot[]) - Method in class water.rapids.prims.rulefit.AstPredictRule
-
- apply(Env, Env.StackHelp, AstRoot[]) - Method in class water.rapids.prims.tree.AstTreeUpdateWeights
-
- apply(Env, Env.StackHelp, AstRoot[]) - Method in class water.rapids.prims.word2vec.AstWord2VecToFrame
-
- applyAllBounds(double[]) - Method in class hex.glm.GLM.BetaConstraint
-
- applyBounds(double, int) - Method in class hex.glm.GLM.BetaConstraint
-
- applyGramSchmit(double[][]) - Static method in class hex.util.LinearAlgebraUtils
-
- applyStrongRules(double, double) - Method in class hex.glm.ComputationState
-
Apply strong rules to filter out expected inactive (with zero coefficient) predictors.
- applyStrongRulesMultinomial(double, double) - Method in class hex.glm.ComputationState
-
Apply strong rules to filter out expected inactive (with zero coefficient) predictors.
- applyStrongRulesMultinomial_old(double, double) - Method in class hex.glm.ComputationState
-
Apply strong rules to filter out expected inactive (with zero coefficient) predictors.
- applySweepVectors2NewPred(ModelSelectionUtils.SweepVector[][], double[][], int, int[]) - Static method in class hex.modelselection.ModelSelectionUtils
-
This method will sweep the rows/columns added to the CPM due to the addition of the new predictor using sweep
vector arrays.
- ApplyTPRegressionSmootherWithKnots(Frame, GAMModel.GAMParameters, int, double[][], int, double[][], double[][], int[][], double[], double[]) - Constructor for class hex.gam.MatrixFrameUtils.AddTPKnotsGamColumns.ApplyTPRegressionSmootherWithKnots
-
- applyTransform(Frame, String, GAMModel.GAMParameters, double[][], int) - Static method in class hex.gam.GamSplines.ThinPlateDistanceWithKnots
-
This function perform the operation described in 3.3 regarding the part of data Xnmd.
- apriori - Variable in class hex.schemas.NaiveBayesModelV3.NaiveBayesModelOutputV3
-
- archetypes - Variable in class hex.schemas.GLRMModelV3.GLRMModelOutputV3
-
- args() - Method in class water.rapids.prims.AstPredictedVsActualByVar
-
- args() - Method in class water.rapids.prims.AstSetCalibrationModel
-
- args() - Method in class water.rapids.prims.isotonic.AstPoolAdjacentViolators
-
- args() - Method in class water.rapids.prims.rulefit.AstPredictRule
-
- args() - Method in class water.rapids.prims.tree.AstTreeUpdateWeights
-
- args() - Method in class water.rapids.prims.word2vec.AstWord2VecToFrame
-
- assertValidGAMColumnsCountSplineTypes() - Method in class hex.gam.GAM
-
Check and make sure correct BS type is assigned to the various gam_columns specified.
- asSSE(TreeMeasuresCollector.TreeMeasures) - Static method in class hex.tree.drf.TreeMeasuresCollector
-
- AstPoolAdjacentViolators - Class in water.rapids.prims.isotonic
-
- AstPoolAdjacentViolators() - Constructor for class water.rapids.prims.isotonic.AstPoolAdjacentViolators
-
- AstPredictedVsActualByVar - Class in water.rapids.prims
-
- AstPredictedVsActualByVar() - Constructor for class water.rapids.prims.AstPredictedVsActualByVar
-
- AstPredictRule - Class in water.rapids.prims.rulefit
-
Evaluates validity of the given rules on the given data.
- AstPredictRule() - Constructor for class water.rapids.prims.rulefit.AstPredictRule
-
- AstSetCalibrationModel - Class in water.rapids.prims
-
- AstSetCalibrationModel() - Constructor for class water.rapids.prims.AstSetCalibrationModel
-
- AstTreeUpdateWeights - Class in water.rapids.prims.tree
-
Re-weights auxiliary trees in a TreeModel
- AstTreeUpdateWeights() - Constructor for class water.rapids.prims.tree.AstTreeUpdateWeights
-
- AstWord2VecToFrame - Class in water.rapids.prims.word2vec
-
Converts a word2vec model to a Frame
- AstWord2VecToFrame() - Constructor for class water.rapids.prims.word2vec.AstWord2VecToFrame
-
- asVotes(TreeMeasuresCollector.TreeMeasures) - Static method in class hex.tree.drf.TreeMeasuresCollector
-
- auto_rebalance - Variable in class hex.schemas.GBMV3.GBMParametersV3
-
- autoencoder - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
- autoEncoderGradient(int, int) - Method in class hex.deeplearning.Neurons
-
Helper to compute the reconstruction error for auto-encoders (part of the gradient computation)
- auuc_nbins - Variable in class hex.schemas.UpliftDRFV3.UpliftDRFParametersV3
-
- auuc_type - Variable in class hex.schemas.UpliftDRFV3.UpliftDRFParametersV3
-
- average_activation - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
- avg_change_obj - Variable in class hex.schemas.GLRMModelV3.GLRMModelOutputV3
-
- backwardSolve(double[][], double[], double[]) - Static method in class hex.util.LinearAlgebraUtils
-
- balance_classes - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
-
For imbalanced data, balance training data class counts via
over/under-sampling.
- balance_classes - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
For imbalanced data, balance training data class counts via
over/under-sampling.
- balance_classes - Variable in class hex.schemas.GAMV3.GAMParametersV3
-
For imbalanced data, balance training data class counts via
over/under-sampling.
- balance_classes - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
For imbalanced data, balance training data class counts via
over/under-sampling.
- balance_classes - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
For imbalanced data, balance training data class counts via
over/under-sampling.
- balance_classes - Variable in class hex.schemas.NaiveBayesV3.NaiveBayesParametersV3
-
For imbalanced data, balance training data class counts via
over/under-sampling.
- balance_classes - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
-
For imbalanced data, balance training data class counts via
over/under-sampling.
- base_models - Variable in class hex.schemas.StackedEnsembleV99.StackedEnsembleParametersV99
-
- bestCol(DTree.UndecidedNode, DHistogram[], Constraints) - Method in class hex.tree.DTree.DecidedNode
-
- bestSubmodel() - Method in class hex.glm.GLMModel.GLMOutput
-
- bestSubmodelIndex() - Method in class hex.glm.GLMModel.GLMOutput
-
- beta() - Method in class hex.glm.ComputationState
-
- beta - Variable in class hex.glm.ComputationState.GramGrad
-
- beta() - Method in class hex.glm.GLMModel
-
- beta(double) - Method in class hex.glm.GLMModel
-
- beta() - Method in class hex.glm.GLMModel.GLMOutput
-
- beta - Variable in class hex.glm.GLMModel.Submodel
-
- beta() - Method in class hex.modelselection.ModelSelectionModel.ModelSelectionModelOutput
-
- beta - Variable in class hex.schemas.MakeGLMModelV3
-
- beta_constraints - Variable in class hex.schemas.GAMV3.GAMParametersV3
-
- beta_constraints - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- beta_constraints - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
- beta_epsilon - Variable in class hex.schemas.GAMV3.GAMParametersV3
-
- beta_epsilon - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- beta_epsilon - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
- beta_internal() - Method in class hex.glm.GLMModel
-
- beta_std(double) - Method in class hex.glm.GLMModel
-
- BetaConstraint() - Constructor for class hex.glm.GLM.BetaConstraint
-
- BetaConstraint(Frame) - Constructor for class hex.glm.GLM.BetaConstraint
-
- BetaInfo(int, int) - Constructor for class hex.glm.GLM.BetaInfo
-
- betaMultinomial() - Method in class hex.glm.ComputationState
-
- betaMultinomial(int, double[]) - Method in class hex.glm.ComputationState
-
- betaMultinomialFull(int, double[]) - Method in class hex.glm.ComputationState
-
- bin(double) - Method in class hex.tree.DHistogram
-
- bin() - Method in class hex.tree.DTree.Split
-
- binaryEntropy() - Method in class hex.tree.dt.binning.SplitStatistics
-
- binAt(int) - Method in class hex.tree.DHistogram
-
- binIds - Variable in class hex.DataInfo.Row
-
- BinningStrategy - Enum in hex.tree.dt.binning
-
Strategy for binning.
- binomial_double_trees - Variable in class hex.schemas.DRFV3.DRFParametersV3
-
- binomialOpt() - Method in class hex.tree.drf.DRFModel
-
- binomialOpt() - Method in class hex.tree.SharedTreeModel
-
- binomialOpt() - Method in class hex.tree.uplift.UpliftDRFModel
-
- bins(int) - Method in class hex.tree.DHistogram
-
- bits() - Method in class hex.deeplearning.Dropout
-
- blending() - Method in class hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters
-
- blending_frame - Variable in class hex.schemas.StackedEnsembleV99.StackedEnsembleParametersV99
-
- BMulInPlaceTask(DataInfo, double[][], int) - Constructor for class hex.util.LinearAlgebraUtils.BMulInPlaceTask
-
- BMulInPlaceTask(DataInfo, double[][], int, boolean) - Constructor for class hex.util.LinearAlgebraUtils.BMulInPlaceTask
-
- BMulTask(Key<Job>, DataInfo, double[][]) - Constructor for class hex.util.LinearAlgebraUtils.BMulTask
-
- BMulTaskMatrices(Frame) - Constructor for class hex.util.LinearAlgebraUtils.BMulTaskMatrices
-
- bprop(int) - Method in class hex.deeplearning.Neurons
-
Back propagation of error terms stored in _e (for non-final layers)
- bprop(int) - Method in class hex.deeplearning.Neurons.ExpRectifier
-
- bprop(int) - Method in class hex.deeplearning.Neurons.Input
-
- bprop(int) - Method in class hex.deeplearning.Neurons.Maxout
-
- bprop(int) - Method in class hex.deeplearning.Neurons.Output
-
- bprop(int) - Method in class hex.deeplearning.Neurons.Rectifier
-
- bprop(int) - Method in class hex.deeplearning.Neurons.Tanh
-
- bpropMiniBatch(Neurons[], int) - Static method in class hex.deeplearning.DeepLearningTask
-
Helper to apply back-propagation without clearing out the gradients afterwards
Used for gradient checking
- bpropOutputLayer(int) - Method in class hex.deeplearning.Neurons
-
Back-propagate gradient in output layer
- BranchInteractionConstraints - Class in hex.tree
-
Local branch interaction constraints class to save information about allowed interaction between columns indices
- BranchInteractionConstraints(IcedHashSet<IcedInt>) - Constructor for class hex.tree.BranchInteractionConstraints
-
- bs - Variable in class hex.schemas.GAMV3.GAMParametersV3
-
- bsv_count - Variable in class hex.schemas.PSVMModelV3.PSVMModelOutputV3
-
- BufStringDecisionPathTracker() - Constructor for class hex.tree.SharedTreeModel.BufStringDecisionPathTracker
-
- build_glm_model - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
- build_null_model - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- build_tree_one_node - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
-
- buildCalibrationModel(CalibrationHelper.ModelBuilderWithCalibration<M, P, O>, CalibrationHelper.ParamsWithCalibration, Job, M) - Static method in class hex.tree.CalibrationHelper
-
- buildCVGamModels(GAMModel, GLMModel, GAMModel.GAMParameters, String) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
-
- builderVisibility() - Method in class hex.adaboost.AdaBoost
-
- builderVisibility() - Method in class hex.aggregator.Aggregator
-
- builderVisibility() - Method in class hex.coxph.CoxPH
-
- builderVisibility() - Method in class hex.ensemble.StackedEnsemble
-
- builderVisibility() - Method in class hex.gam.GAM
-
- builderVisibility() - Method in class hex.generic.Generic
-
- builderVisibility() - Method in class hex.grep.Grep
-
- builderVisibility() - Method in class hex.isotonic.IsotonicRegression
-
- builderVisibility() - Method in class hex.psvm.PSVM
-
- builderVisibility() - Method in class hex.svd.SVD
-
- builderVisibility() - Method in class hex.tree.dt.DT
-
- builderVisibility() - Method in class hex.tree.isofor.IsolationForest
-
- builderVisibility() - Method in class hex.word2vec.Word2Vec
-
- buildExtractBestR2Model(Frame[], ModelSelectionModel.ModelSelectionParameters, int, String, Model.Parameters.FoldAssignmentScheme) - Static method in class hex.modelselection.ModelSelection
-
Given the training Frame array, build models for each training frame and return the GLMModel with the best
R2 values.
- buildGamFrame(GAMModel.GAMParameters, Frame, Key<Frame>[], String) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
-
- buildGammaGLM(Frame, Frame, int[], long, long, boolean) - Method in class hex.glm.GLM.GLMDriver
-
This method will generate a training frame according to HGLM doc, build a gamma GLM model with dispersion
parameter set to 1 if enabled and calcluate the p-value if enabled.
- buildGLMBuilders(GLMModel.GLMParameters[]) - Static method in class hex.anovaglm.ANOVAGLMUtils
-
- buildGLMBuilders(GLMModel.GLMParameters[]) - Static method in class hex.modelselection.ModelSelectionUtils
-
- buildGLMModel(List<Integer>) - Method in class hex.modelselection.ModelSelection.ModelSelectionDriver
-
- buildGLMParameters(Frame[], ANOVAGLMModel.ANOVAGLMParameters) - Static method in class hex.anovaglm.ANOVAGLMUtils
-
- buildLayer(Frame, int, DTree[], int[], DHistogram[][][], boolean) - Method in class hex.tree.SharedTree
-
- buildLayer(Frame, int, DTree, int[], DHistogram[][][], boolean) - Method in class hex.tree.uplift.UpliftDRF
-
- buildModel() - Method in class hex.deeplearning.DeepLearning.DeepLearningDriver
-
Train a Deep Learning model, assumes that all members are populated
If checkpoint == null, then start training a new model, otherwise continue from a checkpoint
- buildModel() - Method in class hex.modelselection.ModelSelection.ModelSelectionDriver
-
- buildNextKTrees() - Method in class hex.tree.SharedTree.Driver
-
- buildNextNode(Queue<DataFeaturesLimits>, int) - Method in class hex.tree.dt.DT
-
Build next node from the first limits in queue.
- buildRandomCoefficients2DTable(double[], String[]) - Method in class hex.schemas.GLMModelV3.GLMModelOutputV3
-
- buildRIDFrame(GLMModel.GLMParameters, Frame, Frame) - Static method in class hex.glm.GLMUtils
-
- buildSpecificFrame(int[], Frame, String[][], ANOVAGLMModel.ANOVAGLMParameters) - Static method in class hex.anovaglm.ANOVAGLMUtils
-
This method is used to attach the weight/offset columns if they exist and the response columns, specific
transformed columns to a training frames.
- buildTable(String[], boolean) - Method in class hex.glrm.GLRM.Archetypes
-
- buildTrainingFrames(Key<Frame>, int, String[][], ANOVAGLMModel.ANOVAGLMParameters) - Static method in class hex.anovaglm.ANOVAGLMUtils
-
This method will take the frame that contains transformed columns of predictor A, predictor B, interaction
of predictor A and B and generate new training frames that contains the following columns:
- transformed columns of predictor B, interaction of predictor A and B, response
- transformed columns of predictor A, interaction of predictor A and B, response
- transformed columns of predictor A, predictor B, response
- transformed columns of predictor A, predictor B, interaction of predictor A and B, response
The same logic applies if there are more than two individual predictors.
- buildTree(double[][], long, int) - Method in class hex.tree.isoforextended.isolationtree.IsolationTree
-
Implementation of Algorithm 2 (iTree) from paper.
- buildVariableInflationFactors(Frame, DataInfo) - Method in class hex.glm.GLMModel
-
This method will calculate the variable inflation factor of each numerical predictor using the following
procedure:
1.
- buildVariableInflationFactors(GLMModel.GLMParameters, String[], String[]) - Method in class hex.glm.GLMModel
-
- bulkScore0(Chunk[]) - Method in interface hex.psvm.BulkSupportVectorScorer
-
- BulkScorerFactory - Class in hex.psvm
-
- BulkScorerFactory() - Constructor for class hex.psvm.BulkScorerFactory
-
- BulkSupportVectorScorer - Interface in hex.psvm
-
- calc_like - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- calc_like - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
- calcCounts(CoxPHModel, CoxPH.CoxPHTask) - Method in class hex.coxph.CoxPH.CoxPHDriver
-
- calcCumhaz_0(CoxPHModel, CoxPH.CoxPHTask) - Method in class hex.coxph.CoxPH.CoxPHDriver
-
- calcKernel(DataInfo.Row, DataInfo.Row) - Method in interface hex.psvm.psvm.Kernel
-
- calcKernelWithLabel(DataInfo.Row, DataInfo.Row) - Method in interface hex.psvm.psvm.Kernel
-
- calcLoglik(DataInfo, CoxPH.ComputationState, CoxPHModel.CoxPHParameters, CoxPH.CoxPHTask) - Method in class hex.coxph.CoxPH.CoxPHDriver
-
- calcModelStats(CoxPHModel, double[], CoxPH.ComputationState) - Method in class hex.coxph.CoxPH.CoxPHDriver
-
- calculate(int, double, double, double, double) - Method in interface hex.glm.DispersionTask.ComputeMaxSumSeriesTsk.CalWVdWVd2WV
-
- calculate(int, double, double, double, double) - Method in class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk.EvalLogD2WVEnv
-
- calculate(int, double, double, double, double) - Method in class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk.EvalLogDWVEnv
-
- calculate(int, double, double, double, double) - Method in class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk.EvalLogWVEnv
-
- calculate_all_beta(double[], Frame, Frame, int, double[][]) - Method in class hex.glm.GLM.GLMDriver
-
This method will estimate beta and ubeta using QR decomposition.
- CalculateAugZW(Job, DataInfo, GLMModel.GLMParameters, Frame, int, int, int) - Constructor for class hex.glm.GLMTask.CalculateAugZW
-
- CalculateAugZWData(Job, DataInfo, int) - Constructor for class hex.glm.GLMTask.CalculateAugZWData
-
- CalculateAugZWRandCols(Job, Frame, int, long) - Constructor for class hex.glm.GLMTask.CalculateAugZWRandCols
-
- calculateConstraintSquare(ComputationState, ConstrainedGLMUtils.LinearConstraints[], ConstrainedGLMUtils.LinearConstraints[]) - Static method in class hex.glm.ConstrainedGLMUtils
-
- CalculateEtaInfo(int[]) - Constructor for class hex.glm.GLMTask.CalculateEtaInfo
-
- calculatem(int) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
-
For thin plate regression, given d (number of predictors for a smooth), it will return m where (m-1) is the
maximum polynomial degree in the polynomial basis functions.
- calculateM(int, int) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
-
- calculateNewWAugXZ(Frame, int[]) - Method in class hex.glm.GLM.GLMDriver
-
- calculatePredComboNumber(int, int) - Static method in class hex.anovaglm.ANOVAGLMUtils
-
Given the number of individual predictors, the highest order of interaction terms allowed, this method will
calculate the total number of predictors that will be used to build the full model.
- calculatePValuesFromZValues(double[], boolean, long) - Static method in class hex.glm.GLMModel.GLMOutput
-
- calculateSplitStatisticsForCategoricalFeature() - Method in class hex.tree.dt.binning.FeatureBins
-
- calculateSplitStatisticsForCategoricalFeature(int) - Method in class hex.tree.dt.binning.Histogram
-
- calculateSplitStatisticsForNumericFeature() - Method in class hex.tree.dt.binning.FeatureBins
-
Calculates statistics for bins depending on all other bins - see BinAccumulatedStatistics.
- calculateSplitStatisticsForNumericFeature(int) - Method in class hex.tree.dt.binning.Histogram
-
- calculateStatisticsForCategoricalFeatureBinomialClassification() - Method in class hex.tree.dt.binning.FeatureBins
-
- calculateStdErrFromZValues(double[], double[]) - Static method in class hex.glm.GLMModel.GLMOutput
-
- calculateVarimp() - Method in class hex.glm.GLMModel.GLMOutput
-
- calculateVarimpBase(double[], int[], double[]) - Static method in class hex.schemas.GLMModelV3
-
- calculateVarimpMultinomial(double[], int[], double[][]) - Static method in class hex.schemas.GLMModelV3.GLMModelOutputV3
-
- CalculateW4Data(Job, DataInfo, GLMModel.GLMParameters, int[], double[], double[], double[], double[], double, double) - Constructor for class hex.glm.GLMTask.CalculateW4Data
-
- CalculateW4Rand(Job, GLMModel.GLMParameters, int[], double[], double[], double[]) - Constructor for class hex.glm.GLMTask.CalculateW4Rand
-
- calDerivatives(ConstrainedGLMUtils.LinearConstraints[], List<String>) - Static method in class hex.glm.ComputationState
-
This methold will calculate the first derivative of h(beta).
- calDerivConst(Chunk[], NewChunk[], int, int[]) - Method in class hex.glm.DispersionTask.ComputeTweedieConstTsk
-
- calDev(boolean, int[], int, Chunk[], Chunk[], int, GLMModel.GLMWeightsFun, GLMModel.GLMWeightsFun[], double[], double[]) - Method in class hex.glm.GLMTask.ReturnGLMMMERunInfo
-
- calGradient(double[], ComputationState, GLM.GLMGradientSolver, double[], double[], ConstrainedGLMUtils.LinearConstraints[], ConstrainedGLMUtils.LinearConstraints[]) - Static method in class hex.glm.ConstrainedGLMUtils
-
This method calls getGradient to calculate the gradient, likelhood and objective function values.
- calGram(ConstrainedGLMUtils.ConstraintsDerivatives[]) - Static method in class hex.glm.ComputationState
-
This method to calculate contribution of penalty to gram (d2H/dbidbj), refer to the doc Section VI.II
- calibrate_model - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
-
- calibrateModel() - Method in interface hex.tree.CalibrationHelper.ParamsWithCalibration
-
- calibrateModel() - Method in class hex.tree.SharedTreeModel.SharedTreeParameters
-
- calibration_frame - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
-
- calibration_method - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
-
- CalibrationHelper - Class in hex.tree
-
- CalibrationHelper() - Constructor for class hex.tree.CalibrationHelper
-
- CalibrationHelper.CalibrationMethod - Enum in hex.tree
-
- CalibrationHelper.ModelBuilderWithCalibration<M extends hex.Model<M,P,O>,P extends hex.Model.Parameters,O extends hex.Model.Output> - Interface in hex.tree
-
- CalibrationHelper.OutputWithCalibration - Interface in hex.tree
-
- CalibrationHelper.ParamsWithCalibration - Interface in hex.tree
-
- calibrationModel() - Method in interface hex.tree.CalibrationHelper.OutputWithCalibration
-
- calibrationModel() - Method in class hex.tree.SharedTreeModel.SharedTreeOutput
-
- calJMaxConst(Chunk[], NewChunk[], int, int) - Method in class hex.glm.DispersionTask.ComputeTweedieConstTsk
-
- calLogWVMax(Chunk[], int, int, double) - Method in class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk
-
- calLogZ(Chunk[], int, int) - Method in class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk
-
- calMultipliersNGradients(double[][], double[][], double[], double[], int[], Chunk, Chunk[], int, int, int) - Method in class hex.glm.GLMTask.GLMMultinomialGradientBaseTask
-
- calMultipliersNGradients(double[][], double[][], double[], double[], int[], Chunk, Chunk[], int, int, int) - Method in class hex.glm.GLMTask.GLMMultinomialGradientTask
-
- calPart1LogConst(Chunk[], NewChunk[], int, int) - Method in class hex.glm.DispersionTask.ComputeTweedieConstTsk
-
- calPart1LogPIConst(Chunk[], NewChunk[], int, int) - Method in class hex.glm.DispersionTask.ComputeTweedieConstTsk
-
- calPart2Const(Chunk[], NewChunk[], int, int) - Method in class hex.glm.DispersionTask.ComputeTweedieConstTsk
-
- calR2Scale(Frame, String) - Static method in class hex.modelselection.ModelSelectionUtils
-
- calSmoothNess(double[], double[][][], int[][]) - Static method in class hex.glm.GLMUtils
-
- calSmoothNess(double[][], double[][][], int[][]) - Static method in class hex.glm.GLMUtils
-
- calZConst(Chunk[], NewChunk[], int, int) - Method in class hex.glm.DispersionTask.ComputeTweedieConstTsk
-
- can_build() - Method in class hex.adaboost.AdaBoost
-
- can_build() - Method in class hex.aggregator.Aggregator
-
- can_build() - Method in class hex.anovaglm.ANOVAGLM
-
- can_build() - Method in class hex.coxph.CoxPH
-
- can_build() - Method in class hex.deeplearning.DeepLearning
-
Types of models we can build with DeepLearning
- can_build() - Method in class hex.ensemble.StackedEnsemble
-
- can_build() - Method in class hex.gam.GAM
-
- can_build() - Method in class hex.generic.Generic
-
- can_build() - Method in class hex.glm.GLM
-
- can_build() - Method in class hex.glrm.GLRM
-
- can_build() - Method in class hex.grep.Grep
-
- can_build() - Method in class hex.isotonic.IsotonicRegression
-
- can_build() - Method in class hex.kmeans.KMeans
-
- can_build() - Method in class hex.modelselection.ModelSelection
-
- can_build() - Method in class hex.naivebayes.NaiveBayes
-
- can_build() - Method in class hex.pca.PCA
-
- can_build() - Method in class hex.psvm.PSVM
-
- can_build() - Method in class hex.rulefit.RuleFit
-
- can_build() - Method in class hex.svd.SVD
-
- can_build() - Method in class hex.tree.drf.DRF
-
- can_build() - Method in class hex.tree.dt.DT
-
- can_build() - Method in class hex.tree.gbm.GBM
-
- can_build() - Method in class hex.tree.isofor.IsolationForest
-
- can_build() - Method in class hex.tree.isoforextended.ExtendedIsolationForest
-
- can_build() - Method in class hex.tree.uplift.UpliftDRF
-
- can_build() - Method in class hex.word2vec.Word2Vec
-
- canLearnFromNAs() - Method in class hex.tree.SharedTree
-
- canonical() - Method in class hex.glm.GLMModel.GLMParameters
-
- catcnt - Variable in class water.api.ModelMetricsGLRMV99
-
- CategoricalBin - Class in hex.tree.dt.binning
-
For categorical features values are already binned to categories - each bin corresponds to one value (category)
- CategoricalBin(int, int, int) - Constructor for class hex.tree.dt.binning.CategoricalBin
-
- CategoricalBin(int) - Constructor for class hex.tree.dt.binning.CategoricalBin
-
- CategoricalFeatureLimits - Class in hex.tree.dt
-
Limits for one feature.
- CategoricalFeatureLimits(boolean[]) - Constructor for class hex.tree.dt.CategoricalFeatureLimits
-
- CategoricalFeatureLimits(double[]) - Constructor for class hex.tree.dt.CategoricalFeatureLimits
-
- CategoricalFeatureLimits(int) - Constructor for class hex.tree.dt.CategoricalFeatureLimits
-
- CategoricalSplittingRule - Class in hex.tree.dt
-
- CategoricalSplittingRule(int, boolean[], double) - Constructor for class hex.tree.dt.CategoricalSplittingRule
-
- CategoricalSplittingRule(boolean[]) - Constructor for class hex.tree.dt.CategoricalSplittingRule
-
- caterr - Variable in class water.api.ModelMetricsGLRMV99
-
- catNAFill() - Method in class hex.DataInfo
-
- catNAFill(int) - Method in class hex.DataInfo
-
- catTreshold - Variable in class hex.rulefit.Condition
-
- centers - Variable in class hex.schemas.KMeansModelV3.KMeansModelOutputV3
-
- centers_std - Variable in class hex.schemas.KMeansModelV3.KMeansModelOutputV3
-
- centralizeFrame(Frame, String, GAMModel.GAMParameters) - Method in class hex.gam.MatrixFrameUtils.GenCSSplineGamOneColumn
-
- centralizeFrame(Frame, String, GAMModel.GAMParameters, double[][]) - Static method in class hex.gam.MatrixFrameUtils.GenCSSplineGamOneColumn
-
- centralizeFrame(Frame, String, GAMModel.GAMParameters) - Method in class hex.gam.MatrixFrameUtils.GenMSplineGamOneColumn
-
- changeCoeffBetainfo(String[]) - Method in class hex.glm.GLM.GLMDriver
-
- check() - Method in class hex.glm.GLM.BetaConstraint
-
- check_constant_response - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
-
- checkConsistency() - Method in class hex.aggregator.AggregatorModel
-
- checkDistributions() - Method in class hex.psvm.PSVM
-
- checkEarlyStoppingReproducibility() - Method in class hex.tree.SharedTree
-
- checkFrameRowNA(Frame, long) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
-
- checkGAMParamsLengths() - Method in class hex.gam.GAM
-
Check and make sure if related parameters are defined, they must be of correct length.
- checkInteractionConstraints(ModelBuilder<?, ?, ?>, Frame, String[][]) - Static method in class hex.tree.TreeUtils
-
- checkIterationDone(double[], GLM.GLMGradientInfo, int) - Method in class hex.glm.GLM.GLMDriver
-
This method will first check if enough progress has been made with progress method.
- checkKKTs() - Method in class hex.glm.ComputationState
-
- checkKKTsMultinomial() - Method in class hex.glm.ComputationState
-
- checkMemoryFootPrint(DataInfo) - Method in class hex.glm.GLM
-
- checkMemoryFootPrint(int) - Method in class hex.modelselection.ModelSelection
-
- checkMemoryFootPrint_impl() - Method in class hex.deeplearning.DeepLearning
-
- checkMemoryFootPrint_impl() - Method in class hex.glrm.GLRM
-
- checkMemoryFootPrint_impl() - Method in class hex.kmeans.KMeans
-
- checkMemoryFootPrint_impl() - Method in class hex.naivebayes.NaiveBayes
-
- checkMemoryFootPrint_impl() - Method in class hex.pca.PCA
-
- checkMemoryFootPrint_impl() - Method in class hex.svd.SVD
-
- checkMemoryFootPrint_impl() - Method in class hex.tree.isoforextended.ExtendedIsolationForest
-
- checkMemoryFootPrint_impl() - Method in class hex.tree.SharedTree
-
- checkMonotoneConstraints(ModelBuilder<?, ?, ?>, Frame, KeyValue[]) - Static method in class hex.tree.TreeUtils
-
- checkNFamilyNLinkAssignment() - Method in class hex.gam.GAM
-
check if _parms._family = AUTO, the correct link functions are assigned according to the response type.
- checkNonAutoParmsNotChanged(Model.Parameters, Model.Parameters) - Method in class hex.deeplearning.DeepLearning.DeepLearningDriver
-
- checkOrChooseNumKnots() - Method in class hex.gam.GAM
-
set default num_knots to 10 for gam_columns where there is no knot_id specified for CS smoothers
for TP smoothers, default is set to be max of 10 or _M+2.
- CheckpointUtils - Class in hex.util
-
- CheckpointUtils() - Constructor for class hex.util.CheckpointUtils
-
- checkRowNA(Chunk[], int) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
-
- checksum_impl() - Method in class hex.DataInfo
-
- checksum_impl() - Method in class hex.deeplearning.DeepLearningModel
-
- checksum_impl() - Method in class hex.deeplearning.DeepLearningModelInfo
-
Unique identifier for this model's state, based on raw numbers
- checksum_impl() - Method in class hex.glm.GLMModel
-
- checksum_impl() - Method in class hex.glm.GLMModel.GLMOutput
-
- checksum_impl() - Method in class hex.tree.CompressedTree
-
- checkThinPlateParams() - Method in class hex.gam.GAM
-
verify and check thin plate regression smoothers specific parameters
- checkTrainRowNumKnots() - Method in class hex.gam.GAM
-
Check and make sure the there are enough number of rows in the training dataset to accomodate the num_knot
settings.
- ChiSquaredDivergence - Class in hex.tree.uplift
-
- ChiSquaredDivergence() - Constructor for class hex.tree.uplift.ChiSquaredDivergence
-
- chk_nids(Chunk[], int) - Method in class hex.tree.SharedTree
-
- chk_offset(Chunk[]) - Method in class hex.tree.SharedTree
-
- chk_oobt(Chunk[]) - Method in class hex.tree.SharedTree
-
- chk_resp(Chunk[]) - Method in class hex.tree.SharedTree
-
- chk_tree(Chunk[], int) - Method in class hex.tree.SharedTree
-
- chk_weight(Chunk[]) - Method in class hex.tree.SharedTree
-
- chk_work(Chunk[], int) - Method in class hex.tree.SharedTree
-
- chol2Inv(double[][], boolean) - Static method in class hex.util.LinearAlgebraUtils
-
- chol2Inv(double[][]) - Static method in class hex.util.LinearAlgebraUtils
-
Given the cholesky decomposition of X = QR, this method will return the inverse of
transpose(X)*X by attempting to solve for transpose(R)*R*XTX_inverse = Identity matrix
- cholesky(Gram.Cholesky, double[][]) - Method in class hex.glm.ComputationState.GramGrad
-
- cholesky(Gram.Cholesky) - Method in class hex.gram.Gram
-
- cholesky(Gram.Cholesky, boolean, String) - Method in class hex.gram.Gram
-
Compute the Cholesky decomposition.
- Cholesky(double[][], double[]) - Constructor for class hex.gram.Gram.Cholesky
-
- Cholesky(double[][], double[], boolean) - Constructor for class hex.gram.Gram.Cholesky
-
- choleskySymDiagMat(double[][]) - Static method in class hex.util.LinearAlgebraUtils
-
compute the cholesky of xx which stores the lower part of a symmetric square tridiagonal matrix.
- chunkDone(long) - Method in class hex.deeplearning.DeepLearningTask
-
After each chunk, add the number of processed rows to the counter
- chunkDone(long) - Method in class hex.FrameTask
-
Override this to do post-chunk processing work.
- chunkDone() - Method in class hex.FrameTask2
-
Perform action after processing one "chunk" of data/
- chunkDone() - Method in class hex.glm.GLMTask.GLMIterationTask
-
- chunkDone() - Method in class hex.gram.Gram.GramTask
-
- chunkDone() - Method in class hex.gram.Gram.OuterGramTask
-
- chunkInit() - Method in class hex.coxph.CoxPH.CoxPHTask
-
- chunkInit() - Method in class hex.deeplearning.DeepLearningTask
-
- chunkInit() - Method in class hex.FrameTask
-
Override this to initialize at the beginning of chunk processing.
- chunkInit() - Method in class hex.FrameTask2
-
Initialization method, called once per "chunk".
- chunkInit() - Method in class hex.glm.GLMTask.ComputeDiTriGammaTsk
-
- chunkInit() - Method in class hex.glm.GLMTask.ComputeGammaMLSETsk
-
- chunkInit() - Method in class hex.glm.GLMTask.ComputeSEorDEVIANCETsk
-
- chunkInit() - Method in class hex.glm.GLMTask.GLMIterationTask
-
- chunkInit() - Method in class hex.glm.GLMTask.GLMIterationTaskMultinomial
-
- chunkInit() - Method in class hex.glm.GLMTask.GLMMultinomialUpdate
-
- chunkInit() - Method in class hex.glm.GLMTask.GLMMultinomialWLSTask
-
- chunkInit() - Method in class hex.glm.GLMTask.GLMWLSTask
-
- chunkInit() - Method in class hex.glm.GLMTask.LSTask
-
- chunkInit() - Method in class hex.gram.Gram.GramTask
-
- chunkInit() - Method in class hex.gram.Gram.OuterGramTask
-
- cid - Variable in class hex.DataInfo.Row
-
- class_sampling_factors - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
-
Desired over/under-sampling ratios per class (lexicographic order).
- class_sampling_factors - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
Desired over/under-sampling ratios per class (lexicographic order).
- class_sampling_factors - Variable in class hex.schemas.GAMV3.GAMParametersV3
-
Desired over/under-sampling ratios per class (lexicographic order).
- class_sampling_factors - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
Desired over/under-sampling ratios per class (lexicographic order).
- class_sampling_factors - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
Desired over/under-sampling ratios per class (lexicographic order).
- class_sampling_factors - Variable in class hex.schemas.NaiveBayesV3.NaiveBayesParametersV3
-
Desired over/under-sampling ratios per class (lexicographic order).
- class_sampling_factors - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
-
Desired over/under-sampling ratios per class (lexicographic order).
- classification_stop - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
The stopping criteria in terms of classification error (1-accuracy) on the
training data scoring dataset.
- classNames() - Method in class hex.gam.GAMModel.GAMModelOutput
-
Names of levels for a categorical response column.
- classNames() - Method in class hex.glm.GLMModel.GLMOutput
-
- classNames() - Method in class hex.isotonic.IsotonicRegressionModel.IsotonicRegressionOutput
-
- classNames() - Method in class hex.tree.gbm.GBMModel.GBMOutput
-
- classPrediction - Variable in class hex.tree.dt.DTPrediction
-
- cleanup() - Method in class hex.ensemble.Metalearner
-
- cleanUp() - Method in class hex.glm.TweedieMLDispersionOnly
-
- cleanUpInputFrame(Frame) - Method in class hex.gam.GAMModel
-
- cleanUpInputFrame(Frame, GAMModel.GAMParameters, String[][], double[][][], double[][][], double[][][], double[][][], int[][][], double[][], double[][], int[]) - Static method in class hex.gam.GAMModel
-
- clone() - Method in class hex.tree.dt.AbstractFeatureLimits
-
- clone() - Method in class hex.tree.dt.binning.AbstractBin
-
- clone() - Method in class hex.tree.dt.binning.CategoricalBin
-
- clone() - Method in class hex.tree.dt.binning.NumericBin
-
- clone() - Method in class hex.tree.dt.CategoricalFeatureLimits
-
- clone() - Method in class hex.tree.dt.DataFeaturesLimits
-
- clone() - Method in class hex.tree.dt.NumericFeatureLimits
-
- closeLocal() - Method in class hex.deeplearning.DeepLearningTask
-
After all maps are done on a node, this is called to store the per-node model into DKV (for elastic averaging)
Otherwise, do nothing.
- closeLocal() - Method in class hex.FrameTask
-
- cluster_size_constraints - Variable in class hex.schemas.KMeansV3.KMeansParametersV3
-
- ClusteringUtils - Class in hex.util
-
- ClusteringUtils() - Constructor for class hex.util.ClusteringUtils
-
- COD_solve(ComputationState.GramXY, double, double) - Method in class hex.glm.GLM
-
- coefficient_names - Variable in class hex.schemas.GLMRegularizationPathV3
-
- coefficientNames() - Method in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMModelOutput
-
- coefficientNames() - Method in class hex.glm.GLMModel.GLMOutput
-
- coefficientNames() - Method in class hex.modelselection.ModelSelectionModel.ModelSelectionModelOutput
-
- coefficients() - Method in class hex.glm.GLMModel
-
get beta coefficients in a map indexed by name
- coefficients(boolean) - Method in class hex.glm.GLMModel
-
- coefficients() - Method in class hex.modelselection.ModelSelectionModel
-
- coefficients(boolean) - Method in class hex.modelselection.ModelSelectionModel
-
- coefficients(int) - Method in class hex.modelselection.ModelSelectionModel
-
- coefficients(int, boolean) - Method in class hex.modelselection.ModelSelectionModel
-
- coefficients - Variable in class hex.schemas.GLMRegularizationPathV3
-
- coefficients_std - Variable in class hex.schemas.GLMRegularizationPathV3
-
- CoefIndices - Interface in hex.glm
-
- CoefIndices(int, int) - Constructor for class hex.glm.ConstrainedGLMUtils.CoefIndices
-
- coefNames() - Method in class hex.DataInfo
-
- coefOriginalColumnIndices(Frame) - Method in class hex.DataInfo
-
- coefOriginalColumnIndices() - Method in class hex.DataInfo
-
- coefOriginalNames(Frame) - Method in class hex.DataInfo
-
- coefOriginalNames() - Method in class hex.DataInfo
-
- coefs - Variable in class hex.optimization.L_BFGS.Result
-
- col() - Method in class hex.tree.DTree.Split
-
- col_major - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
- col_sample_rate - Variable in class hex.schemas.GBMV3.GBMParametersV3
-
- col_sample_rate_change_per_level - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
-
- col_sample_rate_per_tree - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
-
- cold_start - Variable in class hex.schemas.GAMV3.GAMParametersV3
-
- cold_start - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- cold_start - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
- CollinearColumnsException() - Constructor for exception hex.gram.Gram.CollinearColumnsException
-
- CollinearColumnsException(String) - Constructor for exception hex.gram.Gram.CollinearColumnsException
-
- collinearInConstraints(String[], String[]) - Static method in class hex.glm.ConstrainedGLMUtils
-
- cols() - Method in class hex.coxph.Storage.DenseRowMatrix
-
- cols() - Method in interface hex.coxph.Storage.Matrix
-
- cols() - Method in class hex.deeplearning.Storage.DenseColMatrix
-
- cols() - Method in class hex.deeplearning.Storage.DenseRowMatrix
-
- cols() - Method in interface hex.deeplearning.Storage.Matrix
-
- cols() - Method in class hex.deeplearning.Storage.SparseRowMatrix
-
- cols() - Method in interface hex.deeplearning.Storage.Tensor
-
- combineAndFlat(String[][]) - Static method in class hex.anovaglm.ANOVAGLMUtils
-
- combineConstraints(ConstrainedGLMUtils.LinearConstraints[], ConstrainedGLMUtils.LinearConstraints[]) - Static method in class hex.glm.ConstrainedGLMUtils
-
- combineScoringHistory(TwoDimTable, TwoDimTable) - Static method in class hex.glm.GLMUtils
-
- combineTableContents(TwoDimTable, TwoDimTable, TwoDimTable, List<Integer>, int, int, int) - Static method in class hex.glm.GLMUtils
-
- compareTo(EigenPair) - Method in class hex.util.EigenPair
-
Compare an eigenPair = (eigenvalue, eigenVector) against otherEigenPair based on respective eigenValues
- compress(int, int, String[][]) - Method in class hex.tree.DTree
-
- compress(AutoBuffer, AutoBuffer) - Method in class hex.tree.DTree.DecidedNode
-
- compress(AutoBuffer, AutoBuffer) - Method in class hex.tree.DTree.LeafNode
-
- compress(AutoBuffer, AutoBuffer) - Method in class hex.tree.DTree.Node
-
- compress(AutoBuffer, AutoBuffer) - Method in class hex.tree.DTree.UndecidedNode
-
- CompressedDT - Class in hex.tree.dt
-
Compressed DT class containing tree as array.
- CompressedDT(AbstractCompressedNode[], int) - Constructor for class hex.tree.dt.CompressedDT
-
- CompressedForest - Class in hex.tree
-
Collection of Compressed Trees
contains:
- keys to trees
- metadata shared among all the trees (eg.
- CompressedForest(Key<CompressedTree>[][], String[][]) - Constructor for class hex.tree.CompressedForest
-
- CompressedForest.LocalCompressedForest - Class in hex.tree
-
Node-local representation of a collection of trees.
- CompressedIsolationTree - Class in hex.tree.isoforextended.isolationtree
-
IsolationTree structure with better memory performance.
- CompressedIsolationTree(int) - Constructor for class hex.tree.isoforextended.isolationtree.CompressedIsolationTree
-
- CompressedLeaf - Class in hex.tree.dt
-
- CompressedLeaf(double, double) - Constructor for class hex.tree.dt.CompressedLeaf
-
- CompressedLeaf - Class in hex.tree.isoforextended.isolationtree
-
IsolationTree Leaf Node with better memory performance.
- CompressedLeaf(IsolationTree.Node) - Constructor for class hex.tree.isoforextended.isolationtree.CompressedLeaf
-
- CompressedLeaf(int, int) - Constructor for class hex.tree.isoforextended.isolationtree.CompressedLeaf
-
- CompressedNode - Class in hex.tree.dt
-
- CompressedNode(AbstractSplittingRule) - Constructor for class hex.tree.dt.CompressedNode
-
- CompressedNode - Class in hex.tree.isoforextended.isolationtree
-
IsolationTree Node with better memory performance.
- CompressedNode(IsolationTree.Node) - Constructor for class hex.tree.isoforextended.isolationtree.CompressedNode
-
- CompressedNode(double[], double[], int) - Constructor for class hex.tree.isoforextended.isolationtree.CompressedNode
-
- CompressedTree - Class in hex.tree
-
- CompressedTree(byte[], long, int, int) - Constructor for class hex.tree.CompressedTree
-
- ComputationState - Class in hex.glm
-
- ComputationState(Job, GLMModel.GLMParameters, DataInfo, GLM.BetaConstraint, GLM.BetaInfo) - Constructor for class hex.glm.ComputationState
-
- ComputationState(Job, GLMModel.GLMParameters, DataInfo, GLM.BetaConstraint, GLM.BetaInfo, double[][][], int[][]) - Constructor for class hex.glm.ComputationState
-
- ComputationState.GLMSubsetGinfo - Class in hex.glm
-
This method will grab a subset of the gradient for each multinomial class.
- ComputationState.GramGrad - Class in hex.glm
-
- ComputationState.GramXY - Class in hex.glm
-
Cached state of COD (with covariate updates) solver.
- compute(Vec, Vec, Vec) - Method in class hex.glm.TweedieEstimator
-
- compute() - Method in class hex.tree.DTree.DecidedNode.FindSplits
-
- compute2() - Method in class hex.tree.SharedTree.ScoreBuildOneTree
-
- compute_metrics - Variable in class hex.schemas.NaiveBayesV3.NaiveBayesParametersV3
-
- compute_metrics - Variable in class hex.schemas.PCAV3.PCAParametersV3
-
- compute_p_values - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
-
- compute_p_values - Variable in class hex.schemas.GAMV3.GAMParametersV3
-
- compute_p_values - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- compute_p_values - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
- computeAIC() - Method in class hex.gam.MetricBuilderGAM
-
- computeAIC(GLMModel) - Method in class hex.glm.GLMMetricBuilder
-
- computeCategoricalEtas(Chunk[], double[][], double[], int[]) - Method in class hex.glm.GLMTask.GLMMultinomialGradientBaseTask
-
- computeCategoricalGrads(Chunk[], double[][], double[], int[]) - Method in class hex.glm.GLMTask.GLMMultinomialGradientBaseTask
-
- computeCrossValidation() - Method in class hex.glm.GLM
-
GLM implementation of N-fold cross-validation.
- ComputeDiTriGammaTsk(H2O.H2OCountedCompleter, DataInfo, Key, double[], GLMModel.GLMParameters, double) - Constructor for class hex.glm.GLMTask.ComputeDiTriGammaTsk
-
- ComputeGammaMLSETsk(H2O.H2OCountedCompleter, DataInfo, Key, double[], GLMModel.GLMParameters) - Constructor for class hex.glm.GLMTask.ComputeGammaMLSETsk
-
- computeGradientMultipliers(double[], double[], double[]) - Method in class hex.glm.GLMTask.GLMGaussianGradientTask
-
- computeGram(int, GramV3) - Method in class hex.api.MakeGLMModelHandler
-
- computeGram(double[], GLM.GLMGradientInfo) - Method in class hex.glm.ComputationState
-
This function calculates the following values:
1.
- computeGram(double[], GLMModel.GLMParameters.Solver) - Method in class hex.glm.ComputationState
-
- computeGramRCC(double[], GLMModel.GLMParameters.Solver) - Method in class hex.glm.ComputationState
-
This method is used only for multinomial family.
- computeImpl() - Method in class hex.coxph.CoxPH.CoxPHDriver
-
- computeImpl() - Method in class hex.deeplearning.DeepLearning.DeepLearningDriver
-
- computeImpl() - Method in class hex.glm.GLM.GLMDriver
-
- computeImpl() - Method in class hex.modelselection.ModelSelection.ModelSelectionDriver
-
- computeImpl() - Method in class hex.tree.SharedTree.Driver
-
- ComputeMaxSumSeriesTsk(TweedieMLDispersionOnly, GLMModel.GLMParameters, boolean) - Constructor for class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk
-
- ComputeNewBetaVarEstimatedGaussian(double[][], double[], Job, DataInfo, double[][], double, double, double[]) - Constructor for class hex.glm.RegressionInfluenceDiagnosticsTasks.ComputeNewBetaVarEstimatedGaussian
-
- computeNewGram(DataInfo, double[], GLMModel.GLMParameters.Solver) - Method in class hex.glm.ComputationState
-
- computeNumericEtas(Chunk[], double[][], double[], int[]) - Method in class hex.glm.GLMTask.GLMMultinomialGradientBaseTask
-
- computeNumericGrads(Chunk[], double[][], double[], int[]) - Method in class hex.glm.GLMTask.GLMMultinomialGradientBaseTask
-
- computePathLength(double[]) - Method in class hex.tree.isoforextended.isolationtree.CompressedIsolationTree
-
Implementation of Algorithm 3 (pathLength) from paper.
- computePriorClassDistribution() - Method in class hex.gam.GAM
-
- computePriorClassDistribution() - Method in class hex.glm.GLM
-
- computePriorClassDistribution() - Method in class hex.psvm.PSVM
-
- computePriorClassDistribution() - Method in class hex.tree.SharedTree
-
- computeQ(Key<Job>, DataInfo, Frame, double[][]) - Static method in class hex.util.LinearAlgebraUtils
-
Solve for Q from Y = QR factorization and write into new frame
- computeQ(Key<Job>, DataInfo, Frame) - Static method in class hex.util.LinearAlgebraUtils
-
- computeQInPlace(Key<Job>, DataInfo) - Static method in class hex.util.LinearAlgebraUtils
-
Solve for Q from Y = QR factorization and write into Y frame
- computeR(Key<Job>, DataInfo, boolean) - Static method in class hex.util.LinearAlgebraUtils
-
Get R = L' from Cholesky decomposition Y'Y = LL' (same as R from Y = QR)
- ComputeSEorDEVIANCETsk(H2O.H2OCountedCompleter, DataInfo, Key, double[], GLMModel.GLMParameters, GLMModel) - Constructor for class hex.glm.GLMTask.ComputeSEorDEVIANCETsk
-
- computeSplit() - Method in class hex.tree.DTree.DecidedNode.FindSplits
-
- computeStats() - Method in class hex.deeplearning.DeepLearningModelInfo
-
Compute statistics about this model on all nodes
- computeSubmodel(int, double, double, double) - Method in class hex.glm.GLM.GLMDriver
-
- ComputeTweedieConstTsk(double, Frame) - Constructor for class hex.glm.DispersionTask.ComputeTweedieConstTsk
-
- computeVariableImportances() - Method in class hex.deeplearning.DeepLearningModelInfo
-
Compute Variable Importance, based on
GEDEON: DATA MINING OF INPUTS: ANALYSING MAGNITUDE AND FUNCTIONAL MEASURES
- computeWeights(double, double, double, double, GLMModel.GLMWeights) - Method in class hex.glm.GLMModel.GLMWeightsFun
-
- concateGamVecs(Key<Frame>[]) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
-
- Condition - Class in hex.rulefit
-
- Condition(int, Condition.Type, Condition.Operator, double, String[], int[], String, boolean) - Constructor for class hex.rulefit.Condition
-
- Condition.Operator - Enum in hex.rulefit
-
- Condition.Type - Enum in hex.rulefit
-
- ConstrainedGLMUtils - Class in hex.glm
-
- ConstrainedGLMUtils() - Constructor for class hex.glm.ConstrainedGLMUtils
-
- ConstrainedGLMUtils.CoefIndices - Class in hex.glm
-
- ConstrainedGLMUtils.ConstraintGLMStates - Class in hex.glm
-
- ConstrainedGLMUtils.ConstraintsDerivatives - Class in hex.glm
-
- ConstrainedGLMUtils.ConstraintsGram - Class in hex.glm
-
- ConstrainedGLMUtils.LinearConstraintConditions - Class in hex.glm
-
- ConstrainedGLMUtils.LinearConstraints - Class in hex.glm
-
- constraint2Str(ConstrainedGLMUtils.LinearConstraints, String, ComputationState) - Static method in class hex.glm.ConstrainedGLMUtils
-
- constraint_alpha - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- constraint_beta - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- constraint_c0 - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- constraint_eta0 - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- constraint_tau - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- ConstraintGLMStates(String[], double[][], GLMModel.GLMParameters) - Constructor for class hex.glm.ConstrainedGLMUtils.ConstraintGLMStates
-
- Constraints - Class in hex.tree
-
- Constraints(int[], Distribution, boolean) - Constructor for class hex.tree.Constraints
-
- constraints(Frame) - Method in class hex.tree.gbm.GBMModel.GBMParameters
-
- ConstraintsDerivatives(boolean) - Constructor for class hex.glm.ConstrainedGLMUtils.ConstraintsDerivatives
-
- ConstraintsGram() - Constructor for class hex.glm.ConstrainedGLMUtils.ConstraintsGram
-
- constraintsStop(GLM.GLMGradientInfo, ComputationState) - Static method in class hex.glm.ConstrainedGLMUtils
-
This method will check if the stopping conditions for constraint GLM are met and they are namely:
1.
- constructGram(ConstrainedGLMUtils.ConstraintsDerivatives) - Static method in class hex.glm.ComputationState
-
This method is not called often.
- contamination - Variable in class hex.schemas.IsolationForestV3.IsolationForestParametersV3
-
- ContributionsMeanAggregator - Class in hex
-
- ContributionsMeanAggregator(Job, int, int, int) - Constructor for class hex.ContributionsMeanAggregator
-
- ContributionsWithBackgroundFrameTask<T extends ContributionsWithBackgroundFrameTask<T>> - Class in hex
-
Calls map(Chunk[] frame, Chunk[] background, NewChunk[] ncs) by copying the smaller frame across the nodes.
- ContributionsWithBackgroundFrameTask(Key<Frame>, Key<Frame>, boolean) - Constructor for class hex.ContributionsWithBackgroundFrameTask
-
- converged() - Method in class hex.glm.ComputationState
-
- converged - Variable in class hex.optimization.L_BFGS.Result
-
- convertCenterBeta2Beta(double[][][], int, double[], int, String[][], boolean) - Static method in class hex.gam.MatrixFrameUtils.GAMModelUtils
-
- convertList2Array(List<Integer[]>, int, int) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
-
- convertParameters(ModelParameter[]) - Static method in class hex.generic.GenericModelParameters
-
- copy2DArray(double[][], double[][]) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
-
- copy2DArray(double[][]) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
-
- copy2DArray(int[][], int[][]) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
-
- copyCVGLMtoGAMModel(GAMModel, GLMModel, GAMModel.GAMParameters, String) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
-
- copyGInfo(GLM.GLMGradientInfo) - Static method in class hex.glm.GLMUtils
-
- copyGLMCoeffNames2GAMCoeffNames(GAMModel, GLMModel) - Static method in class hex.gam.MatrixFrameUtils.GAMModelUtils
-
- copyGLMCoeffs(GLMModel, GAMModel, GAMModel.GAMParameters, int) - Static method in class hex.gam.MatrixFrameUtils.GAMModelUtils
-
- copyGLMCoeffs2GAMCoeffs(GAMModel, GLMModel, GLMModel.GLMParameters.Family, int, int, boolean) - Static method in class hex.gam.MatrixFrameUtils.GAMModelUtils
-
- copyGLMtoGAMModel(GAMModel, GLMModel, GAMModel.GAMParameters, boolean) - Static method in class hex.gam.MatrixFrameUtils.GAMModelUtils
-
- copyKnots(double[][][], String[][]) - Method in class hex.gam.GAMModel.GAMModelOutput
-
The function will copy over the knot locations into _knot_locations and the gam column names corresponding to
the knot locations into _gam_knot_column_names.
- copyLeftValues(SplitStatistics) - Method in class hex.tree.dt.binning.SplitStatistics
-
- copyMetrics(GAMModel, Frame, boolean, ModelMetrics) - Method in class hex.gam.GAMModel.GAMModelOutput
-
- copyOver(double[][], double[][]) - Method in class hex.glm.GLM.GLMDriver
-
- CopyPartsOfFrame(Frame, int[], int[], long) - Constructor for class hex.glm.GLMTask.CopyPartsOfFrame
-
- CopyQtoQMatrix() - Constructor for class hex.util.LinearAlgebraUtils.CopyQtoQMatrix
-
- copyRightValues(SplitStatistics) - Method in class hex.tree.dt.binning.SplitStatistics
-
- copyTwoDimTable(TwoDimTable, String) - Static method in class hex.gam.MatrixFrameUtils.GAMModelUtils
-
- copyUserInitialValues(int, int, double[], double[], double[], double, double[], Frame, String[]) - Method in class hex.glm.GLM
-
This method performs a simple copying of user provided initial values to parameters
- beta, ubeta, phi, tau, psi, init_sig_u
- count - Variable in class hex.schemas.Word2VecSynonymsV3
-
- COUNT - Static variable in class hex.tree.dt.mrtasks.CountBinsSamplesCountsMRTask
-
- COUNT_0 - Static variable in class hex.tree.dt.mrtasks.CountBinsSamplesCountsMRTask
-
- CountBinsSamplesCountsMRTask - Class in hex.tree.dt.mrtasks
-
MR task for counting samples in bins.
- CountBinsSamplesCountsMRTask(int, double[][], double[][]) - Constructor for class hex.tree.dt.mrtasks.CountBinsSamplesCountsMRTask
-
- countColNumber(String[][]) - Static method in class hex.anovaglm.GenerateTransformColumns
-
- countNumConst(ComputationState) - Static method in class hex.glm.ConstrainedGLMUtils
-
- CoxPH - Class in hex.coxph
-
Cox Proportional Hazards Model
- CoxPH(boolean) - Constructor for class hex.coxph.CoxPH
-
- CoxPH(CoxPHModel.CoxPHParameters) - Constructor for class hex.coxph.CoxPH
-
- CoxPH.CoxPHDriver - Class in hex.coxph
-
- CoxPH.CoxPHTask - Class in hex.coxph
-
- CoxPHDriver() - Constructor for class hex.coxph.CoxPH.CoxPHDriver
-
- CoxPHModel - Class in hex.coxph
-
- CoxPHModel(Key, CoxPHModel.CoxPHParameters, CoxPHModel.CoxPHOutput) - Constructor for class hex.coxph.CoxPHModel
-
- CoxPHModel.CoxPHOutput - Class in hex.coxph
-
- CoxPHModel.CoxPHParameters - Class in hex.coxph
-
- CoxPHModel.CoxPHParameters.CoxPHTies - Enum in hex.coxph
-
- CoxPHModel.FrameMatrix - Class in hex.coxph
-
- CoxPHModelOutputV3() - Constructor for class hex.schemas.CoxPHModelV3.CoxPHModelOutputV3
-
- CoxPHModelV3 - Class in hex.schemas
-
- CoxPHModelV3() - Constructor for class hex.schemas.CoxPHModelV3
-
- CoxPHModelV3.CoxPHModelOutputV3 - Class in hex.schemas
-
- CoxPHMojoWriter - Class in hex.coxph
-
- CoxPHMojoWriter() - Constructor for class hex.coxph.CoxPHMojoWriter
-
- CoxPHMojoWriter(CoxPHModel) - Constructor for class hex.coxph.CoxPHMojoWriter
-
- CoxPHOutput(CoxPH, Frame, Frame, IcedHashMap<AstGroup.G, IcedInt>) - Constructor for class hex.coxph.CoxPHModel.CoxPHOutput
-
- CoxPHParameters() - Constructor for class hex.coxph.CoxPHModel.CoxPHParameters
-
- CoxPHParametersV3() - Constructor for class hex.schemas.CoxPHV3.CoxPHParametersV3
-
- CoxPHV3 - Class in hex.schemas
-
- CoxPHV3() - Constructor for class hex.schemas.CoxPHV3
-
- CoxPHV3.CoxPHParametersV3 - Class in hex.schemas
-
- createCenterTable(ClusteringModel.ClusteringOutput, boolean) - Static method in class hex.util.ClusteringUtils
-
- createFrameOfExemplars(Frame, Key) - Method in class hex.aggregator.AggregatorModel
-
- createGLMTrainFrame(Frame, int, int, String[], String, boolean) - Method in class hex.rulefit.RuleEnsemble
-
- createImpl() - Method in class hex.schemas.AdaBoostModelV3
-
- createImpl() - Method in class hex.schemas.AggregatorModelV99
-
- createImpl() - Method in class hex.schemas.ANOVAGLMModelV3
-
- createImpl() - Method in class hex.schemas.DeepLearningModelV3
-
- createImpl() - Method in class hex.schemas.DRFModelV3
-
- createImpl() - Method in class hex.schemas.DTModelV3
-
- createImpl() - Method in class hex.schemas.ExtendedIsolationForestModelV3
-
- createImpl() - Method in class hex.schemas.GAMModelV3
-
- createImpl() - Method in class hex.schemas.GBMModelV3
-
- createImpl() - Method in class hex.schemas.GLMModelV3
-
- createImpl() - Method in class hex.schemas.GLRMModelV3
-
- createImpl() - Method in class hex.schemas.GrepModelV3
-
- createImpl() - Method in class hex.schemas.GrepModelV3.GrepModelOutputV3
-
- createImpl() - Method in class hex.schemas.IsolationForestModelV3
-
- createImpl() - Method in class hex.schemas.KMeansModelV3
-
- createImpl() - Method in class hex.schemas.ModelSelectionModelV3
-
- createImpl() - Method in class hex.schemas.NaiveBayesModelV3
-
- createImpl() - Method in class hex.schemas.PCAModelV3
-
- createImpl() - Method in class hex.schemas.PSVMModelV3
-
- createImpl() - Method in class hex.schemas.RuleFitModelV3
-
- createImpl() - Method in class hex.schemas.StackedEnsembleModelV99
-
- createImpl() - Method in class hex.schemas.SVDModelV99
-
- createImpl() - Method in class hex.schemas.UpliftDRFModelV3
-
- createImpl() - Method in class hex.schemas.Word2VecModelV3
-
- createInitialModelInfo(Word2VecModel.Word2VecParameters) - Static method in class hex.word2vec.Word2VecModel.Word2VecModelInfo
-
- createInputFramesInformationTable(ModelBuilder) - Method in class hex.tree.SharedTreeModel.SharedTreeOutput
-
- createMappingOfExemplars(Key) - Method in class hex.aggregator.AggregatorModel
-
- createModelSummaryTable() - Method in class hex.adaboost.AdaBoost
-
- createModelSummaryTable() - Method in class hex.tree.isoforextended.ExtendedIsolationForest
-
- createModelSummaryTable(int, TreeStats) - Static method in class hex.tree.SharedTree
-
- createOutputSchema() - Method in class hex.schemas.AdaBoostModelV3
-
- createOutputSchema() - Method in class hex.schemas.AggregatorModelV99
-
- createOutputSchema() - Method in class hex.schemas.ANOVAGLMModelV3
-
- createOutputSchema() - Method in class hex.schemas.CoxPHModelV3
-
- createOutputSchema() - Method in class hex.schemas.DeepLearningModelV3
-
- createOutputSchema() - Method in class hex.schemas.DRFModelV3
-
- createOutputSchema() - Method in class hex.schemas.DTModelV3
-
- createOutputSchema() - Method in class hex.schemas.ExtendedIsolationForestModelV3
-
- createOutputSchema() - Method in class hex.schemas.GAMModelV3
-
- createOutputSchema() - Method in class hex.schemas.GBMModelV3
-
- createOutputSchema() - Method in class hex.schemas.GenericModelV3
-
- createOutputSchema() - Method in class hex.schemas.GLMModelV3
-
- createOutputSchema() - Method in class hex.schemas.GLRMModelV3
-
- createOutputSchema() - Method in class hex.schemas.GrepModelV3
-
- createOutputSchema() - Method in class hex.schemas.IsolationForestModelV3
-
- createOutputSchema() - Method in class hex.schemas.IsotonicRegressionModelV3
-
- createOutputSchema() - Method in class hex.schemas.KMeansModelV3
-
- createOutputSchema() - Method in class hex.schemas.ModelSelectionModelV3
-
- createOutputSchema() - Method in class hex.schemas.NaiveBayesModelV3
-
- createOutputSchema() - Method in class hex.schemas.PCAModelV3
-
- createOutputSchema() - Method in class hex.schemas.PSVMModelV3
-
- createOutputSchema() - Method in class hex.schemas.RuleFitModelV3
-
- createOutputSchema() - Method in class hex.schemas.StackedEnsembleModelV99
-
- createOutputSchema() - Method in class hex.schemas.SVDModelV99
-
- createOutputSchema() - Method in class hex.schemas.UpliftDRFModelV3
-
- createOutputSchema() - Method in class hex.schemas.Word2VecModelV3
-
- createParameters(String) - Static method in class hex.ensemble.Metalearners
-
- createParametersSchema(String) - Static method in class hex.ensemble.Metalearners
-
- createParametersSchema() - Method in class hex.schemas.AdaBoostModelV3
-
- createParametersSchema() - Method in class hex.schemas.AggregatorModelV99
-
- createParametersSchema() - Method in class hex.schemas.ANOVAGLMModelV3
-
- createParametersSchema() - Method in class hex.schemas.CoxPHModelV3
-
- createParametersSchema() - Method in class hex.schemas.DeepLearningModelV3
-
- createParametersSchema() - Method in class hex.schemas.DRFModelV3
-
- createParametersSchema() - Method in class hex.schemas.DTModelV3
-
- createParametersSchema() - Method in class hex.schemas.ExtendedIsolationForestModelV3
-
- createParametersSchema() - Method in class hex.schemas.GAMModelV3
-
- createParametersSchema() - Method in class hex.schemas.GBMModelV3
-
- createParametersSchema() - Method in class hex.schemas.GenericModelV3
-
- createParametersSchema() - Method in class hex.schemas.GLMModelV3
-
- createParametersSchema() - Method in class hex.schemas.GLRMModelV3
-
- createParametersSchema() - Method in class hex.schemas.GrepModelV3
-
- createParametersSchema() - Method in class hex.schemas.IsolationForestModelV3
-
- createParametersSchema() - Method in class hex.schemas.IsotonicRegressionModelV3
-
- createParametersSchema() - Method in class hex.schemas.KMeansModelV3
-
- createParametersSchema() - Method in class hex.schemas.ModelSelectionModelV3
-
- createParametersSchema() - Method in class hex.schemas.NaiveBayesModelV3
-
- createParametersSchema() - Method in class hex.schemas.PCAModelV3
-
- createParametersSchema() - Method in class hex.schemas.PSVMModelV3
-
- createParametersSchema() - Method in class hex.schemas.RuleFitModelV3
-
- createParametersSchema() - Method in class hex.schemas.StackedEnsembleModelV99
-
- createParametersSchema() - Method in class hex.schemas.SVDModelV99
-
- createParametersSchema() - Method in class hex.schemas.UpliftDRFModelV3
-
- createParametersSchema() - Method in class hex.schemas.Word2VecModelV3
-
- createReverseSortedEigenpairs(double[], double[][]) - Static method in class hex.util.LinearAlgebraUtils
-
- createScoringHistoryTable() - Method in class hex.tree.isofor.IsolationForest
-
- createScoringHistoryTable(int) - Method in class hex.tree.isoforextended.ExtendedIsolationForest
-
- createScoringHistoryTable() - Method in class hex.tree.SharedTree
-
- createScoringHistoryTable(Model.Output, ScoreKeeper[], ScoreKeeper[], Job, long[], boolean, boolean) - Static method in class hex.tree.SharedTree
-
- createScoringHistoryTable() - Method in class hex.tree.uplift.UpliftDRF
-
- createScoringHistoryTableDR(LinkedHashMap<String, ArrayList>, String, long) - Static method in class hex.util.DimensionReductionUtils
-
Create the scoring history for dimension reduction algorithms like PCA/SVD.
- createSortedEigenpairs(double[], double[][]) - Static method in class hex.util.LinearAlgebraUtils
-
- ctree(int, int) - Method in class hex.tree.SharedTreeModel.SharedTreeOutput
-
- CubicRegressionSplines - Class in hex.gam.GamSplines
-
- CubicRegressionSplines(int, double[]) - Constructor for class hex.gam.GamSplines.CubicRegressionSplines
-
- cv_canBuildMainModelInParallel() - Method in class hex.tree.SharedTree
-
- cv_computeAndSetOptimalParameters(ModelBuilder[]) - Method in class hex.deeplearning.DeepLearning
-
- cv_computeAndSetOptimalParameters(ModelBuilder[]) - Method in class hex.glm.GLM
-
If run with lambda search, we need to take extra action performed after cross-val models are built.
- cv_computeAndSetOptimalParameters(ModelBuilder<M, P, O>[]) - Method in class hex.tree.SharedTree
-
- cv_initStoppingParameters() - Method in class hex.tree.SharedTree
-
- cv_makeAggregateModelMetrics(ModelMetrics.MetricBuilder[]) - Method in class hex.kmeans.KMeans
-
- cv_updateOptimalParameters(ModelBuilder<M, P, O>[]) - Method in class hex.tree.SharedTree
-
- d - Variable in class hex.schemas.SVDModelV99.SVDModelOutputV99
-
- data(Chunk[], int, int) - Method in class hex.kmeans.KMeansModel
-
- data_info - Variable in class hex.deeplearning.DeepLearningModelInfo
-
- data_info() - Method in class hex.deeplearning.DeepLearningModelInfo
-
- data_row(Chunk[], int, double[]) - Method in class hex.tree.SharedTree
-
- DataAddW2AugXZ(Job, DataInfo, int[]) - Constructor for class hex.glm.GLMTask.DataAddW2AugXZ
-
- DataFeaturesLimits - Class in hex.tree.dt
-
Features limits for the whole dataset.
- DataFeaturesLimits(List<AbstractFeatureLimits>) - Constructor for class hex.tree.dt.DataFeaturesLimits
-
- DataFeaturesLimits(double[][]) - Constructor for class hex.tree.dt.DataFeaturesLimits
-
- DataInfo - Class in hex
-
Created by tomasnykodym on 1/29/15.
- DataInfo(Frame, Frame, boolean, DataInfo.TransformType, boolean, boolean, boolean) - Constructor for class hex.DataInfo
-
- DataInfo(Frame, Frame, int, boolean, DataInfo.TransformType, DataInfo.TransformType, boolean, boolean, boolean, boolean, boolean, boolean) - Constructor for class hex.DataInfo
-
- DataInfo(Frame, Frame, int, boolean, DataInfo.TransformType, DataInfo.TransformType, boolean, boolean, boolean, boolean, boolean, boolean, Model.InteractionSpec) - Constructor for class hex.DataInfo
-
- DataInfo(Frame, Frame, int, boolean, DataInfo.TransformType, DataInfo.TransformType, boolean, boolean, boolean, boolean, boolean, boolean, boolean, Model.InteractionSpec) - Constructor for class hex.DataInfo
-
- DataInfo(Frame, Frame, int, boolean, DataInfo.TransformType, DataInfo.TransformType, boolean, boolean, DataInfo.Imputer, boolean, boolean, boolean, boolean, Model.InteractionSpec) - Constructor for class hex.DataInfo
-
- DataInfo(Frame, Frame, int, boolean, DataInfo.TransformType, DataInfo.TransformType, boolean, boolean, DataInfo.Imputer, boolean, boolean, boolean, boolean, boolean, Model.InteractionSpec) - Constructor for class hex.DataInfo
-
The train/valid Frame instances are sorted by categorical (themselves sorted by
cardinality greatest to least) with all numerical columns following.
- DataInfo(Frame, Frame, int, boolean, DataInfo.TransformType, DataInfo.TransformType, boolean, boolean, boolean, boolean, boolean, boolean, boolean) - Constructor for class hex.DataInfo
-
- DataInfo.Imputer - Interface in hex
-
- DataInfo.MeanImputer - Class in hex
-
- DataInfo.Row - Class in hex
-
- DataInfo.Rows - Class in hex
-
- DataInfo.TransformType - Enum in hex
-
- DataInfoFrameV3 - Class in hex.schemas
-
- DataInfoFrameV3() - Constructor for class hex.schemas.DataInfoFrameV3
-
- decided(int) - Method in class hex.tree.DTree
-
- DECIDED_ROW - Static variable in class hex.tree.ScoreBuildHistogram
-
Marker for already decided row.
- DecidedNode(DTree.DecidedNode, DTree) - Constructor for class hex.tree.DTree.DecidedNode
-
- DecidedNode(DTree.UndecidedNode, DHistogram[], Constraints, GlobalInteractionConstraints) - Constructor for class hex.tree.DTree.DecidedNode
-
- decision_paths - Variable in class hex.schemas.TreeV3
-
- decompose_2(double[][], int, int) - Static method in class hex.gram.Gram.InPlaceCholesky
-
- deep_clone() - Method in class hex.gram.Gram
-
- deepClone() - Method in class hex.DataInfo.Row
-
- deepClone(Key<GLMModel>) - Method in class hex.glm.GLMModel
-
- deepClone(Key<M>) - Method in class hex.tree.SharedTreeModel
-
Performs deep clone of given model.
- DeepLearning - Class in hex.deeplearning
-
Deep Learning Neural Net implementation based on MRTask
- DeepLearning(DeepLearningModel.DeepLearningParameters) - Constructor for class hex.deeplearning.DeepLearning
-
Main constructor from Deep Learning parameters
- DeepLearning(DeepLearningModel.DeepLearningParameters, Key<DeepLearningModel>) - Constructor for class hex.deeplearning.DeepLearning
-
- DeepLearning(boolean) - Constructor for class hex.deeplearning.DeepLearning
-
- DeepLearning.DeepLearningDriver - Class in hex.deeplearning
-
- DeepLearningDriver() - Constructor for class hex.deeplearning.DeepLearning.DeepLearningDriver
-
- DeepLearningModel - Class in hex.deeplearning
-
The Deep Learning model
It contains a DeepLearningModelInfo with the most up-to-date model,
a scoring history, as well as some helpers to indicate the progress
- DeepLearningModel(Key, DeepLearningModel.DeepLearningParameters, DeepLearningModel, boolean, DataInfo) - Constructor for class hex.deeplearning.DeepLearningModel
-
Constructor to restart from a checkpointed model
- DeepLearningModel(Key, DeepLearningModel.DeepLearningParameters, DeepLearningModel.DeepLearningModelOutput, Frame, Frame, int) - Constructor for class hex.deeplearning.DeepLearningModel
-
Regular constructor (from scratch)
- DeepLearningModel.DeepLearningModelOutput - Class in hex.deeplearning
-
The Deep Learning model output contains a few extra fields in addition to the metrics in Model.Output
1) Scoring history (raw data)
2) weights/biases (raw data)
3) variable importances (TwoDimTable)
- DeepLearningModel.DeepLearningParameters - Class in hex.deeplearning
-
Deep Learning Parameters
- DeepLearningModel.DeepLearningParameters.Activation - Enum in hex.deeplearning
-
Activation functions
- DeepLearningModel.DeepLearningParameters.ClassSamplingMethod - Enum in hex.deeplearning
-
- DeepLearningModel.DeepLearningParameters.InitialWeightDistribution - Enum in hex.deeplearning
-
- DeepLearningModel.DeepLearningParameters.Loss - Enum in hex.deeplearning
-
Loss functions
Absolute, Quadratic, Huber, Quantile for regression
Quadratic, ModifiedHuber or CrossEntropy for classification
- DeepLearningModel.DeepLearningParameters.MissingValuesHandling - Enum in hex.deeplearning
-
- DeepLearningModelInfo - Class in hex.deeplearning
-
This class contains the state of the Deep Learning model
This will be shared: one per node
- DeepLearningModelInfo(DeepLearningModel.DeepLearningParameters, Key, DataInfo, int, Frame, Frame) - Constructor for class hex.deeplearning.DeepLearningModelInfo
-
Main constructor
- DeepLearningModelInfo.GradientCheck - Class in hex.deeplearning
-
- DeepLearningModelOutput(DeepLearning) - Constructor for class hex.deeplearning.DeepLearningModel.DeepLearningModelOutput
-
- DeepLearningModelOutputV3() - Constructor for class hex.schemas.DeepLearningModelV3.DeepLearningModelOutputV3
-
- DeepLearningModelV3 - Class in hex.schemas
-
- DeepLearningModelV3() - Constructor for class hex.schemas.DeepLearningModelV3
-
- DeepLearningModelV3.DeepLearningModelOutputV3 - Class in hex.schemas
-
- DeepLearningMojoWriter - Class in hex.deeplearning
-
- DeepLearningMojoWriter() - Constructor for class hex.deeplearning.DeepLearningMojoWriter
-
- DeepLearningMojoWriter(DeepLearningModel) - Constructor for class hex.deeplearning.DeepLearningMojoWriter
-
- DeepLearningParameters() - Constructor for class hex.deeplearning.DeepLearningModel.DeepLearningParameters
-
- DeepLearningParametersV3() - Constructor for class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
- DeepLearningScoringInfo - Class in hex.deeplearning
-
Lightweight DeepLearning scoring history.
- DeepLearningScoringInfo() - Constructor for class hex.deeplearning.DeepLearningScoringInfo
-
- DeepLearningTask - Class in hex.deeplearning
-
- DeepLearningTask(Key, DeepLearningModelInfo, float, int) - Constructor for class hex.deeplearning.DeepLearningTask
-
The only constructor
- DeepLearningTask(Key, DeepLearningModelInfo, float, int, H2O.H2OCountedCompleter) - Constructor for class hex.deeplearning.DeepLearningTask
-
- DeepLearningTask2 - Class in hex.deeplearning
-
DRemoteTask-based Deep Learning.
- DeepLearningTask2(Key, Frame, DeepLearningModelInfo, float, int) - Constructor for class hex.deeplearning.DeepLearningTask2
-
Construct a DeepLearningTask2 where every node trains on the entire training dataset
- DeepLearningV3 - Class in hex.schemas
-
- DeepLearningV3() - Constructor for class hex.schemas.DeepLearningV3
-
- DeepLearningV3.DeepLearningParametersV3 - Class in hex.schemas
-
- DEFAULT_ABSTOL - Static variable in class hex.optimization.ADMM.L1Solver
-
- default_auuc_thresholds - Variable in class hex.schemas.UpliftDRFModelV3.UpliftDRFModelOutputV3
-
- DEFAULT_RELTOL - Static variable in class hex.optimization.ADMM.L1Solver
-
- defaultLink - Variable in enum hex.glm.GLMModel.GLMParameters.Family
-
- defaultStoppingTolerance() - Method in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
-
- defaultStoppingTolerance() - Method in class hex.tree.isofor.IsolationForestModel.IsolationForestParameters
-
- defaultThreshold() - Method in class hex.generic.GenericModelOutput
-
- defaultThreshold() - Method in class hex.tree.isofor.IsolationForestModel.IsolationForestOutput
-
- deleteBaseModelPredictions() - Method in class hex.ensemble.StackedEnsembleModel
-
- deleteCrossValidationFoldAssignment() - Method in class hex.ensemble.StackedEnsembleModel
-
- deleteCrossValidationModels() - Method in class hex.ensemble.StackedEnsembleModel
-
- deleteCrossValidationPreds() - Method in class hex.ensemble.StackedEnsembleModel
-
- denNA() - Method in class hex.tree.DHistogram
-
- denormalizeBeta(double[]) - Method in class hex.DataInfo
-
- derivativeCoeffs(double[][]) - Static method in class hex.gam.GamSplines.NBSplinesTypeIDerivative
-
- descriptions - Variable in class hex.schemas.TreeV3
-
- desiredChunks(Frame, boolean) - Method in class hex.deeplearning.DeepLearning
-
- dest - Variable in class hex.schemas.MakeGLMModelV3
-
- destination_frame - Variable in class hex.schemas.GramV3
-
- dev - Variable in class hex.glm.GLMModel.GLMWeights
-
- deviance() - Method in class hex.glm.ComputationState
-
- deviance(double, double, double) - Method in class hex.glm.GLMModel
-
- deviance(double, double) - Method in class hex.glm.GLMModel.GLMParameters
-
- deviance(float, float) - Method in class hex.glm.GLMModel.GLMParameters
-
- deviance(double, double) - Method in class hex.glm.GLMModel.GLMWeightsFun
-
- deviance(float, float) - Method in class hex.glm.GLMModel.GLMWeightsFun
-
- deviance(double, double, double) - Static method in class hex.glm.TweedieEstimator
-
- devianceTrain - Variable in class hex.glm.GLMModel.Submodel
-
- devianceValid - Variable in class hex.glm.GLMModel.Submodel
-
- DHistogram - Class in hex.tree
-
A Histogram, computed in parallel over a Vec.
- DHistogram.NASplitDir - Enum in hex.tree
-
Split direction for missing values.
- DhnasdLeft - Static variable in class hex.tree.TreeVisitor
-
- DhnasdNaLeft - Static variable in class hex.tree.TreeVisitor
-
- DhnasdNaVsRest - Static variable in class hex.tree.TreeVisitor
-
- diagnostics - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
Gather diagnostics for hidden layers, such as mean and RMS values of learning
rate, momentum, weights and biases.
- diagSum() - Method in class hex.gram.Gram
-
- DiffMinusMedianDiff(Vec, double[]) - Constructor for class hex.tree.gbm.GBM.DiffMinusMedianDiff
-
- DimensionReductionUtils - Class in hex.util
-
Created by wendycwong on 2/9/17.
- DimensionReductionUtils() - Constructor for class hex.util.DimensionReductionUtils
-
- dinfo() - Method in class hex.FrameTask
-
- dinfo() - Method in class hex.glm.GLMModel
-
- disable_training_metrics - Variable in class hex.schemas.ExtendedIsolationForestV3.ExtendedIsolationForestParametersV3
-
- disable_training_metrics - Variable in class hex.schemas.PSVMV3.PSVMParametersV3
-
- disableIntercept() - Method in class hex.DataInfo
-
- dispersion() - Method in class hex.glm.GLMModel.GLMOutput
-
- dispersion_epsilon - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- dispersion_learning_rate - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- dispersion_parameter_method - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- dispersionEstimated() - Method in class hex.glm.ComputationState
-
- dispersionEstimated() - Method in class hex.glm.GLMModel.GLMOutput
-
- dispersionEstimated - Variable in class hex.glm.GLMModel.Submodel
-
- dispersionLS(DispersionTask.ComputeMaxSumSeriesTsk, TweedieMLDispersionOnly, GLMModel.GLMParameters) - Static method in class hex.glm.DispersionUtils
-
- DispersionTask - Class in hex.glm
-
- DispersionTask() - Constructor for class hex.glm.DispersionTask
-
- DispersionTask.ComputeMaxSumSeriesTsk - Class in hex.glm
-
This class will compute the following for every row of the dataset:
1.
- DispersionTask.ComputeMaxSumSeriesTsk.CalWVdWVd2WV - Interface in hex.glm
-
This interface is used to calculate one item of the series in log.
- DispersionTask.ComputeMaxSumSeriesTsk.EvalLogD2WVEnv - Class in hex.glm
-
- DispersionTask.ComputeMaxSumSeriesTsk.EvalLogDWVEnv - Class in hex.glm
-
- DispersionTask.ComputeMaxSumSeriesTsk.EvalLogWVEnv - Class in hex.glm
-
- DispersionTask.ComputeTweedieConstTsk - Class in hex.glm
-
Class to pre-calculate constants assocated with the following processes:
1.
- DispersionTask.ConstColNames - Enum in hex.glm
-
- DispersionTask.GenPrediction - Class in hex.glm
-
- DispersionTask.InfoColNames - Enum in hex.glm
-
- DispersionUtils - Class in hex.glm
-
- DispersionUtils() - Constructor for class hex.glm.DispersionUtils
-
- distributionToFamily(DistributionFamily) - Static method in class hex.util.DistributionUtils
-
- DistributionUtils - Class in hex.util
-
- DistributionUtils() - Constructor for class hex.util.DistributionUtils
-
- div(double) - Method in class hex.deeplearning.DeepLearningModelInfo
-
Divide all weights/biases by a real-valued number
- Divergence - Class in hex.tree.uplift
-
Divergence class used to calculate gain to split the node in Uplift trees algorithms.
- Divergence() - Constructor for class hex.tree.uplift.Divergence
-
- doInTrainingCheckpoint() - Method in class hex.tree.SharedTree.Driver
-
- doModelSpecificComputation(float[]) - Method in class hex.tree.drf.DRFModel.ScoreContributionsSoringTaskDRF
-
- doModelSpecificComputation(double[]) - Method in class hex.tree.drf.DRFModel.ScoreContributionsWithBackgroundTaskDRF
-
- doModelSpecificComputation(float[]) - Method in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsTask
-
- doModelSpecificComputation(double[]) - Method in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsWithBackgroundTask
-
- doNotSplit() - Method in class hex.tree.DTree.UndecidedNode
-
- doOOBScoring() - Method in class hex.tree.SharedTree.Driver
-
- doScoringAndSaveModel(boolean, boolean, boolean) - Method in class hex.tree.SharedTree
-
- dotSame(DataInfo.Row) - Method in class hex.DataInfo.Row
-
- DRF - Class in hex.tree.drf
-
Distributed Random Forest
- DRF(DRFModel.DRFParameters) - Constructor for class hex.tree.drf.DRF
-
- DRF(DRFModel.DRFParameters, Key<DRFModel>) - Constructor for class hex.tree.drf.DRF
-
- DRF(DRFModel.DRFParameters, Job) - Constructor for class hex.tree.drf.DRF
-
- DRF(boolean) - Constructor for class hex.tree.drf.DRF
-
- DRFModel - Class in hex.tree.drf
-
- DRFModel(Key<DRFModel>, DRFModel.DRFParameters, DRFModel.DRFOutput) - Constructor for class hex.tree.drf.DRFModel
-
- DRFModel.DRFOutput - Class in hex.tree.drf
-
- DRFModel.DRFParameters - Class in hex.tree.drf
-
- DRFModel.ScoreContributionsSoringTaskDRF - Class in hex.tree.drf
-
- DRFModel.ScoreContributionsTaskDRF - Class in hex.tree.drf
-
- DRFModel.ScoreContributionsWithBackgroundTaskDRF - Class in hex.tree.drf
-
- DRFModelOutputV3() - Constructor for class hex.schemas.DRFModelV3.DRFModelOutputV3
-
- DRFModelV3 - Class in hex.schemas
-
- DRFModelV3() - Constructor for class hex.schemas.DRFModelV3
-
- DRFModelV3.DRFModelOutputV3 - Class in hex.schemas
-
- DrfMojoWriter - Class in hex.tree.drf
-
Mojo definition for DRF model.
- DrfMojoWriter() - Constructor for class hex.tree.drf.DrfMojoWriter
-
- DrfMojoWriter(DRFModel) - Constructor for class hex.tree.drf.DrfMojoWriter
-
- DRFOutput(DRF) - Constructor for class hex.tree.drf.DRFModel.DRFOutput
-
- DRFParameters() - Constructor for class hex.tree.drf.DRFModel.DRFParameters
-
- DRFParametersV3() - Constructor for class hex.schemas.DRFV3.DRFParametersV3
-
- DRFV3 - Class in hex.schemas
-
- DRFV3() - Constructor for class hex.schemas.DRFV3
-
- DRFV3.DRFParametersV3 - Class in hex.schemas
-
- Driver() - Constructor for class hex.tree.SharedTree.Driver
-
- dropActiveData() - Method in class hex.glm.ComputationState
-
- dropCols(int[], double[][]) - Static method in class hex.glm.ComputationState.GramGrad
-
- dropCols(int[]) - Method in class hex.gram.Gram
-
- dropIgnoredCols(double[][], double[][], List<Integer>) - Static method in class hex.glm.ComputationState.GramGrad
-
- dropIgnoredCols(GLMTask.GLMIterationTask, List<Integer>) - Static method in class hex.modelselection.ModelSelectionUtils
-
- dropInteractions() - Method in class hex.DataInfo
-
- dropIntercept() - Method in class hex.gram.Gram
-
- Dropout - Class in hex.deeplearning
-
Helper class for dropout training of Neural Nets
- dropWeights() - Method in class hex.DataInfo
-
- DT - Class in hex.tree.dt
-
Decision Tree
- DT(DTModel.DTParameters) - Constructor for class hex.tree.dt.DT
-
- DT(boolean) - Constructor for class hex.tree.dt.DT
-
- DTModel - Class in hex.tree.dt
-
- DTModel(Key<DTModel>, DTModel.DTParameters, DTModel.DTOutput) - Constructor for class hex.tree.dt.DTModel
-
- DTModel.DTOutput - Class in hex.tree.dt
-
- DTModel.DTParameters - Class in hex.tree.dt
-
- DTModelOutputV3() - Constructor for class hex.schemas.DTModelV3.DTModelOutputV3
-
- DTModelV3 - Class in hex.schemas
-
- DTModelV3() - Constructor for class hex.schemas.DTModelV3
-
- DTModelV3.DTModelOutputV3 - Class in hex.schemas
-
- DTOutput(DT) - Constructor for class hex.tree.dt.DTModel.DTOutput
-
- DTParameters() - Constructor for class hex.tree.dt.DTModel.DTParameters
-
- DTParametersV3() - Constructor for class hex.schemas.DTV3.DTParametersV3
-
- DTPrediction - Class in hex.tree.dt
-
- DTPrediction(int, double, String) - Constructor for class hex.tree.dt.DTPrediction
-
- DTree - Class in hex.tree
-
A Decision Tree, laid over a Frame of Vecs, and built distributed.
- DTree(Frame, int, int, int, long, SharedTreeModel.SharedTreeParameters) - Constructor for class hex.tree.DTree
-
- DTree(DTree) - Constructor for class hex.tree.DTree
-
Copy constructor
- DTree.DecidedNode - Class in hex.tree
-
- DTree.DecidedNode.FindSplits - Class in hex.tree
-
- DTree.LeafNode - Class in hex.tree
-
- DTree.Node - Class in hex.tree
-
- DTree.Split - Class in hex.tree
-
- DTree.UndecidedNode - Class in hex.tree
-
- DTreeScorer<T extends DTreeScorer<T>> - Class in hex.tree
-
- DTreeScorer(int, int, SharedTree, CompressedForest) - Constructor for class hex.tree.DTreeScorer
-
- DTV3 - Class in hex.schemas
-
- DTV3() - Constructor for class hex.schemas.DTV3
-
- DTV3.DTParametersV3 - Class in hex.schemas
-
- early_stopping - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
-
- early_stopping - Variable in class hex.schemas.GAMV3.GAMParametersV3
-
- early_stopping - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- early_stopping - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
- EffectiveParametersUtils - Class in hex.util
-
- EffectiveParametersUtils() - Constructor for class hex.util.EffectiveParametersUtils
-
- EigenPair - Class in hex.util
-
- EigenPair(double, double[]) - Constructor for class hex.util.EigenPair
-
- eigenvalue - Variable in class hex.util.EigenPair
-
- eigenvector - Variable in class hex.util.EigenPair
-
- eigenvectors - Variable in class hex.schemas.GLRMModelV3.GLRMModelOutputV3
-
- eigenvectors - Variable in class hex.schemas.PCAModelV3.PCAModelOutputV3
-
- elastic_averaging - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
- elastic_averaging_moving_rate - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
- elastic_averaging_regularization - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
- elasticAverageModelInfoKey() - Method in class hex.deeplearning.DeepLearningModelInfo
-
- enoughMinMemory(double) - Static method in class hex.ContributionsWithBackgroundFrameTask
-
- entropyBinarySplit(double) - Static method in class hex.tree.dt.binning.SplitStatistics
-
- epoch_counter - Variable in class hex.deeplearning.DeepLearningModel
-
- epoch_counter - Variable in class hex.deeplearning.DeepLearningScoringInfo
-
- epoch_counter() - Method in class hex.deeplearning.DeepLearningScoringInfo
-
- epochs - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
The number of passes over the training dataset to be carried out.
- epochs - Variable in class hex.schemas.Word2VecModelV3.Word2VecModelOutputV3
-
- epochs - Variable in class hex.schemas.Word2VecV3.Word2VecParametersV3
-
- EPS - Static variable in class hex.gam.MatrixFrameUtils.GamUtils
-
- EPS - Static variable in class hex.glm.ConstrainedGLMUtils
-
- EPS2 - Static variable in class hex.glm.ConstrainedGLMUtils
-
- EPS_CS - Static variable in class hex.glm.ComputationState
-
- EPS_CS_SQUARE - Static variable in class hex.glm.ComputationState
-
- eps_prob - Variable in class hex.schemas.NaiveBayesV3.NaiveBayesParametersV3
-
- eps_sdev - Variable in class hex.schemas.NaiveBayesV3.NaiveBayesParametersV3
-
- epsilon - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
The second of two hyper parameters for adaptive learning rate (ADADELTA).
- EPSILON - Static variable in class hex.tree.dt.DT
-
- equalColNames(String[], String[], String) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
-
- equals(Object) - Method in class hex.glm.ConstrainedGLMUtils.CoefIndices
-
- equals(Object) - Method in class hex.rulefit.Condition
-
- equals(Object) - Method in class hex.rulefit.Rule
-
- equals(AbstractFeatureLimits) - Method in class hex.tree.dt.AbstractFeatureLimits
-
- equals(AbstractFeatureLimits) - Method in class hex.tree.dt.CategoricalFeatureLimits
-
- equals(DataFeaturesLimits) - Method in class hex.tree.dt.DataFeaturesLimits
-
- equals(AbstractFeatureLimits) - Method in class hex.tree.dt.NumericFeatureLimits
-
- equals(Object) - Method in class hex.tree.SharedTree.SharedTreeDebugParams
-
- estimate_k - Variable in class hex.schemas.KMeansV3.KMeansParametersV3
-
- estimateGammaMLSE(GLMTask.ComputeGammaMLSETsk, double, double[], GLMModel.GLMParameters, ComputationState, Job, GLMModel) - Static method in class hex.glm.DispersionUtils
-
Estimate dispersion factor using maximum likelihood.
- estimateLowerBound(int, double, double, DispersionTask.ComputeMaxSumSeriesTsk.CalWVdWVd2WV) - Method in class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk
-
- estimateNegBinomialDispersionFisherScoring(GLMModel.GLMParameters, GLMModel, double[], DataInfo) - Static method in class hex.glm.DispersionUtils
-
- estimateNegBinomialDispersionMomentMethod(GLMModel, double[], DataInfo, Vec, Vec, Vec) - Static method in class hex.glm.DispersionUtils
-
- estimatePerNodeMinimalMemory(int, Frame, Frame) - Static method in class hex.ContributionsWithBackgroundFrameTask
-
- estimateRequiredMemory(int, Frame, Frame) - Static method in class hex.ContributionsWithBackgroundFrameTask
-
- estimateRho(double, double, double, double) - Static method in class hex.optimization.ADMM.L1Solver
-
Estimate optimal rho based on l1 penalty and (estimate of) solution x without the l1penalty
- estimateTweedieDispersionOnly(GLMModel.GLMParameters, GLMModel, Job, double[], DataInfo) - Static method in class hex.glm.DispersionUtils
-
This method estimates the tweedie dispersion parameter.
- estimateUpperBound(int, double, double, int, DispersionTask.ComputeMaxSumSeriesTsk.CalWVdWVd2WV) - Method in class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk
-
- EuclideanDistance - Class in hex.tree.uplift
-
- EuclideanDistance() - Constructor for class hex.tree.uplift.EuclideanDistance
-
- evalD2lldPhi2(Chunk[], int, double, double, double, Map<DispersionTask.ConstColNames, Integer>) - Method in class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk
-
- evalDlldPhi(Chunk[], int, double, double, Map<DispersionTask.ConstColNames, Integer>) - Method in class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk
-
- EvalLogD2WVEnv() - Constructor for class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk.EvalLogD2WVEnv
-
- EvalLogDWVEnv() - Constructor for class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk.EvalLogDWVEnv
-
- evalLogLikelihood(Chunk[], int, double, Map<DispersionTask.ConstColNames, Integer>) - Method in class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk
-
- EvalLogWVEnv() - Constructor for class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk.EvalLogWVEnv
-
- evalOneConstraint(ConstrainedGLMUtils.LinearConstraints, double[], List<String>) - Static method in class hex.glm.ConstrainedGLMUtils
-
This method will evaluate the value of a constraint given the GLM coefficients and the coefficicent name list.
- evaluate(double[]) - Method in interface hex.optimization.OptimizationUtils.LineSearchSolver
-
- evaluate(double[]) - Method in class hex.optimization.OptimizationUtils.MoreThuente
-
- evaluate(double[]) - Method in class hex.optimization.OptimizationUtils.SimpleBacktrackingLS
-
- evaluateConstraint(ComputationState, ConstrainedGLMUtils.LinearConstraints[], boolean, double[], List<String>, String, List<String>, List<String>, List<Double>, List<String>, List<String>) - Static method in class hex.glm.ConstrainedGLMUtils
-
Print constraints without any standardization applied so that people can see the setting in their original
form without standardization.
- evaluateFirstWolfe(GLM.GLMGradientInfo) - Method in class hex.optimization.OptimizationUtils.ExactLineSearch
-
Evaluate and make sure that step size alphi is not too big so that objective function is still decreasing.
- evaluateSecondWolfe(GLM.GLMGradientInfo) - Method in class hex.optimization.OptimizationUtils.ExactLineSearch
-
Evaluate and make sure that step size alphi is not too small so that good progress is made in reducing the
loss function.
- ExactLineSearch(double[], ComputationState, List<String>) - Constructor for class hex.optimization.OptimizationUtils.ExactLineSearch
-
- ExactSplitPoints - Class in hex.tree
-
Finds exact split points for low-cardinality columns.
- expand(Frame, Model.InteractionSpec, boolean, boolean, boolean) - Static method in class hex.glm.GLMModel.GLMOutput
-
- expand_user_y - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
-
- expandBeta(double[]) - Method in class hex.glm.ComputationState
-
- expandCats() - Method in class hex.DataInfo.Row
-
- expandCats(double[][], DataInfo) - Static method in class hex.glrm.GLRM
-
- expandCatsPredsOnly(double[]) - Method in class hex.DataInfo.Row
-
- expandCombo(int[], int[], Integer[]) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
-
Given a combo found by findOnePerm say for d = 5, m = 4, for degree = 1 to m-1 (3 in this case).
- expandedCatCS(Frame, GLMModel.GLMParameters) - Static method in class hex.glm.GLMUtils
-
- expandLowTrian2Ful(double[][]) - Static method in class hex.util.LinearAlgebraUtils
-
- ExpandRandomColumns(Job, int[], int[], int) - Constructor for class hex.glm.GLMTask.ExpandRandomColumns
-
- expandRow(double[], DataInfo, double[], boolean) - Static method in class hex.util.LinearAlgebraUtils
-
- expandToFullArray(double[], int[], int, int, int) - Static method in class hex.glm.ComputationState
-
- explained_deviance_train - Variable in class hex.schemas.GLMRegularizationPathV3
-
- explained_deviance_valid - Variable in class hex.schemas.GLMRegularizationPathV3
-
- explainedDev() - Method in class hex.glm.GLMMetricBuilder
-
- export_weights_and_biases - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
- ExpRectifier(int) - Constructor for class hex.deeplearning.Neurons.ExpRectifier
-
- ExpRectifierDropout(int) - Constructor for class hex.deeplearning.Neurons.ExpRectifierDropout
-
- ExtendedIsolationForest - Class in hex.tree.isoforextended
-
Extended isolation forest implementation.
- ExtendedIsolationForest(ExtendedIsolationForestModel.ExtendedIsolationForestParameters) - Constructor for class hex.tree.isoforextended.ExtendedIsolationForest
-
- ExtendedIsolationForest(ExtendedIsolationForestModel.ExtendedIsolationForestParameters, Key<ExtendedIsolationForestModel>) - Constructor for class hex.tree.isoforextended.ExtendedIsolationForest
-
- ExtendedIsolationForest(ExtendedIsolationForestModel.ExtendedIsolationForestParameters, Job) - Constructor for class hex.tree.isoforextended.ExtendedIsolationForest
-
- ExtendedIsolationForest(boolean) - Constructor for class hex.tree.isoforextended.ExtendedIsolationForest
-
- ExtendedIsolationForestModel - Class in hex.tree.isoforextended
-
- ExtendedIsolationForestModel(Key<ExtendedIsolationForestModel>, ExtendedIsolationForestModel.ExtendedIsolationForestParameters, ExtendedIsolationForestModel.ExtendedIsolationForestOutput) - Constructor for class hex.tree.isoforextended.ExtendedIsolationForestModel
-
- ExtendedIsolationForestModel.ExtendedIsolationForestOutput - Class in hex.tree.isoforextended
-
- ExtendedIsolationForestModel.ExtendedIsolationForestParameters - Class in hex.tree.isoforextended
-
- ExtendedIsolationForestModelOutputV3() - Constructor for class hex.schemas.ExtendedIsolationForestModelV3.ExtendedIsolationForestModelOutputV3
-
- ExtendedIsolationForestModelV3 - Class in hex.schemas
-
- ExtendedIsolationForestModelV3() - Constructor for class hex.schemas.ExtendedIsolationForestModelV3
-
- ExtendedIsolationForestModelV3.ExtendedIsolationForestModelOutputV3 - Class in hex.schemas
-
- ExtendedIsolationForestMojoWriter - Class in hex.tree.isoforextended
-
- ExtendedIsolationForestMojoWriter() - Constructor for class hex.tree.isoforextended.ExtendedIsolationForestMojoWriter
-
- ExtendedIsolationForestMojoWriter(ExtendedIsolationForestModel) - Constructor for class hex.tree.isoforextended.ExtendedIsolationForestMojoWriter
-
- ExtendedIsolationForestOutput(ExtendedIsolationForest) - Constructor for class hex.tree.isoforextended.ExtendedIsolationForestModel.ExtendedIsolationForestOutput
-
- ExtendedIsolationForestParameters() - Constructor for class hex.tree.isoforextended.ExtendedIsolationForestModel.ExtendedIsolationForestParameters
-
- ExtendedIsolationForestParametersV3() - Constructor for class hex.schemas.ExtendedIsolationForestV3.ExtendedIsolationForestParametersV3
-
- extendedIsolationForestSplit(double[][], double[], double[]) - Static method in class hex.tree.isoforextended.isolationtree.IsolationTree
-
Compute Extended Isolation Forest split point and filter input data with this split point in the same time.
- ExtendedIsolationForestV3 - Class in hex.schemas
-
- ExtendedIsolationForestV3() - Constructor for class hex.schemas.ExtendedIsolationForestV3
-
- ExtendedIsolationForestV3.ExtendedIsolationForestParametersV3 - Class in hex.schemas
-
- extension_level - Variable in class hex.schemas.ExtendedIsolationForestV3.ExtendedIsolationForestParametersV3
-
- extractAdaptedFrameIndices(Frame, String[][], int) - Static method in class hex.glm.GLMUtils
-
From the gamColnames, this method attempts to translate to the column indices in adaptFrame.
- extractBetaConstraints(ComputationState, String[]) - Static method in class hex.glm.ConstrainedGLMUtils
-
This method will extract the constraints specified in beta constraint and combine it with the linear constraints
later.
- extractCoeffNames(List<String>, ConstrainedGLMUtils.LinearConstraints[]) - Static method in class hex.glm.ConstrainedGLMUtils
-
- extractCoefsFromPred(List<String>, boolean, DataInfo, int[]) - Static method in class hex.modelselection.ModelSelectionModel.ModelSelectionModelOutput
-
- extractCoefsValues(double[][], int, boolean, int, ModelSelectionUtils.CoeffNormalization, int, int[], int[][]) - Method in class hex.modelselection.ModelSelectionModel.ModelSelectionModelOutput
-
- extractColNames(String[], int, int, int) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
-
- extractCompressedTrees(SharedTreeMojoModel) - Static method in class hex.tree.MojoUtils
-
- extractConstraint(Frame, List<Integer>, List<ConstrainedGLMUtils.LinearConstraints>, DataInfo, List<String>, List<String>) - Static method in class hex.glm.ConstrainedGLMUtils
-
- extractConstraintCoeffs(ComputationState) - Static method in class hex.glm.ConstrainedGLMUtils
-
- extractConstraintValues(ConstrainedGLMUtils.LinearConstraints[], List<String>, double[][], int, int[]) - Static method in class hex.glm.ConstrainedGLMUtils
-
- extractCPMIndexFromPred(int, int[][], int[], boolean) - Static method in class hex.modelselection.ModelSelectionUtils
-
- extractCPMIndexFromPredOnly(int[][], int[]) - Static method in class hex.modelselection.ModelSelectionUtils
-
Given the predictor in subset newPredList, this function will find the rows/columns in the cpm matrix that
are contributed by the predictors in subset newPredList.
- extractDenseRow(Chunk[], int, DataInfo.Row) - Method in class hex.DataInfo
-
- ExtractDenseRow(DataInfo, long) - Constructor for class hex.FrameTask.ExtractDenseRow
-
- extractDerivativeCoeff(NBSplinesTypeI, NBSplinesTypeI, double[], int, double) - Static method in class hex.gam.GamSplines.NBSplinesTypeIDerivative
-
This function extracts the coefficients for the derivative of a NBSplineTypeI (Mi,k(t)) as described in Section
VI of doc.
- extractEigenvaluesFromEigenpairs(EigenPair[]) - Static method in class hex.util.LinearAlgebraUtils
-
- extractEigenvectorsFromEigenpairs(EigenPair[]) - Static method in class hex.util.LinearAlgebraUtils
-
- ExtractFrameFromSourceWithProcess(Frame, int[], long, long) - Constructor for class hex.glm.GLMTask.ExtractFrameFromSourceWithProcess
-
- extractGLMModels(GLM[]) - Static method in class hex.anovaglm.ANOVAGLMUtils
-
Simple method to extract GLM Models from GLM ModelBuilders.
- extractLinearConstraints(ComputationState, Key<Frame>, DataInfo) - Static method in class hex.glm.ConstrainedGLMUtils
-
This method will extract the constraints specified in the Frame with key linearConstraintFrameKey.
- extractNDemeanOneRowFromChunk(Chunk[], int, double[], int) - Static method in class hex.gam.GamSplines.ThinPlatePolynomialWithKnots
-
- extractPredictorNames(Model.Parameters, DataInfo, String) - Static method in class hex.modelselection.ModelSelectionUtils
-
- extractPredNames(DataInfo, int) - Static method in class hex.anovaglm.ANOVAGLMUtils
-
This method will extract the individual predictor names that will be used to build the GLM models.
- extractPredsFromPredIndices(String[], int[]) - Static method in class hex.modelselection.ModelSelectionModel.ModelSelectionModelOutput
-
- extractPredSubsetsCPM(double[][], int[], int[][], boolean) - Static method in class hex.modelselection.ModelSelectionUtils
-
Given a predictor subset and the complete CPM, we extract the CPM associated with the predictors
specified in the predictor subset (predIndices).
- extractPredSubsetsCPMFrame(Frame, int[], int[][], boolean) - Static method in class hex.modelselection.ModelSelectionUtils
-
Given a predictor subset and the complete CPM, we extract the CPM associated with the predictors
specified in the predictor subset (predIndices).
- extractRegularizationPath(int, GLMRegularizationPathV3) - Method in class hex.api.MakeGLMModelHandler
-
- extractRulesFromTree(SharedTreeSubgraph, int, String) - Static method in class hex.rulefit.Rule
-
- extractRulesListFromModel(SharedTreeModel, int, int) - Static method in class hex.rulefit.Rule
-
- extractRulesStartingWithNode(int, String, int) - Method in class hex.tree.dt.CompressedDT
-
- extractSparseRows(Chunk[]) - Method in class hex.DataInfo
-
Extract (sparse) rows from given chunks.
- extractSubRange(int, int, int[], double[]) - Static method in class hex.glm.ComputationState
-
This method will return a double array that is extracted from src (which includes active and non-active columns)
to only include active columns stated in ids.
- extractSweepIndices(List<Integer>, int, int, int[][], boolean) - Static method in class hex.modelselection.ModelSelectionUtils
-
Given predRemoved (the predictor that is to be removed and replaced in the forward step), this method will
calculate the locations of the CPM rows/columns associated with it.
- extractVec2List(Frame) - Method in class hex.glm.GLM.BetaConstraint
-
Extract predictor names in the constraint frame constraintF into a list.
- extraModelColumnNames(List<String>, GLMModel) - Static method in class hex.modelselection.ModelSelectionUtils
-
- extraMojoFeatures() - Method in class hex.coxph.CoxPHModel
-
- fact_threshold - Variable in class hex.schemas.PSVMV3.PSVMParametersV3
-
- failVerifyKnots(double[], int) - Method in class hex.gam.GAM
-
- family - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
-
- family - Variable in class hex.schemas.GAMV3.GAMParametersV3
-
- family - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- family - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
- familyToDistribution(GLMModel.GLMParameters.Family) - Static method in class hex.util.DistributionUtils
-
- fast_mode - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
Enable fast mode (minor approximation in back-propagation), should not affect results significantly.
- feasible_threshold - Variable in class hex.schemas.PSVMV3.PSVMParametersV3
-
- FeatureBins - Class in hex.tree.dt.binning
-
- FeatureBins(List<AbstractBin>) - Constructor for class hex.tree.dt.binning.FeatureBins
-
- FeatureBins(List<AbstractBin>, int) - Constructor for class hex.tree.dt.binning.FeatureBins
-
- featureName - Variable in class hex.rulefit.Condition
-
- features - Variable in class hex.schemas.TreeV3
-
- featuresCount() - Method in class hex.tree.dt.binning.Histogram
-
- featuresCount() - Method in class hex.tree.dt.DataFeaturesLimits
-
Get count of features.
- FeaturesLimitsMRTask - Class in hex.tree.dt.mrtasks
-
MR task for calculating real features limits based on limits.
- FeaturesLimitsMRTask(double[][]) - Constructor for class hex.tree.dt.mrtasks.FeaturesLimitsMRTask
-
- fetch() - Method in class hex.tree.CompressedForest
-
Fetches trees from DKV and converts to a node-local structure.
- fields - Static variable in class hex.schemas.AdaBoostV3.AdaBoostParametersV3
-
- fields - Static variable in class hex.schemas.AggregatorV99.AggregatorParametersV99
-
- fields - Static variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
-
- fields - Static variable in class hex.schemas.CoxPHV3.CoxPHParametersV3
-
- fields - Static variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
- fields - Static variable in class hex.schemas.DRFV3.DRFParametersV3
-
- fields - Static variable in class hex.schemas.DTV3.DTParametersV3
-
- fields - Static variable in class hex.schemas.ExtendedIsolationForestV3.ExtendedIsolationForestParametersV3
-
- fields - Static variable in class hex.schemas.GAMV3.GAMParametersV3
-
- fields - Static variable in class hex.schemas.GBMV3.GBMParametersV3
-
- fields - Static variable in class hex.schemas.GenericV3.GenericParametersV3
-
- fields - Static variable in class hex.schemas.GLMV3.GLMParametersV3
-
- fields - Static variable in class hex.schemas.GLRMV3.GLRMParametersV3
-
- fields - Static variable in class hex.schemas.IsolationForestV3.IsolationForestParametersV3
-
- fields - Static variable in class hex.schemas.IsotonicRegressionV3.IsotonicRegressionParametersV3
-
- fields - Static variable in class hex.schemas.KMeansV3.KMeansParametersV3
-
- fields - Static variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
- fields - Static variable in class hex.schemas.NaiveBayesV3.NaiveBayesParametersV3
-
- fields - Static variable in class hex.schemas.PCAV3.PCAParametersV3
-
- fields - Static variable in class hex.schemas.PSVMV3.PSVMParametersV3
-
- fields - Static variable in class hex.schemas.RuleFitV3.RuleFitParametersV3
-
- fields - Static variable in class hex.schemas.StackedEnsembleV99.StackedEnsembleParametersV99
-
- fields - Static variable in class hex.schemas.SVDV99.SVDParametersV99
-
- fields - Static variable in class hex.schemas.UpliftDRFV3.UpliftDRFParametersV3
-
- fields - Static variable in class hex.schemas.Word2VecV3.Word2VecParametersV3
-
- fillBytes(long) - Method in class hex.deeplearning.Dropout
-
- fillConstraintValues(ComputationState, List<String>, double[][], int[]) - Static method in class hex.glm.ConstrainedGLMUtils
-
- fillFromImpl(ANOVAGLMModel.ANOVAGLMModelOutput) - Method in class hex.schemas.ANOVAGLMModelV3.ANOVAGLMModelOutputV3
-
- fillFromImpl(CoxPHModel.CoxPHOutput) - Method in class hex.schemas.CoxPHModelV3.CoxPHModelOutputV3
-
- fillFromImpl(GenericModelParameters, String[]) - Method in class hex.schemas.GenericV3.GenericParametersV3
-
- fillFromImpl(GenericModelParameters) - Method in class hex.schemas.GenericV3.GenericParametersV3
-
- fillFromImpl(GLMModel.GLMOutput) - Method in class hex.schemas.GLMModelV3.GLMModelOutputV3
-
- fillFromImpl(GrepModel) - Method in class hex.schemas.GrepModelV3
-
- fillFromImpl(GrepModel.GrepOutput) - Method in class hex.schemas.GrepModelV3.GrepModelOutputV3
-
- fillFromImpl(IsolationForestModel.IsolationForestParameters) - Method in class hex.schemas.IsolationForestV3.IsolationForestParametersV3
-
- fillFromImpl(IsotonicRegressionModel.IsotonicRegressionOutput) - Method in class hex.schemas.IsotonicRegressionModelV3.IsotonicRegressionModelOutputV3
-
- fillFromImpl(KMeansModel.KMeansOutput) - Method in class hex.schemas.KMeansModelV3.KMeansModelOutputV3
-
- fillFromImpl(ModelSelectionModel.ModelSelectionModelOutput) - Method in class hex.schemas.ModelSelectionModelV3.ModelSelectionModelOutputV3
-
- fillFromImpl(StackedEnsembleModel.StackedEnsembleParameters) - Method in class hex.schemas.StackedEnsembleV99.StackedEnsembleParametersV99
-
- fillFromImpl(UpliftDRFModel.UpliftDRFOutput) - Method in class hex.schemas.UpliftDRFModelV3.UpliftDRFModelOutputV3
-
- fillFromImpl(ModelMetricsAnomaly) - Method in class water.api.ModelMetricsAnomalyV3
-
- fillImpl(IsolationForestModel.IsolationForestParameters) - Method in class hex.schemas.IsolationForestV3.IsolationForestParametersV3
-
- fillImpl(StackedEnsembleModel.StackedEnsembleParameters) - Method in class hex.schemas.StackedEnsembleV99.StackedEnsembleParametersV99
-
- fillInput(Chunk[], int, double[], float[], int[]) - Method in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsSortingTask
-
- fillInput(Chunk[], int, double[], float[]) - Method in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsTask
-
- fillInput(Chunk[], int, double[]) - Method in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsWithBackgroundTask
-
- fillModelMetrics(ANOVAGLMModel, GLMModel, Frame) - Static method in class hex.anovaglm.ANOVAGLMUtils
-
I copied this method from Zuzana Olajcova to add model metrics of the full GLM model as the ANOVAModel model
metrics
- fillOutput(String[], int[]) - Method in class hex.anovaglm.ANOVAGLMModel
-
- fillRowArray(NewChunk[], int, double[]) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
-
- fillRowData(double[], Chunk[], int, int) - Static method in class hex.gam.GamSplines.ThinPlateDistanceWithKnots
-
- fillRowOneValue(NewChunk[], int, double) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
-
- fillTo(ScoreKeeper) - Method in class hex.tree.isofor.ModelMetricsAnomaly
-
- fillUpCoeffs(double[], double[], TwoDimTable, int) - Static method in class hex.gam.MatrixFrameUtils.GAMModelUtils
-
- FilteredData(double[][], double[][]) - Constructor for class hex.tree.isoforextended.isolationtree.IsolationTree.FilteredData
-
- filterExpandedColumns(int[]) - Method in class hex.DataInfo
-
Filter the _adaptedFrame so that it contains only the Vecs referenced by the cols
parameter.
- filterExpandedColumns(int[]) - Method in class hex.glm.GLM.BetaConstraint
-
- find_maxEx() - Method in class hex.tree.DHistogram
-
- find_maxEx(double, int) - Static method in class hex.tree.DHistogram
-
- find_maxIn() - Method in class hex.tree.DHistogram
-
- find_min() - Method in class hex.tree.DHistogram
-
- findAllPolybasis(List<Integer[]>) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
-
For each list in onePolyBasis, we still need to find all the permutations for that list.
- findAlpha(double[], double[], ComputationState, ConstrainedGLMUtils.LinearConstraints[], ConstrainedGLMUtils.LinearConstraints[], GLM.GLMGradientSolver) - Method in class hex.optimization.OptimizationUtils.ExactLineSearch
-
Implements the Line Search algorithm in the doc, Algorithm 11.5.
- findBestModel(GLM[]) - Static method in class hex.modelselection.ModelSelectionUtils
-
Given GLM run results of a fixed number of predictors, find the model with the best R2 value.
- findCatMinOfMaxZScore(GLMModel, List<Double>) - Static method in class hex.modelselection.ModelSelectionUtils
-
This method extracts the categorical coefficient z-score (abs(z-value)) by using the following method:
1.
- findComboMatch(String[][], int) - Static method in class hex.anovaglm.ANOVAGLMUtils
-
- findEnumInBetaCS(Frame, GLMModel.GLMParameters) - Static method in class hex.glm.GLMUtils
-
- findFullDupPred(DataInfo, List<Integer>, List<String>, List<String>, String[]) - Static method in class hex.modelselection.ModelSelectionUtils
-
The duplicated columns generated by qr-cholesky is at the level of coefficients.
- findGoodCidx(Frame, ArrayList<Integer>, boolean, int, int, int) - Static method in class hex.glrm.GLRM
-
- findIterIndexAcrossFolds(List<Integer>[], int) - Static method in class hex.glm.GLM
-
This method is used to locate common iteration indices across all folds.
- FindMaxIndex(int, double) - Constructor for class hex.util.LinearAlgebraUtils.FindMaxIndex
-
- findMaxNodeId() - Method in class hex.tree.CompressedTree
-
- findMaxTermIndex(Chunk[], int, int) - Method in class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk
-
- findMinZValue(GLMModel, List<String>, List<String>, List<String>) - Static method in class hex.modelselection.ModelSelectionUtils
-
- findNumMinZVal(List<String>, List<Double>, List<String>) - Static method in class hex.modelselection.ModelSelectionUtils
-
- findOnePerm(int, int[], int, ArrayList<int[]>, int[]) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
-
For a fixed degree specified as totDegree, specified a set of combination of polynomials to achieve the totDegree.
- findPermute(int[], List<Integer>, int, List<List<Integer>>) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
-
- findPolyBasis(int, int) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
-
This method, given number of predictors in the smooth d, number of polynomials in the polynomial basis m, will
generate a list of integer array specifying for each predictors the degree that predictor will have.
- findRandColIndex(int[], long) - Static method in class hex.glm.GLMTask.CalculateW4Rand
-
Given colIndex to the expanded random columns, this method will calculate which random column that colIndex
belongs to.
- findRandColIndex(int[], long) - Static method in class hex.glm.GLMTask.RandColAddW2AugXZ
-
Given colIndex to the expanded random columns, this method will calculate which random column that colIndex
belongs to.
- FindSplits(DHistogram[], Constraints, int, DTree.UndecidedNode) - Constructor for class hex.tree.DTree.DecidedNode.FindSplits
-
- findSynonyms(int, Word2VecSynonymsV3) - Method in class hex.api.Word2VecHandler
-
- findSynonyms(String, int) - Method in class hex.word2vec.Word2VecModel
-
Find synonyms (i.e.
- findtAChunkIndices(Frame, int, int, GLRM.Archetypes) - Static method in class hex.glrm.GLRM
-
- findXChunkIndices(Frame, int, int, GLRM.Archetypes) - Static method in class hex.glrm.GLRM
-
- findZeroCols(double[][]) - Static method in class hex.glm.ComputationState.GramGrad
-
- findZeroCols() - Method in class hex.gram.Gram
-
- fitDataDispersion(Frame, int[], double[]) - Method in class hex.glm.GLM.GLMDriver
-
This method estimates the init_sig_e by building a gamma GLM with response
- fix_dispersion_parameter - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- fix_tweedie_variance_power - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- foldChunkId() - Method in class hex.DataInfo
-
- force_load_balance - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
Increase training speed on small datasets by splitting it into many chunks
to allow utilization of all cores.
- forceStrictlyReproducibleHistograms() - Method in class hex.tree.gbm.GBMModel.GBMParameters
-
- forceStrictlyReproducibleHistograms() - Method in class hex.tree.SharedTreeModel.SharedTreeParameters
-
Do we need to enable strictly deterministic way of building histograms?
Used eg.
- form1stOrderDerivatives(int, int, double[]) - Static method in class hex.gam.GamSplines.NBSplinesTypeIDerivative
-
Method to generate an array of derivatives of NBSplineTypeI.
- form2ndDerivCoeffs(int, int, double[]) - Static method in class hex.gam.GamSplines.NBSplinesTypeIDerivative
-
- formConstraintMatrix(ComputationState, List<String>, int[]) - Static method in class hex.glm.ConstrainedGLMUtils
-
- formCPM(Gram, double[], double) - Static method in class hex.modelselection.ModelSelectionUtils
-
- formDerivateProduct(double[][], double[][]) - Static method in class hex.gam.GamSplines.NBSplinesTypeIDerivative
-
Form product of derivative basis function for index firstIndex, secondIndex like M'i,k(t)*M'j,k(t).
- formInfoFrame(Frame, Frame, GLMModel.GLMParameters) - Static method in class hex.glm.TweedieMLDispersionOnly
-
- formXY(double[][], double[], double[]) - Static method in class hex.glm.ComputationState
-
- forwardSolve(double[][], double[]) - Static method in class hex.util.LinearAlgebraUtils
-
- ForwardSolve(DataInfo, double[][]) - Constructor for class hex.util.LinearAlgebraUtils.ForwardSolve
-
- ForwardSolveInPlace(DataInfo, double[][]) - Constructor for class hex.util.LinearAlgebraUtils.ForwardSolveInPlace
-
- forwardStep(List<Integer>, List<Integer>, Set<BitSet>, BitSet, int[][], ModelSelection.SweepModel, boolean) - Method in class hex.modelselection.ModelSelection
-
Given current predictor subset in currSubsetIndices, this method will add one more predictor to the subset and
choose the one that will increase the R2 by the most.
- forwardStep(List<Integer>, List<String>, int, List<Integer>, ModelSelectionModel.ModelSelectionParameters, String, int, Model.Parameters.FoldAssignmentScheme, Set<BitSet>) - Static method in class hex.modelselection.ModelSelection
-
Given a predictor subset with indices stored in currSubsetIndices, one more predictor from the coefNames
that was not found in currSubsetIndices was added to the subset to form a new Training frame.
- forwardStep(List<Integer>, List<String>, int, List<Integer>, ModelSelectionModel.ModelSelectionParameters, String, int, Model.Parameters.FoldAssignmentScheme) - Static method in class hex.modelselection.ModelSelection
-
- forwardStepR(List<Integer>, List<Integer>, Set<BitSet>, BitSet, int[][], ModelSelection.SweepModel, double, int) - Method in class hex.modelselection.ModelSelection
-
Given a currSubsetIndices and a predPos, this function will try to look for new predictor that will decrease the
error variance compared to bestErrVar.
- foundRedundantConstraints(ComputationState, double[][]) - Static method in class hex.glm.ConstrainedGLMUtils
-
- fprop(long, boolean, int) - Method in class hex.deeplearning.Neurons.ExpRectifier
-
- fprop(long, boolean, int) - Method in class hex.deeplearning.Neurons.ExpRectifierDropout
-
- fprop(long, boolean, int) - Method in class hex.deeplearning.Neurons
-
Forward propagation
- fprop(long, boolean, int) - Method in class hex.deeplearning.Neurons.Input
-
- fprop(long, boolean, int) - Method in class hex.deeplearning.Neurons.Linear
-
- fprop(long, boolean, int) - Method in class hex.deeplearning.Neurons.Maxout
-
- fprop(long, boolean, int) - Method in class hex.deeplearning.Neurons.MaxoutDropout
-
- fprop(long, boolean, int) - Method in class hex.deeplearning.Neurons.Rectifier
-
- fprop(long, boolean, int) - Method in class hex.deeplearning.Neurons.RectifierDropout
-
- fprop(long, boolean, int) - Method in class hex.deeplearning.Neurons.Softmax
-
- fprop(long, boolean, int) - Method in class hex.deeplearning.Neurons.Tanh
-
- fprop(long, boolean, int) - Method in class hex.deeplearning.Neurons.TanhDropout
-
- fpropMiniBatch(long, Neurons[], DeepLearningModelInfo, DeepLearningModelInfo, boolean, double[], double[], int) - Static method in class hex.deeplearning.DeepLearningTask
-
Forward propagation
assumption: layer 0 has _a filled with (horizontalized categoricals) double values
- frame - Variable in class hex.schemas.DataInfoFrameV3
-
- FrameMap() - Constructor for class hex.tree.SharedTree.FrameMap
-
- FrameMap(SharedTree) - Constructor for class hex.tree.SharedTree.FrameMap
-
- FrameTask<T extends FrameTask<T>> - Class in hex
-
- FrameTask(Key<Job>, DataInfo) - Constructor for class hex.FrameTask
-
- FrameTask(Key<Job>, DataInfo, long, int, boolean) - Constructor for class hex.FrameTask
-
- FrameTask(Key<Job>, DataInfo, long, int, boolean, H2O.H2OCountedCompleter) - Constructor for class hex.FrameTask
-
- FrameTask.ExtractDenseRow - Class in hex
-
- FrameTask2<T extends FrameTask2<T>> - Class in hex
-
Created by tomasnykodym on 6/1/15.
- FrameTask2(H2O.H2OCountedCompleter, DataInfo, Key<Job>) - Constructor for class hex.FrameTask2
-
- FRESH - Static variable in class hex.tree.ScoreBuildHistogram
-
- FriedmanPopescusH - Class in hex.tree
-
Calculates Friedman and Popescu's H statistics, in order to test for the presence of an interaction between specified variables in h2o gbm and xgb models.
- FriedmanPopescusH() - Constructor for class hex.tree.FriedmanPopescusH
-
- frobenius2(double[][]) - Static method in class hex.glrm.GLRM
-
- fromPretrainedModel(Frame) - Static method in class hex.word2vec.Word2Vec
-
- fullCatOffsets() - Method in class hex.DataInfo
-
- fullN() - Method in class hex.DataInfo
-
Get the fully expanded number of predictor columns.
- fullN() - Method in class hex.gram.Gram
-
- fullName() - Method in class hex.adaboost.AdaBoostModel.AdaBoostParameters
-
- fullName() - Method in class hex.aggregator.AggregatorModel.AggregatorParameters
-
- fullName() - Method in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
-
- fullName() - Method in class hex.coxph.CoxPHModel.CoxPHParameters
-
- fullName() - Method in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
-
- fullName() - Method in class hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters
-
- fullName() - Method in class hex.gam.GAMModel.GAMParameters
-
- fullName() - Method in class hex.generic.GenericModelParameters
-
- fullName() - Method in class hex.glm.GLMModel.GLMParameters
-
- fullName() - Method in class hex.glrm.GLRMModel.GLRMParameters
-
- fullName() - Method in class hex.grep.GrepModel.GrepParameters
-
- fullName() - Method in class hex.isotonic.IsotonicRegressionModel.IsotonicRegressionParameters
-
- fullName() - Method in class hex.kmeans.KMeansModel.KMeansParameters
-
- fullName() - Method in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
-
- fullName() - Method in class hex.naivebayes.NaiveBayesModel.NaiveBayesParameters
-
- fullName() - Method in class hex.pca.PCAModel.PCAParameters
-
- fullName() - Method in class hex.psvm.PSVMModel.PSVMParameters
-
- fullName() - Method in class hex.rulefit.RuleFitModel.RuleFitParameters
-
- fullName() - Method in class hex.svd.SVDModel.SVDParameters
-
- fullName() - Method in class hex.tree.drf.DRFModel.DRFParameters
-
- fullName() - Method in class hex.tree.dt.DTModel.DTParameters
-
- fullName() - Method in class hex.tree.gbm.GBMModel.GBMParameters
-
- fullName() - Method in class hex.tree.isofor.IsolationForestModel.IsolationForestParameters
-
- fullName() - Method in class hex.tree.isoforextended.ExtendedIsolationForestModel.ExtendedIsolationForestParameters
-
- fullName() - Method in class hex.tree.uplift.UpliftDRFModel.UpliftDRFParameters
-
- fullName() - Method in class hex.word2vec.Word2VecModel.Word2VecParameters
-
- gain(double, double, double, double, double, double, double, double) - Method in class hex.tree.uplift.Divergence
-
Calculate overall gain as divergence between split gain and node gain.
- GAM - Class in hex.gam
-
- GAM(boolean) - Constructor for class hex.gam.GAM
-
- GAM(GAMModel.GAMParameters) - Constructor for class hex.gam.GAM
-
- GAM(GAMModel.GAMParameters, Key<GAMModel>) - Constructor for class hex.gam.GAM
-
- gam_columns - Variable in class hex.schemas.GAMV3.GAMParametersV3
-
- gamma - Variable in class hex.schemas.PSVMV3.PSVMParametersV3
-
- gamma_x - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
-
- gamma_y - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
-
- GAMModel - Class in hex.gam
-
- GAMModel(Key<GAMModel>, GAMModel.GAMParameters, GAMModel.GAMModelOutput) - Constructor for class hex.gam.GAMModel
-
- GAMModel.GAMModelOutput - Class in hex.gam
-
- GAMModel.GAMParameters - Class in hex.gam
-
- GAMModelOutput(GAM, DataInfo) - Constructor for class hex.gam.GAMModel.GAMModelOutput
-
- GAMModelOutputV3() - Constructor for class hex.schemas.GAMModelV3.GAMModelOutputV3
-
- GAMModelUtils - Class in hex.gam.MatrixFrameUtils
-
- GAMModelUtils() - Constructor for class hex.gam.MatrixFrameUtils.GAMModelUtils
-
- GAMModelV3 - Class in hex.schemas
-
- GAMModelV3() - Constructor for class hex.schemas.GAMModelV3
-
- GAMModelV3.GAMModelOutputV3 - Class in hex.schemas
-
- GAMMojoWriter - Class in hex.gam
-
- GAMMojoWriter() - Constructor for class hex.gam.GAMMojoWriter
-
- GAMMojoWriter(GAMModel) - Constructor for class hex.gam.GAMMojoWriter
-
- gamNoCenterCoeffLength(GAMModel.GAMParameters) - Static method in class hex.gam.MatrixFrameUtils.GAMModelUtils
-
Find the number of gamified column coefficients.
- GAMParameters() - Constructor for class hex.gam.GAMModel.GAMParameters
-
- GAMParametersV3() - Constructor for class hex.schemas.GAMV3.GAMParametersV3
-
- GamUtils - Class in hex.gam.MatrixFrameUtils
-
- GamUtils() - Constructor for class hex.gam.MatrixFrameUtils.GamUtils
-
- GamUtils.AllocateType - Enum in hex.gam.MatrixFrameUtils
-
- GAMV3 - Class in hex.schemas
-
- GAMV3() - Constructor for class hex.schemas.GAMV3
-
- GAMV3.GAMParametersV3 - Class in hex.schemas
-
- gaussianVector(int, int, long) - Static method in class hex.tree.isoforextended.isolationtree.IsolationTree
-
Make a new array initialized to random Gaussian N(0,1) values with the given seed.
- GBM - Class in hex.tree.gbm
-
Gradient Boosted Trees
Based on "Elements of Statistical Learning, Second Edition, page 387"
- GBM(GBMModel.GBMParameters) - Constructor for class hex.tree.gbm.GBM
-
- GBM(GBMModel.GBMParameters, Key<GBMModel>) - Constructor for class hex.tree.gbm.GBM
-
- GBM(boolean) - Constructor for class hex.tree.gbm.GBM
-
- GBM.DiffMinusMedianDiff - Class in hex.tree.gbm
-
- GBMModel - Class in hex.tree.gbm
-
- GBMModel(Key<GBMModel>, GBMModel.GBMParameters, GBMModel.GBMOutput) - Constructor for class hex.tree.gbm.GBMModel
-
- GBMModel.GBMOutput - Class in hex.tree.gbm
-
- GBMModel.GBMParameters - Class in hex.tree.gbm
-
- GBMModelOutputV3() - Constructor for class hex.schemas.GBMModelV3.GBMModelOutputV3
-
- GBMModelV3 - Class in hex.schemas
-
- GBMModelV3() - Constructor for class hex.schemas.GBMModelV3
-
- GBMModelV3.GBMModelOutputV3 - Class in hex.schemas
-
- GbmMojoWriter - Class in hex.tree.gbm
-
MOJO support for GBM model.
- GbmMojoWriter() - Constructor for class hex.tree.gbm.GbmMojoWriter
-
- GbmMojoWriter(GBMModel) - Constructor for class hex.tree.gbm.GbmMojoWriter
-
- GBMOutput(GBM) - Constructor for class hex.tree.gbm.GBMModel.GBMOutput
-
- GBMParameters() - Constructor for class hex.tree.gbm.GBMModel.GBMParameters
-
- GBMParametersV3() - Constructor for class hex.schemas.GBMV3.GBMParametersV3
-
- GBMV3 - Class in hex.schemas
-
- GBMV3() - Constructor for class hex.schemas.GBMV3
-
- GBMV3.GBMParametersV3 - Class in hex.schemas
-
- gen1OverMLL(double[], double[], double, double) - Method in class hex.glm.RegressionInfluenceDiagnosticsTasks.RegressionInfluenceDiagBinomial
-
Generate 1.0/(1.0-hjj) for each data row j.
- gen_BIndvD(double[]) - Method in class hex.gam.GamSplines.CubicRegressionSplines
-
- gen_penalty_matrix(double[], double[][]) - Method in class hex.gam.GamSplines.CubicRegressionSplines
-
- gen_representation_key(Frame) - Method in class hex.glrm.GLRMModel
-
- genActiveColsAllClass(int, int, int[], int) - Static method in class hex.glm.ComputationState
-
- genActiveColsIndClass(int, int, int[], int, int) - Method in class hex.glm.ComputationState
-
- genCoefficientMagTable(String[], double[], String[], String) - Method in class hex.gam.GAMModel
-
- genCoefficientMagTableMultinomial(String[], double[][], String[], String) - Method in class hex.gam.GAMModel
-
- genCoefficientTable(String[], double[], double[], String[], String) - Static method in class hex.gam.MatrixFrameUtils.GAMModelUtils
-
- genCoefficientTableMultinomial(String[], double[][], double[][], String[], String) - Static method in class hex.gam.MatrixFrameUtils.GAMModelUtils
-
- genCPMPredNamesIndex(Key, DataInfo, String[], ModelSelectionModel.ModelSelectionParameters) - Static method in class hex.modelselection.ModelSelectionUtils
-
- GenCSSplineGamOneColumn - Class in hex.gam.MatrixFrameUtils
-
- GenCSSplineGamOneColumn(int, int, double[], Frame) - Constructor for class hex.gam.MatrixFrameUtils.GenCSSplineGamOneColumn
-
- genDfBetas(double, double, double[], double[], double) - Method in class hex.glm.RegressionInfluenceDiagnosticsTasks.RegressionInfluenceDiagBinomial
-
implement operations on and in between equation 5, 6 of the document
- genDfbetasNames(GLMModel) - Static method in class hex.glm.GLMUtils
-
- generate_scoring_history - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- generate_variable_inflation_factors - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- generateAllErrVar(double[][], Frame, int, List<Integer>, List<Integer>, Set<BitSet>, BitSet, int[][], boolean) - Static method in class hex.modelselection.ModelSelectionUtils
-
Given the original predictor subset, this function will go into a for loop and choose one predictor out of the
remaining predictor set validSubsets and put it into the array allPreds.
- generateAllErrVarR(double[][], Frame, double[][], int, List<Integer>, List<Integer>, Set<BitSet>, BitSet, int[][], boolean, int[], ModelSelectionUtils.SweepVector[][]) - Static method in class hex.modelselection.ModelSelectionUtils
-
Given the original predictor subset, this function will go into a for loop and choose one predictor out of the
remaining predictor set validSubsets and put it into the array allPreds.
- generateGamColNames(int, GAMModel.GAMParameters) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
-
- generateGamColNamesThinPlateKnots(int, GAMModel.GAMParameters, int[][], String) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
-
- generateGLMParameters(Frame[], ModelSelectionModel.ModelSelectionParameters, int, String, Model.Parameters.FoldAssignmentScheme) - Static method in class hex.modelselection.ModelSelectionUtils
-
- generateGLMSS(GLMModel[], GLMModel.GLMParameters.Family) - Static method in class hex.anovaglm.ANOVAGLMUtils
-
This method is used to generate Model SS for all models built except the full model.
- generateIdentityMat(int) - Static method in class hex.util.LinearAlgebraUtils
-
- generateIPC(double[], double, double[], double[], double[]) - Static method in class hex.util.DimensionReductionUtils
-
This method will calculate the importance of principal components for PCA/GLRM methods.
- generateKnotsFromKeys() - Method in class hex.gam.GAM
-
This method will look at the keys of knots stored in _parms._knot_ids and copy them over to double[][][]
array.
- generateKnotsOneColumn(Frame, int) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
-
- generateMaxRTrainingFrames(ModelSelectionModel.ModelSelectionParameters, String[], String, List<Integer>, int, List<Integer>, Set<BitSet>) - Static method in class hex.modelselection.ModelSelectionUtils
-
double
- generateModelNames(String[][]) - Static method in class hex.anovaglm.ANOVAGLMUtils
-
- generateOneCombo(String[], int, List<String[]>) - Static method in class hex.anovaglm.ANOVAGLMUtils
-
- generateOneFrame(int[], Model.Parameters, String[], String) - Static method in class hex.modelselection.ModelSelectionUtils
-
Given a predictor indices set, this function will generate a training frame containing the predictors with
indices in predIndices.
- generateOneGAMcols(int, int, double[], double[], double[][], CubicRegressionSplines, double, NewChunk[]) - Method in class hex.gam.MatrixFrameUtils.AddCSGamColumns
-
- generateOneISGAMCols(int, int, double[], ISplines, double, NewChunk[]) - Method in class hex.gam.MatrixFrameUtils.AddISGamColumns
-
Perform gamification of one column using I-spline basis function described in Section V of doc I.
- generateOneMSGAMCols(int, int, double[], double[], MSplines, double, NewChunk[]) - Method in class hex.gam.MatrixFrameUtils.AddMSGamColumns
-
Perform gamification of one column using I-spline basis function described in Section V of doc I.
- generateOrderFreq(Integer[]) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
-
- generateOrthogonalComplement(double[][], double[][], int, long) - Static method in class hex.util.LinearAlgebraUtils
-
Given an matrix, a QR decomposition is carried out to the matrix as starT = QR.
- generatePenalty() - Method in class hex.gam.GamSplines.ThinPlateDistanceWithKnots
-
- generatePredictorCombos(String[], int) - Static method in class hex.anovaglm.ANOVAGLMUtils
-
In order to calculate Type III SS, we need the individual predictors and their interactions.
- generatePredictorNames(String[][], String[][], int[], int[], DataInfo) - Static method in class hex.anovaglm.ANOVAGLMUtils
-
This method aims to generate the column names of the final transformed frames.
- generateQR(double[][]) - Static method in class hex.util.LinearAlgebraUtils
-
- GenerateResid(Job, double, int, int, long) - Constructor for class hex.glm.GLMTask.GenerateResid
-
- generateRowHeaders(TwoDimTable, TwoDimTable, int, int) - Static method in class hex.glm.GLMUtils
-
- generateStarT(double[][], List<Integer[]>, double[], double[], boolean) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
-
- generateSummary() - Method in class hex.anovaglm.ANOVAGLMModel
-
The Type III SS calculation, degree of freedom, F-statistics and p-values will be included in the model
summary.
- generateSummary(Key, int) - Method in class hex.glm.GLMModel
-
Re-do the TwoDim table generation with updated model.
- generateSummary() - Method in class hex.modelselection.ModelSelectionModel.ModelSelectionModelOutput
-
- generateSummary(int) - Method in class hex.modelselection.ModelSelectionModel.ModelSelectionModelOutput
-
- generateSummaryHGLM(Key, int) - Method in class hex.glm.GLMModel
-
This one is for HGLM
- generateTrainingFrames(ModelSelectionModel.ModelSelectionParameters, int, String[], int, String) - Static method in class hex.modelselection.ModelSelectionUtils
-
- GenerateTransformColumns - Class in hex.anovaglm
-
This class will take two predictors and transform them according to rules specified in Wendy Docs
- GenerateTransformColumns(String[][], ANOVAGLMModel.ANOVAGLMParameters, DataInfo, int, String[][]) - Constructor for class hex.anovaglm.GenerateTransformColumns
-
- generateTriDiagMatrix(double[]) - Static method in class hex.util.LinearAlgebraUtils
-
Generate D matrix as a lower diagonal matrix since it is symmetric and contains only 3 diagonals
- generateZTransp(Frame, int) - Static method in class hex.gam.MatrixFrameUtils.GenCSSplineGamOneColumn
-
- Generic - Class in hex.generic
-
Generic model able to do scoring with any underlying model deserializable into a format known by the
GenericModel
.
- Generic(GenericModelParameters) - Constructor for class hex.generic.Generic
-
- Generic(boolean) - Constructor for class hex.generic.Generic
-
- GenericModel - Class in hex.generic
-
- GenericModel(Key<GenericModel>, GenericModelParameters, GenericModelOutput, MojoModel, Key<Frame>) - Constructor for class hex.generic.GenericModel
-
Full constructor
- GenericModel(Key<GenericModel>, GenericModelParameters, GenericModelOutput, GenModel, Key<Frame>) - Constructor for class hex.generic.GenericModel
-
- GenericModelMojoWriter - Class in hex.generic
-
- GenericModelMojoWriter() - Constructor for class hex.generic.GenericModelMojoWriter
-
- GenericModelMojoWriter(ByteVec) - Constructor for class hex.generic.GenericModelMojoWriter
-
- GenericModelOutput - Class in hex.generic
-
- GenericModelOutput(ModelDescriptor) - Constructor for class hex.generic.GenericModelOutput
-
- GenericModelOutput(ModelDescriptor, ModelAttributes, Table[]) - Constructor for class hex.generic.GenericModelOutput
-
- GenericModelOutputV3() - Constructor for class hex.schemas.GenericModelV3.GenericModelOutputV3
-
- GenericModelParameters - Class in hex.generic
-
- GenericModelParameters() - Constructor for class hex.generic.GenericModelParameters
-
- GenericModelV3 - Class in hex.schemas
-
- GenericModelV3() - Constructor for class hex.schemas.GenericModelV3
-
- GenericModelV3.GenericModelOutputV3 - Class in hex.schemas
-
- GenericParametersV3() - Constructor for class hex.schemas.GenericV3.GenericParametersV3
-
- GenericV3 - Class in hex.schemas
-
- GenericV3() - Constructor for class hex.schemas.GenericV3
-
- GenericV3.GenericParametersV3 - Class in hex.schemas
-
- genGamColumnDim(String[][]) - Method in class hex.gam.GAMMojoWriter
-
- genGLMParameters(GLMModel.GLMParameters, String[], String[]) - Static method in class hex.glm.GLMUtils
-
- genGramCheckDup(Key, DataInfo, ArrayList<Integer>, ModelSelectionModel.ModelSelectionParameters) - Static method in class hex.modelselection.ModelSelectionUtils
-
- genInitBeta() - Method in class hex.glm.GLM
-
- genInitialLambda(Random, ConstrainedGLMUtils.LinearConstraints[], double[]) - Static method in class hex.glm.ConstrainedGLMUtils
-
The initial value of lambda values really do not matter that much.
- genInnerProduct(double[][], double[], double[]) - Static method in class hex.util.LinearAlgebraUtils
-
- genISPenaltyMatrix(double[], int) - Static method in class hex.gam.GamSplines.NBSplinesTypeIDerivative
-
Generate penalty matrix for I-spline as described in Section VI of doc.
- GenISplineGamOneColumn - Class in hex.gam.MatrixFrameUtils
-
Gamified one gam column at a time using I-spline.
- GenISplineGamOneColumn(GAMModel.GAMParameters, double[], int, Frame, int, int) - Constructor for class hex.gam.MatrixFrameUtils.GenISplineGamOneColumn
-
- genKnotsMultiplePreds(Frame, GAMModel.GAMParameters, int) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
-
Generate knots for thin plate (TP) smoothers.
- genMSE1stPred(int[][], double[][], Frame, int[], double[], RecursiveAction[], int, boolean) - Static method in class hex.modelselection.ModelSelectionUtils
-
This method will calculate the variance variance when only one predictor is considered in allPreds.
- genMSE4MorePreds(int[][], double[][], Frame, int[], int, double[], RecursiveAction[], int, boolean) - Static method in class hex.modelselection.ModelSelectionUtils
-
This method will calculate the error variance value for all predictors in the allPreds.
- genMSE4MorePredsR(int[][], double[][], Frame, double[][], int[], double[], RecursiveAction[], int, boolean, ModelSelectionUtils.SweepVector[][], int[]) - Static method in class hex.modelselection.ModelSelectionUtils
-
Generate the error variance for one predictor subset setting in allPreds.
- genMSPenaltyMatrix(double[], int) - Static method in class hex.gam.GamSplines.NBSplinesTypeIDerivative
-
Generate penalty matrix for M-spline as described in Section III of doc 2.
- GenMSplineGamOneColumn - Class in hex.gam.MatrixFrameUtils
-
- GenMSplineGamOneColumn(GAMModel.GAMParameters, double[], int, Frame, int, int) - Constructor for class hex.gam.MatrixFrameUtils.GenMSplineGamOneColumn
-
Perform gamification on one predictor.
- genNewBeta(int, double[], double[]) - Static method in class hex.glm.GLMUtils
-
- genOneDerivative(ConstrainedGLMUtils.LinearConstraints, List<String>) - Static method in class hex.glm.ComputationState
-
Given a constraint, this method will calculate the first order derivative.
- genPolyBasisNames(String[], int[]) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
-
- GenPrediction(double[], GLMModel, DataInfo) - Constructor for class hex.glm.DispersionTask.GenPrediction
-
- genRedundantConstraint(ComputationState, List<Integer>) - Static method in class hex.glm.ConstrainedGLMUtils
-
- genRID() - Method in class hex.glm.GLM.GLMDriver
-
Generate the regression influence diagnostic for gaussian and binomial families.
- genThinPlateNameStart(GAMModel.GAMParameters, int) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
-
- genTrainColGamCols(int, int) - Method in class hex.gam.GAMMojoWriter
-
- get(int, int) - Method in class hex.coxph.Storage.DenseRowMatrix
-
- get(int, int) - Method in interface hex.coxph.Storage.Matrix
-
- get(int) - Method in class hex.DataInfo.Row
-
- get(int, int) - Method in class hex.deeplearning.Storage.DenseColMatrix
-
- get(int, int) - Method in class hex.deeplearning.Storage.DenseRowMatrix
-
- get(int) - Method in class hex.deeplearning.Storage.DenseVector
-
- get(int, int) - Method in interface hex.deeplearning.Storage.Matrix
-
- get(int, int) - Method in class hex.deeplearning.Storage.SparseRowMatrix
-
- get(int, int, int) - Method in interface hex.deeplearning.Storage.Tensor
-
- get(int) - Method in interface hex.deeplearning.Storage.Vector
-
- get(int, int) - Method in class hex.gram.Gram
-
- get_ada_dx_g(int) - Method in class hex.deeplearning.DeepLearningModelInfo
-
- get_avg_activations(int) - Method in class hex.deeplearning.DeepLearningModelInfo
-
- get_biases(int) - Method in class hex.deeplearning.DeepLearningModelInfo
-
- get_biases_ada_dx_g(int) - Method in class hex.deeplearning.DeepLearningModelInfo
-
- get_biases_momenta(int) - Method in class hex.deeplearning.DeepLearningModelInfo
-
- get_correction_HL() - Method in class hex.glm.ComputationState
-
- get_global_beta_multinomial() - Method in class hex.glm.GLMModel.GLMOutput
-
- get_params() - Method in class hex.deeplearning.DeepLearningModel
-
Get the parameters actually used for model building, not the user-given ones (_parms)
They might differ since some defaults are filled in, and some invalid combinations are auto-disabled in modifyParams
- get_params() - Method in class hex.deeplearning.DeepLearningModelInfo
-
- get_phi() - Method in class hex.glm.ComputationState
-
- get_priorw_wpsi() - Method in class hex.glm.ComputationState
-
- get_processed_global() - Method in class hex.deeplearning.DeepLearningModelInfo
-
- get_processed_local() - Method in class hex.deeplearning.DeepLearningModelInfo
-
- get_processed_total() - Method in class hex.deeplearning.DeepLearningModelInfo
-
- get_psi() - Method in class hex.glm.ComputationState
-
- get_tau() - Method in class hex.glm.ComputationState
-
- get_weights(int) - Method in class hex.deeplearning.DeepLearningModelInfo
-
- get_weights_momenta(int) - Method in class hex.deeplearning.DeepLearningModelInfo
-
- getAdditionalParameters() - Method in class hex.schemas.GenericV3.GenericParametersV3
-
- getAlgo() - Method in class hex.ensemble.Metalearners.SimpleMetalearner
-
- getAllAllowedColumnIndices() - Method in class hex.tree.GlobalInteractionConstraints
-
- getAllChunks(Frame, int, Chunk[], int[]) - Static method in class hex.glm.GLMTask.DataAddW2AugXZ
-
Given the chkIdx, this method will fetch the chunks with columns specified in vecIdx
- getAllowedInteractionForIndex(int) - Method in class hex.tree.GlobalInteractionConstraints
-
- getAndValidateCheckpointModel(ModelBuilder<M, P, O>, String[], Value) - Static method in class hex.util.CheckpointUtils
-
- getBeta(double[]) - Method in class hex.glm.GLMModel.Submodel
-
- getCalibrationFrame() - Method in interface hex.tree.CalibrationHelper.ModelBuilderWithCalibration
-
- getCalibrationFrame() - Method in interface hex.tree.CalibrationHelper.ParamsWithCalibration
-
- getCalibrationFrame() - Method in class hex.tree.SharedTree
-
- getCalibrationFrame() - Method in class hex.tree.SharedTreeModel.SharedTreeParameters
-
- getCalibrationMethod() - Method in interface hex.tree.CalibrationHelper.OutputWithCalibration
-
- getCalibrationMethod() - Method in interface hex.tree.CalibrationHelper.ParamsWithCalibration
-
- getCalibrationMethod() - Method in class hex.tree.SharedTreeModel.SharedTreeParameters
-
- getCat(int, int, int) - Method in class hex.glrm.GLRM.Archetypes
-
- getCatBlock(int) - Method in class hex.glrm.GLRM.Archetypes
-
- getCatCidx(int, int) - Method in class hex.glrm.GLRM.Archetypes
-
- getCategoricalId(int, double) - Method in class hex.DataInfo
-
- getCategoricalId(int, int) - Method in class hex.DataInfo
-
Get the offset into the expanded categorical
- getCategoricalIdFromInteraction(int, int) - Method in class hex.DataInfo
-
- getCategory() - Method in class hex.tree.dt.binning.CategoricalBin
-
- getChildNodeID(Chunk[], int) - Method in class hex.tree.DTree.DecidedNode
-
- GetClassCountsMRTask - Class in hex.tree.dt.mrtasks
-
MR task for counting classes.
- GetClassCountsMRTask(double[][], int) - Constructor for class hex.tree.dt.mrtasks.GetClassCountsMRTask
-
- getCODGradients() - Method in class hex.glm.ComputationState.GramXY
-
- getColumnConstraint(int) - Method in class hex.tree.Constraints
-
- getConstraintFromIndex(ComputationState, Integer) - Static method in class hex.glm.ConstrainedGLMUtils
-
- getCorrectChunk(Frame, int, long, Chunk[], int[], int[]) - Static method in class hex.glm.GLMTask.DataAddW2AugXZ
-
This method, given the absolute row index of interest, will grab the correct chunk from augXZ containing the
same absolute row index of interest.
- getCount0() - Method in class hex.tree.dt.binning.AbstractBin
-
- getCriterionValue() - Method in class hex.tree.dt.AbstractSplittingRule
-
- getDataInfoFrame(int, DataInfoFrameV3) - Method in class hex.api.MakeGLMModelHandler
-
Get the expanded (interactions + offsets) dataset.
- getDecisionPath(double[], String[][]) - Method in class hex.tree.CompressedTree
-
Deprecated.
- getDecisionPath(double[], String[][], SharedTreeMojoModel.DecisionPathTracker<T>) - Method in class hex.tree.CompressedTree
-
- getDecisionValue() - Method in class hex.tree.dt.CompressedLeaf
-
- getDepth() - Method in class hex.tree.isoforextended.isolationtree.IsolationTree
-
- getDinfo() - Method in class hex.glm.GLMModel.GLMOutput
-
- getDistributionFamily() - Method in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
-
- getDistributionFamily() - Method in class hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters
-
- getDistributionFamily() - Method in class hex.gam.GAMModel.GAMParameters
-
- getDistributionFamily() - Method in class hex.glm.GLMModel.GLMParameters
-
- getFastestImplementation() - Static method in enum hex.pca.PCAImplementation
-
- getFeatureBins(int) - Method in class hex.tree.dt.binning.Histogram
-
Get list of feature bins (copy) - for testing.
- getFeatureIndex() - Method in class hex.rulefit.Condition
-
- getFeatureIndex() - Method in class hex.tree.dt.AbstractSplittingRule
-
- getFeatureInteractions(int, int, int) - Method in class hex.tree.gbm.GBMModel
-
- getFeatureInteractionsTable(int, int, int) - Method in class hex.tree.gbm.GBMModel
-
- getFeatureLimits(int) - Method in class hex.tree.dt.DataFeaturesLimits
-
- getFeaturesLimitsForConditions(Frame, DataFeaturesLimits) - Static method in class hex.tree.dt.binning.Histogram
-
Computes features limits considering known condition limits of ancestors.
- getFriedmanPopescusH(Frame, String[]) - Method in class hex.tree.gbm.GBMModel
-
- getGenModelEncoding() - Method in class hex.deeplearning.DeepLearningModel
-
- getGenModelEncoding() - Method in class hex.tree.SharedTreeModel
-
- getGlobalSplitPointsKey(int) - Method in class hex.tree.SharedTree.Driver
-
- getGlobalSplitPointsKeys() - Method in class hex.tree.SharedTree.Driver
-
- getGradient(double[], ComputationState) - Method in class hex.glm.GLM.GLMGradientSolver
-
This method calculates the gradient for constrained GLM without taking into account the contribution of the
constraints in this case.
- getGradient(double[]) - Method in class hex.glm.GLM.GLMGradientSolver
-
- getGradient(double[]) - Method in class hex.glm.GLM.ProximalGradientSolver
-
- getGradient(double[]) - Method in interface hex.optimization.OptimizationUtils.GradientSolver
-
Evaluate ginfo at solution beta.
- getGram() - Method in class hex.glm.GLMTask.GLMIterationTask
-
- getHeight() - Method in class hex.tree.isoforextended.isolationtree.AbstractCompressedNode
-
- getHeight() - Method in class hex.tree.isoforextended.isolationtree.IsolationTree.Node
-
- getId() - Method in enum hex.tree.CalibrationHelper.CalibrationMethod
-
- getInformationTableNumRows() - Method in class hex.tree.SharedTreeModel.SharedTreeOutput
-
- getInitialFeaturesLimits(Frame) - Static method in class hex.tree.dt.DT
-
Compute initial features limits.
- getInitialValue() - Method in class hex.tree.SharedTree
-
Compute the inital value for a given distribution
- getInstance() - Static method in class hex.deeplearning.MurmurHash
-
- getInteractionOffset(Chunk[], int, int) - Method in class hex.DataInfo
-
- getInv() - Method in class hex.gram.Gram.Cholesky
-
- getInvDiag() - Method in class hex.gram.Gram.Cholesky
-
- getIsolatedPoints() - Method in class hex.tree.isoforextended.isolationtree.IsolationTree
-
- getL() - Method in class hex.gram.Gram.Cholesky
-
- getL() - Method in class hex.gram.Gram.InPlaceCholesky
-
- getLambdaNull() - Method in class hex.glm.ComputationState
-
- getLeaves() - Method in class hex.tree.isoforextended.isolationtree.IsolationTree
-
- getLeft() - Method in class hex.tree.isoforextended.isolationtree.IsolationTree.FilteredData
-
- getLinearNames(int, String[]) - Static method in class hex.rulefit.RuleFitUtils
-
- getListOfRules() - Method in class hex.tree.dt.CompressedDT
-
- getMask() - Method in class hex.tree.dt.CategoricalSplittingRule
-
- getMatrixInString(double[][]) - Static method in class hex.util.LinearAlgebraUtils
-
- getMetricsBuilder() - Method in class hex.tree.dt.mrtasks.ScoreDTTask
-
- getMiniBatchSize() - Method in class hex.deeplearning.DeepLearningTask
-
- getMiniBatchSize() - Method in class hex.FrameTask
-
Note: If this is overridden, then applyMiniBatch must be overridden as well to perform the model/weight mini-batch update
- getModelBuilder() - Method in interface hex.tree.CalibrationHelper.ModelBuilderWithCalibration
-
- getModelBuilder() - Method in class hex.tree.SharedTree
-
- getModelCategory() - Method in class hex.aggregator.AggregatorModel.AggregatorOutput
-
- getModelCategory() - Method in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMModelOutput
-
- getModelCategory() - Method in class hex.coxph.CoxPHModel.CoxPHOutput
-
- getModelCategory() - Method in class hex.deeplearning.DeepLearningModel.DeepLearningModelOutput
-
- getModelCategory() - Method in class hex.gam.GAMModel.GAMModelOutput
-
- getModelCategory() - Method in class hex.generic.GenericModelOutput
-
- getModelCategory() - Method in class hex.glm.GLMModel.GLMOutput
-
- getModelCategory() - Method in class hex.glrm.GLRMModel.GLRMOutput
-
- getModelCategory() - Method in class hex.grep.GrepModel.GrepOutput
-
- getModelCategory() - Method in class hex.isotonic.IsotonicRegressionModel.IsotonicRegressionOutput
-
- getModelCategory() - Method in class hex.modelselection.ModelSelectionModel.ModelSelectionModelOutput
-
- getModelCategory() - Method in class hex.pca.PCAModel.PCAOutput
-
- getModelCategory() - Method in class hex.psvm.PSVMModel.PSVMModelOutput
-
- getModelCategory() - Method in class hex.svd.SVDModel.SVDOutput
-
- getModelCategory() - Method in interface hex.tree.CalibrationHelper.OutputWithCalibration
-
- getModelCategory() - Method in class hex.tree.isofor.IsolationForestModel.IsolationForestOutput
-
- getModelCategory() - Method in class hex.tree.isoforextended.ExtendedIsolationForestModel.ExtendedIsolationForestOutput
-
- getModelCategory() - Method in class hex.tree.uplift.UpliftDRFModel.UpliftDRFOutput
-
- getModelCategory() - Method in class hex.word2vec.Word2VecModel.Word2VecOutput
-
- getMojo() - Method in class hex.coxph.CoxPHModel
-
- getMojo() - Method in class hex.deeplearning.DeepLearningModel
-
- getMojo() - Method in class hex.ensemble.StackedEnsembleModel
-
- getMojo() - Method in class hex.gam.GAMModel
-
- getMojo() - Method in class hex.generic.GenericModel
-
- getMojo() - Method in class hex.glm.GLMModel
-
- getMojo() - Method in class hex.glrm.GLRMGenX
-
- getMojo() - Method in class hex.glrm.GLRMModel
-
- getMojo() - Method in class hex.isotonic.IsotonicRegressionModel
-
- getMojo() - Method in class hex.kmeans.KMeansModel
-
- getMojo() - Method in class hex.pca.PCAModel
-
- getMojo() - Method in class hex.rulefit.RuleFitModel
-
- getMojo() - Method in class hex.tree.drf.DRFModel
-
- getMojo() - Method in class hex.tree.gbm.GBMModel
-
- getMojo() - Method in class hex.tree.isofor.IsolationForestModel
-
- getMojo() - Method in class hex.tree.isoforextended.ExtendedIsolationForestModel
-
- getMojo() - Method in class hex.tree.uplift.UpliftDRFModel
-
- getMojo() - Method in class hex.word2vec.Word2VecModel
-
- getMostImportantFeatures(int) - Method in class hex.tree.SharedTreeModel
-
- getMultinomialLikelihood(double[]) - Method in class hex.glm.GLM.GLMGradientSolver
-
- getN() - Method in class hex.tree.isoforextended.isolationtree.CompressedNode
-
- getN() - Method in class hex.tree.isoforextended.isolationtree.IsolationTree.Node
-
- getName() - Method in class hex.api.RegisterAlgos
-
- getName() - Method in interface hex.ensemble.MetalearnerProvider
-
- getNodes() - Method in class hex.tree.dt.CompressedDT
-
- getNodes() - Method in class hex.tree.isoforextended.isolationtree.CompressedIsolationTree
-
- getNonPredictors() - Method in class hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters
-
- getNormBeta() - Method in class hex.glm.GLMModel.GLMOutput
-
- getNormBeta() - Method in class hex.modelselection.ModelSelectionModel.ModelSelectionModelOutput
-
- getNormBetaMultinomial() - Method in class hex.glm.GLMModel.GLMOutput
-
- getNormBetaMultinomial(int) - Method in class hex.glm.GLMModel.GLMOutput
-
- getNormBetaMultinomial(int, boolean) - Method in class hex.glm.GLMModel.GLMOutput
-
- getNotIsolatedPoints() - Method in class hex.tree.isoforextended.isolationtree.IsolationTree
-
- getNTrees() - Method in class hex.tree.SharedTreeModel.SharedTreeOutput
-
- getNTrees() - Method in class hex.tree.SharedTreeModel.SharedTreeParameters
-
- getNum(int, int) - Method in class hex.glrm.GLRM.Archetypes
-
- getNumCatTreshold() - Method in class hex.rulefit.Condition
-
- getNumCidx(int) - Method in class hex.glrm.GLRM.Archetypes
-
- getNumRows() - Method in class hex.tree.isoforextended.isolationtree.CompressedLeaf
-
- getNumRows() - Method in class hex.tree.isoforextended.isolationtree.IsolationTree.Node
-
- getNumTreshold() - Method in class hex.rulefit.Condition
-
- getObj() - Method in interface hex.optimization.OptimizationUtils.LineSearchSolver
-
- getObj() - Method in class hex.optimization.OptimizationUtils.MoreThuente
-
- getObj() - Method in class hex.optimization.OptimizationUtils.SimpleBacktrackingLS
-
- getObjective(double[]) - Method in class hex.glm.GLM.GLMGradientSolver
-
- getObjective(double[]) - Method in class hex.glm.GLM.ProximalGradientSolver
-
- getObjective(double[]) - Method in interface hex.optimization.OptimizationUtils.GradientSolver
-
- getOffsetVec() - Method in class hex.DataInfo
-
- getOneSingleChunk(Frame, int, long, Chunk[], int[]) - Static method in class hex.glm.GLMTask.DataAddW2AugXZ
-
Given the absolute row index of interest, this method will find the chunk index of augXZ that contains the
absolute row index
- getOperator() - Method in class hex.rulefit.Condition
-
- getOutputVec(int) - Method in class hex.DataInfo
-
- getP() - Method in class hex.tree.isoforextended.isolationtree.CompressedNode
-
- getP() - Method in class hex.tree.isoforextended.isolationtree.IsolationTree.Node
-
- getParams() - Method in interface hex.tree.CalibrationHelper.ParamsWithCalibration
-
- getParams() - Method in class hex.tree.SharedTreeModel.SharedTreeParameters
-
- getParams() - Method in class hex.word2vec.Word2VecModel.Word2VecModelInfo
-
- getPathNames(int, int, String[]) - Static method in class hex.rulefit.RuleFitUtils
-
- getPojoInterfaces() - Method in class hex.kmeans.KMeansModel
-
- getPrediction(double[]) - Method in class hex.tree.Score.ScoreExtension
-
Get prediction from per class-probabilities or algo-specific data
- getPrincipalComponents() - Method in class hex.pca.jama.PCAJama
-
- getPrincipalComponents() - Method in class hex.pca.mtj.PCA_MTJ_EVD_DenseMatrix
-
- getPrincipalComponents() - Method in class hex.pca.mtj.PCA_MTJ_EVD_SymmMatrix
-
- getPrincipalComponents() - Method in class hex.pca.mtj.PCA_MTJ_SVD_DenseMatrix
-
- getPrincipalComponents() - Method in interface hex.pca.PCAInterface
-
- getProbabilities() - Method in class hex.tree.dt.CompressedLeaf
-
- getProblemType() - Method in class hex.tree.isofor.IsolationForest
-
- getProblemType() - Method in class hex.tree.SharedTree
-
- getRandGLMFuns(GLMModel.GLMWeightsFun[], int, GLMModel.GLMParameters) - Static method in class hex.glm.GLMTask.ReturnGLMMMERunInfo
-
- getRandGLMFuns(GLMModel.GLMWeightsFun[], int, GLMModel.GLMParameters) - Static method in class hex.glm.GLMTask.ReturnGLMMMERunInfoRandCols
-
- getRawVals() - Method in class hex.tree.DHistogram
-
- getRegularizationPath() - Method in class hex.glm.GLMModel
-
- getResponseComplements(SharedTreeModel<?, ?, ?>) - Method in class hex.tree.Score.ScoreExtension
-
Return indices of columns that need to be extracted from Frame chunks in addition to response
- getResponseLevelIndex(String, SharedTreeModel.SharedTreeOutput) - Static method in class hex.tree.TreeUtils
-
- getRIDFrame() - Method in class hex.glm.GLMModel
-
- getRight() - Method in class hex.tree.isoforextended.isolationtree.IsolationTree.FilteredData
-
- getRuleByVarName(String) - Method in class hex.rulefit.RuleEnsemble
-
- getRuleImportanceTable() - Method in class hex.rulefit.RuleFitModel
-
- getScoreContributionsSoringTask(SharedTreeModel, Model.Contributions.ContributionsOptions) - Method in class hex.tree.drf.DRFModel
-
- getScoreContributionsSoringTask(SharedTreeModel, Model.Contributions.ContributionsOptions) - Method in class hex.tree.gbm.GBMModel
-
- getScoreContributionsSoringTask(SharedTreeModel, Model.Contributions.ContributionsOptions) - Method in class hex.tree.SharedTreeModelWithContributions
-
- getScoreContributionsTask(SharedTreeModel) - Method in class hex.tree.drf.DRFModel
-
- getScoreContributionsTask(SharedTreeModel) - Method in class hex.tree.gbm.GBMModel
-
- getScoreContributionsTask(SharedTreeModel) - Method in class hex.tree.SharedTreeModelWithContributions
-
- getScoreContributionsWithBackgroundTask(SharedTreeModel, Frame, Frame, boolean, int[], Model.Contributions.ContributionsOptions) - Method in class hex.tree.drf.DRFModel
-
- getScoreContributionsWithBackgroundTask(SharedTreeModel, Frame, Frame, boolean, int[], Model.Contributions.ContributionsOptions) - Method in class hex.tree.gbm.GBMModel
-
- getScoreContributionsWithBackgroundTask(SharedTreeModel, Frame, Frame, boolean, int[], Model.Contributions.ContributionsOptions) - Method in class hex.tree.SharedTreeModelWithContributions
-
- getScoringInfo() - Method in class hex.glm.GLMModel
-
- getSearchDirection(double[], double[]) - Method in class hex.optimization.L_BFGS.History
-
- getSeed() - Method in class hex.tree.CompressedTree
-
- getSharedTreeSubgraph(int, int) - Method in class hex.tree.SharedTreeModel
-
Converts a given tree of the ensemble to a user-understandable representation.
- getSplitPrediction() - Method in class hex.tree.DTree.LeafNode
-
- getSplittingRule() - Method in class hex.tree.dt.CompressedNode
-
- getSubmodel(double) - Method in class hex.glm.GLMModel.GLMOutput
-
- getSubmodel(int) - Method in class hex.glm.GLMModel.GLMOutput
-
- getSubModels() - Method in class hex.ensemble.StackedEnsembleMojoWriter
-
- getSubModels() - Method in class hex.rulefit.RuleFitMojoWriter
-
- getThreshold() - Method in class hex.tree.dt.NumericSplittingRule
-
- getToEigenVec() - Method in class hex.aggregator.Aggregator
-
- getToEigenVec() - Method in class hex.aggregator.AggregatorModel
-
- getToEigenVec() - Method in class hex.deeplearning.DeepLearning
-
- getToEigenVec() - Method in class hex.deeplearning.DeepLearningModel
-
- getToEigenVec() - Method in class hex.kmeans.KMeans
-
- getToEigenVec() - Method in class hex.kmeans.KMeansModel
-
- getToEigenVec() - Method in class hex.rulefit.RuleFitModel
-
- getToEigenVec() - Method in class hex.tree.SharedTree
-
- getToEigenVec() - Method in class hex.tree.SharedTreeModel
-
- getTransformedEigenvectors(DataInfo, double[][]) - Static method in class hex.util.DimensionReductionUtils
-
This function will tranform the eigenvectors calculated for a matrix T(A) to the ones calculated for
matrix A.
- getTree(int, TreeV3) - Method in class hex.tree.TreeHandler
-
- getType() - Method in class hex.rulefit.Condition
-
- getVariableImportances() - Method in class hex.deeplearning.DeepLearningModel.DeepLearningModelOutput
-
- getVariableImportances() - Method in class hex.glm.GLMModel.GLMOutput
-
- getVariableImportances() - Method in class hex.tree.SharedTreeModel.SharedTreeOutput
-
- getVariableInflationFactors() - Method in class hex.glm.GLMModel.GLMOutput
-
- getVariances() - Method in class hex.pca.jama.PCAJama
-
- getVariances() - Method in class hex.pca.mtj.PCA_MTJ_EVD_DenseMatrix
-
- getVariances() - Method in class hex.pca.mtj.PCA_MTJ_EVD_SymmMatrix
-
- getVariances() - Method in class hex.pca.mtj.PCA_MTJ_SVD_DenseMatrix
-
- getVariances() - Method in interface hex.pca.PCAInterface
-
- getVIFAndNames() - Method in class hex.glm.GLMModel.GLMOutput
-
- getVIFPredictorNames() - Method in class hex.glm.GLMModel.GLMOutput
-
- getWeightsVec() - Method in class hex.DataInfo
-
- getX() - Method in interface hex.optimization.OptimizationUtils.LineSearchSolver
-
- getX() - Method in class hex.optimization.OptimizationUtils.MoreThuente
-
- getX() - Method in class hex.optimization.OptimizationUtils.SimpleBacktrackingLS
-
- getXChunk(Frame, int, Chunk[]) - Static method in class hex.glrm.GLRM
-
- getXX() - Method in class hex.gram.Gram
-
- getXX(boolean, boolean) - Method in class hex.gram.Gram
-
- getXX(double[][]) - Method in class hex.gram.Gram
-
- getXX(double[][], boolean, boolean) - Method in class hex.gram.Gram
-
- getXXCPM(double[][], boolean, boolean) - Method in class hex.gram.Gram
-
This method will copy the xx matrix into a matrix xalloc which is of bigger size than the actual xx by 1 in both
row and column.
- getXY() - Method in class hex.glm.GLMTask.GLMIterationTask
-
- getY(boolean) - Method in class hex.glrm.GLRM.Archetypes
-
- getYY() - Method in class hex.glm.GLMTask.GLMIterationTask
-
- getZeroSplits() - Method in class hex.tree.isoforextended.isolationtree.IsolationTree
-
- getZValues() - Method in class hex.glm.GLMModel.GLMOutput
-
- getZValues(double[]) - Method in class hex.glm.GLMModel.Submodel
-
- ginfo() - Method in class hex.glm.ComputationState
-
- ginfo - Variable in class hex.optimization.L_BFGS.Result
-
- ginfo() - Method in interface hex.optimization.OptimizationUtils.LineSearchSolver
-
- ginfo() - Method in class hex.optimization.OptimizationUtils.MoreThuente
-
- ginfo() - Method in class hex.optimization.OptimizationUtils.SimpleBacktrackingLS
-
- ginfoMultinomial(int) - Method in class hex.glm.ComputationState
-
- ginfoMultinomialRCC(int) - Method in class hex.glm.ComputationState
-
- ginfoNull() - Method in class hex.glm.ComputationState
-
- GLM - Class in hex.glm
-
Created by tomasnykodym on 8/27/14.
- GLM(boolean) - Constructor for class hex.glm.GLM
-
- GLM(GLMModel.GLMParameters) - Constructor for class hex.glm.GLM
-
- GLM(GLMModel.GLMParameters, double[][][], String[][]) - Constructor for class hex.glm.GLM
-
This constructor is only called by GAM when it is trying to build a GAM model using GLM.
- GLM(GLMModel.GLMParameters, Key) - Constructor for class hex.glm.GLM
-
- GLM.BetaConstraint - Class in hex.glm
-
- GLM.BetaInfo - Class in hex.glm
-
- GLM.GLMDriver - Class in hex.glm
-
Main loop of the glm algo.
- GLM.GLMGradientInfo - Class in hex.glm
-
- GLM.GLMGradientSolver - Class in hex.glm
-
Gradient and line search computation for L_BFGS and also L_BFGS solver wrapper (for ADMM)
- GLM.GramSolver - Class in hex.glm
-
Created by tomasnykodym on 3/30/15.
- GLM.PlugValuesImputer - Class in hex.glm
-
- GLM.ProximalGradientInfo - Class in hex.glm
-
- GLM.ProximalGradientSolver - Class in hex.glm
-
Simple wrapper around ginfo computation, adding proximal penalty
- GLMCoordinateDescentTaskSeqIntercept(double[], DataInfo) - Constructor for class hex.glm.GLMTask.GLMCoordinateDescentTaskSeqIntercept
-
- GLMCoordinateDescentTaskSeqNaive(boolean, boolean, int, double[], double[], int[], int[], double[], double[], double[], double[], boolean) - Constructor for class hex.glm.GLMTask.GLMCoordinateDescentTaskSeqNaive
-
- GLMDriver() - Constructor for class hex.glm.GLM.GLMDriver
-
- GLMGaussianGradientTask(Key, DataInfo, GLMModel.GLMParameters, double, double[]) - Constructor for class hex.glm.GLMTask.GLMGaussianGradientTask
-
- GLMGaussianGradientTask(Key, DataInfo, GLMModel.GLMParameters, double, double[], double[][][], int[][]) - Constructor for class hex.glm.GLMTask.GLMGaussianGradientTask
-
- GLMGenerateWeightsTask(Key, DataInfo, GLMModel.GLMParameters, double[]) - Constructor for class hex.glm.GLMTask.GLMGenerateWeightsTask
-
- GLMGradientInfo(double, double, double[]) - Constructor for class hex.glm.GLM.GLMGradientInfo
-
- GLMGradientSolver(Job, GLMModel.GLMParameters, DataInfo, double, GLM.BetaConstraint, GLM.BetaInfo) - Constructor for class hex.glm.GLM.GLMGradientSolver
-
- GLMGradientSolver(Job, GLMModel.GLMParameters, DataInfo, double, GLM.BetaConstraint, GLM.BetaInfo, double[][][], int[][]) - Constructor for class hex.glm.GLM.GLMGradientSolver
-
- GLMIterationTask(Key, DataInfo, GLMModel.GLMWeightsFun, double[]) - Constructor for class hex.glm.GLMTask.GLMIterationTask
-
- GLMIterationTask(Key, DataInfo, GLMModel.GLMWeightsFun, double[], int) - Constructor for class hex.glm.GLMTask.GLMIterationTask
-
- GLMIterationTask(Key, DataInfo, GLMModel.GLMWeightsFun, double[], int, boolean) - Constructor for class hex.glm.GLMTask.GLMIterationTask
-
- GLMIterationTaskMultinomial(DataInfo, Key, double[], int) - Constructor for class hex.glm.GLMTask.GLMIterationTaskMultinomial
-
- GLMMetricBuilder - Class in hex.glm
-
Class for GLMValidation.
- GLMMetricBuilder(String[], double[], GLMModel.GLMWeightsFun, int, boolean, boolean, MultinomialAucType) - Constructor for class hex.glm.GLMMetricBuilder
-
- GLMModel - Class in hex.glm
-
Created by tomasnykodym on 8/27/14.
- GLMModel(Key, GLMModel.GLMParameters, GLM, double[], double, double, long) - Constructor for class hex.glm.GLMModel
-
- GLMModel.GLMOutput - Class in hex.glm
-
- GLMModel.GLMParameters - Class in hex.glm
-
- GLMModel.GLMParameters.Constraints - Enum in hex.glm
-
- GLMModel.GLMParameters.DispersionMethod - Enum in hex.glm
-
- GLMModel.GLMParameters.Family - Enum in hex.glm
-
- GLMModel.GLMParameters.GLMType - Enum in hex.glm
-
- GLMModel.GLMParameters.Influence - Enum in hex.glm
-
- GLMModel.GLMParameters.Link - Enum in hex.glm
-
- GLMModel.GLMParameters.MissingValuesHandling - Enum in hex.glm
-
- GLMModel.GLMParameters.Solver - Enum in hex.glm
-
- GLMModel.GLMWeights - Class in hex.glm
-
- GLMModel.GLMWeightsFun - Class in hex.glm
-
- GLMModel.RegularizationPath - Class in hex.glm
-
- GLMModel.Submodel - Class in hex.glm
-
- GLMModelOutputV3() - Constructor for class hex.schemas.GLMModelV3.GLMModelOutputV3
-
- GLMModelV3 - Class in hex.schemas
-
- GLMModelV3() - Constructor for class hex.schemas.GLMModelV3
-
- GLMModelV3.GLMModelOutputV3 - Class in hex.schemas
-
- GLMMojoWriter - Class in hex.glm
-
- GLMMojoWriter() - Constructor for class hex.glm.GLMMojoWriter
-
- GLMMojoWriter(GLMModel) - Constructor for class hex.glm.GLMMojoWriter
-
- GLMMultinomialGradientBaseTask(Job, DataInfo, double, double[][], double) - Constructor for class hex.glm.GLMTask.GLMMultinomialGradientBaseTask
-
- GLMMultinomialGradientBaseTask(Job, DataInfo, double, double[][], GLMModel.GLMParameters) - Constructor for class hex.glm.GLMTask.GLMMultinomialGradientBaseTask
-
- GLMMultinomialGradientBaseTask(Job, DataInfo, double, double[][], GLMModel.GLMParameters, double[][][], int[][]) - Constructor for class hex.glm.GLMTask.GLMMultinomialGradientBaseTask
-
- GLMMultinomialGradientTask(Job, DataInfo, double, double[][], double) - Constructor for class hex.glm.GLMTask.GLMMultinomialGradientTask
-
- GLMMultinomialGradientTask(Job, DataInfo, double, double[][], GLMModel.GLMParameters) - Constructor for class hex.glm.GLMTask.GLMMultinomialGradientTask
-
- GLMMultinomialGradientTask(Job, DataInfo, double, double[][], GLMModel.GLMParameters, double[][][], int[][]) - Constructor for class hex.glm.GLMTask.GLMMultinomialGradientTask
-
- GLMMultinomialUpdate(DataInfo, Key, double[], int) - Constructor for class hex.glm.GLMTask.GLMMultinomialUpdate
-
- GLMMultinomialWLSTask(H2O.H2OCountedCompleter, DataInfo, Key, GLMModel.GLMWeightsFun, double[]) - Constructor for class hex.glm.GLMTask.GLMMultinomialWLSTask
-
- GLMOutput(DataInfo, String[], String[], String[][], String[], double[], boolean, boolean, boolean) - Constructor for class hex.glm.GLMModel.GLMOutput
-
- GLMOutput() - Constructor for class hex.glm.GLMModel.GLMOutput
-
- GLMOutput(GLM) - Constructor for class hex.glm.GLMModel.GLMOutput
-
- GLMParameters() - Constructor for class hex.glm.GLMModel.GLMParameters
-
- GLMParameters(GLMModel.GLMParameters.Family) - Constructor for class hex.glm.GLMModel.GLMParameters
-
- GLMParameters(GLMModel.GLMParameters.Family, GLMModel.GLMParameters.Link) - Constructor for class hex.glm.GLMModel.GLMParameters
-
- GLMParameters(GLMModel.GLMParameters.Family, GLMModel.GLMParameters.Link, double[], double[], double, double) - Constructor for class hex.glm.GLMModel.GLMParameters
-
- GLMParameters(GLMModel.GLMParameters.Family, GLMModel.GLMParameters.Link, double[], double[], double, double, String[]) - Constructor for class hex.glm.GLMModel.GLMParameters
-
- GLMParameters(GLMModel.GLMParameters.Family, GLMModel.GLMParameters.Link, double[], double[], double, double, String[], double) - Constructor for class hex.glm.GLMModel.GLMParameters
-
- GLMParameters(GLMModel.GLMParameters.Family, GLMModel.GLMParameters.Link, double[], double[], double, double, String[], double, double) - Constructor for class hex.glm.GLMModel.GLMParameters
-
- GLMParametersV3() - Constructor for class hex.schemas.GLMV3.GLMParametersV3
-
- GLMRegularizationPathV3 - Class in hex.schemas
-
- GLMRegularizationPathV3() - Constructor for class hex.schemas.GLMRegularizationPathV3
-
- GLMScore - Class in hex.glm
-
Created by tomas on 3/15/16.
- GLMScore(Job, GLMModel, DataInfo, String[], boolean, boolean, CFuncRef) - Constructor for class hex.glm.GLMScore
-
- GLMScoringInfo - Class in hex.glm
-
- GLMScoringInfo() - Constructor for class hex.glm.GLMScoringInfo
-
- GLMSubsetGinfo(GLM.GLMGradientInfo, int, int, int[]) - Constructor for class hex.glm.ComputationState.GLMSubsetGinfo
-
- GLMTask - Class in hex.glm
-
All GLM related distributed tasks:
YMUTask - computes response means on actual datasets (if some rows are ignored - e.g ignoring rows with NA and/or doing cross-validation)
GLMGradientTask - computes gradient at given Beta, used by L-BFGS, for KKT condition check
GLMLineSearchTask - computes residual deviance(s) at given beta(s), used by line search (both L-BFGS and IRLSM)
GLMIterationTask - used by IRLSM to compute Gram matrix and response t(X) W X, t(X)Wz
- GLMTask() - Constructor for class hex.glm.GLMTask
-
- GLMTask.CalculateAugZW - Class in hex.glm
-
- GLMTask.CalculateAugZWData - Class in hex.glm
-
- GLMTask.CalculateAugZWRandCols - Class in hex.glm
-
- GLMTask.CalculateEtaInfo - Class in hex.glm
-
- GLMTask.CalculateW4Data - Class in hex.glm
-
This class given the weights generated and stored in _dinfo and wpsi, will multiply the weights to AugXZ and
store them in AugXZ.
- GLMTask.CalculateW4Rand - Class in hex.glm
-
This class calculates wpsi, zmi for frame _prior_weights_psi.
- GLMTask.ComputeDiTriGammaTsk - Class in hex.glm
-
This function will assist in the estimation of dispersion factors using maximum likelihood
- GLMTask.ComputeGammaMLSETsk - Class in hex.glm
-
This function will assist in the estimation of dispersion factors using maximum likelihood
- GLMTask.ComputeSEorDEVIANCETsk - Class in hex.glm
-
- GLMTask.CopyPartsOfFrame - Class in hex.glm
-
This class will copy columns from a source frame to columns in the destination frame
- GLMTask.DataAddW2AugXZ - Class in hex.glm
-
This class will update the frame AugXZ which contains Ta*sqrt(W inverse) from documentation:
- multiply the generated weight value to Ta and store in AugXZ;
- GLMTask.ExpandRandomColumns - Class in hex.glm
-
- GLMTask.ExtractFrameFromSourceWithProcess - Class in hex.glm
-
- GLMTask.GenerateResid - Class in hex.glm
-
- GLMTask.GLMCoordinateDescentTaskSeqIntercept - Class in hex.glm
-
- GLMTask.GLMCoordinateDescentTaskSeqNaive - Class in hex.glm
-
- GLMTask.GLMGaussianGradientTask - Class in hex.glm
-
- GLMTask.GLMGenerateWeightsTask - Class in hex.glm
-
- GLMTask.GLMIterationTask - Class in hex.glm
-
One iteration of glm, computes weighted gram matrix and t(x)*y vector and t(y)*y scalar.
- GLMTask.GLMIterationTaskMultinomial - Class in hex.glm
-
- GLMTask.GLMMultinomialGradientBaseTask - Class in hex.glm
-
- GLMTask.GLMMultinomialGradientTask - Class in hex.glm
-
- GLMTask.GLMMultinomialUpdate - Class in hex.glm
-
- GLMTask.GLMMultinomialWLSTask - Class in hex.glm
-
- GLMTask.GLMWLSTask - Class in hex.glm
-
- GLMTask.HelpercAIC - Class in hex.glm
-
- GLMTask.LSTask - Class in hex.glm
-
Task to compute t(X) %*% W %*% X and t(X) %*% W %*% y
- GLMTask.RandColAddW2AugXZ - Class in hex.glm
-
- GLMTask.ReturnGLMMMERunInfo - Class in hex.glm
-
- GLMTask.ReturnGLMMMERunInfoData - Class in hex.glm
-
fill in the returnFrame from the data portion only
- GLMTask.ReturnGLMMMERunInfoRandCols - Class in hex.glm
-
- GLMTask.YMUTask - Class in hex.glm
-
- GLMUtils - Class in hex.glm
-
- GLMUtils() - Constructor for class hex.glm.GLMUtils
-
- GLMV3 - Class in hex.schemas
-
Created by tomasnykodym on 8/29/14.
- GLMV3() - Constructor for class hex.schemas.GLMV3
-
- GLMV3.GLMParametersV3 - Class in hex.schemas
-
- GLMWeights() - Constructor for class hex.glm.GLMModel.GLMWeights
-
- GLMWeightsFun(GLMModel.GLMParameters) - Constructor for class hex.glm.GLMModel.GLMWeightsFun
-
- GLMWeightsFun(GLMModel.GLMParameters.Family, GLMModel.GLMParameters.Link, double, double, double, double, boolean) - Constructor for class hex.glm.GLMModel.GLMWeightsFun
-
- GLMWLSTask(H2O.H2OCountedCompleter, DataInfo, Key, GLMModel.GLMWeightsFun, double[]) - Constructor for class hex.glm.GLMTask.GLMWLSTask
-
- GlobalInteractionConstraints - Class in hex.tree
-
Class to process global interaction constraints information and use this information for
make a split decision in a tree.
- GlobalInteractionConstraints(String[][], String[]) - Constructor for class hex.tree.GlobalInteractionConstraints
-
- GLRM - Class in hex.glrm
-
Generalized Low Rank Models
This is an algorithm for dimensionality reduction of a dataset.
- GLRM(GLRMModel.GLRMParameters) - Constructor for class hex.glrm.GLRM
-
- GLRM(GLRMModel.GLRMParameters, Job<GLRMModel>) - Constructor for class hex.glrm.GLRM
-
- GLRM(boolean) - Constructor for class hex.glrm.GLRM
-
- GLRM.Archetypes - Class in hex.glrm
-
- GLRM.updateXVecs - Class in hex.glrm
-
- GLRMGenX - Class in hex.glrm
-
GLRMGenX will generate the coefficients (X matrix) of a GLRM model given the archetype
for a dataframe.
- GLRMGenX(GLRMModel, int) - Constructor for class hex.glrm.GLRMGenX
-
- GLRMModel - Class in hex.glrm
-
- GLRMModel(Key<GLRMModel>, GLRMModel.GLRMParameters, GLRMModel.GLRMOutput) - Constructor for class hex.glrm.GLRMModel
-
- GLRMModel.GLRMOutput - Class in hex.glrm
-
- GLRMModel.GLRMParameters - Class in hex.glrm
-
- GlrmModelMetricsBuilder(int, int[]) - Constructor for class hex.glrm.ModelMetricsGLRM.GlrmModelMetricsBuilder
-
- GlrmModelMetricsBuilder(int, int[], boolean) - Constructor for class hex.glrm.ModelMetricsGLRM.GlrmModelMetricsBuilder
-
- GLRMModelOutputV3() - Constructor for class hex.schemas.GLRMModelV3.GLRMModelOutputV3
-
- GLRMModelV3 - Class in hex.schemas
-
- GLRMModelV3() - Constructor for class hex.schemas.GLRMModelV3
-
- GLRMModelV3.GLRMModelOutputV3 - Class in hex.schemas
-
- GlrmMojoWriter - Class in hex.glrm
-
MOJO serializer for GLRM model.
- GlrmMojoWriter() - Constructor for class hex.glrm.GlrmMojoWriter
-
- GlrmMojoWriter(GLRMModel) - Constructor for class hex.glrm.GlrmMojoWriter
-
- GLRMOutput(GLRM) - Constructor for class hex.glrm.GLRMModel.GLRMOutput
-
- GLRMParameters() - Constructor for class hex.glrm.GLRMModel.GLRMParameters
-
- GLRMParametersV3() - Constructor for class hex.schemas.GLRMV3.GLRMParametersV3
-
- GLRMV3 - Class in hex.schemas
-
- GLRMV3() - Constructor for class hex.schemas.GLRMV3
-
- GLRMV3.GLRMParametersV3 - Class in hex.schemas
-
- go(int, boolean) - Method in class hex.tree.SharedTreeModel.BufStringDecisionPathTracker
-
- grabRedundantConstraintMessage(ComputationState, Integer) - Static method in class hex.glm.ConstrainedGLMUtils
-
- gradient(double[]) - Method in class hex.glm.GLM.GramSolver
-
- gradient(double[]) - Method in class hex.glm.GLM.ProximalGradientSolver
-
- gradient() - Method in class hex.glm.GLMTask.GLMMultinomialGradientBaseTask
-
This method changes the _gradient that is coeffPerClss by number of classes back to number of classes by
coeffPerClass.
- gradient(double[]) - Method in interface hex.optimization.ADMM.ProximalSolver
-
- gradient_epsilon - Variable in class hex.schemas.GAMV3.GAMParametersV3
-
- gradient_epsilon - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- gradient_epsilon - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
- gradientCheck - Static variable in class hex.deeplearning.DeepLearningModelInfo
-
- gradientCheckBias - Static variable in class hex.deeplearning.DeepLearningModelInfo
-
- GradientInfo(double, double[]) - Constructor for class hex.optimization.OptimizationUtils.GradientInfo
-
- gram - Variable in class hex.glm.ComputationState.GramXY
-
- Gram - Class in hex.gram
-
- Gram(DataInfo) - Constructor for class hex.gram.Gram
-
- Gram(int, int, int, int, boolean) - Constructor for class hex.gram.Gram
-
- Gram(double[][]) - Constructor for class hex.gram.Gram
-
- Gram.Cholesky - Class in hex.gram
-
- Gram.CollinearColumnsException - Exception in hex.gram
-
- Gram.GramTask - Class in hex.gram
-
Task to compute gram matrix normalized by the number of observations (not counting rows with NAs).
- Gram.InPlaceCholesky - Class in hex.gram
-
- Gram.NonSPDMatrixException - Exception in hex.gram
-
- Gram.OuterGramTask - Class in hex.gram
-
Task to compute outer product of a matrix normalized by the number of observations (not counting rows with NAs).
- GramGrad(double[][], double[], double[], double, double, double[]) - Constructor for class hex.glm.ComputationState.GramGrad
-
- GramSolver(Gram, double[], double, double, boolean) - Constructor for class hex.glm.GLM.GramSolver
-
- GramSolver(Gram, double[], boolean, double, double, double[], double[], double[], double[]) - Constructor for class hex.glm.GLM.GramSolver
-
- GramTask(Key<Job>, DataInfo) - Constructor for class hex.gram.Gram.GramTask
-
- GramTask(Key<Job>, DataInfo, boolean, boolean) - Constructor for class hex.gram.Gram.GramTask
-
- GramV3 - Class in hex.schemas
-
Created by tomas on 10/26/16.
- GramV3() - Constructor for class hex.schemas.GramV3
-
- GramXY(Gram, double[], double[], double[], int[], int[], double, double) - Constructor for class hex.glm.ComputationState.GramXY
-
- Grep - Class in hex.grep
-
Grep model builder...
- Grep(GrepModel.GrepParameters) - Constructor for class hex.grep.Grep
-
- GrepModel - Class in hex.grep
-
- GrepModel.GrepOutput - Class in hex.grep
-
- GrepModel.GrepParameters - Class in hex.grep
-
- GrepModelOutputV3() - Constructor for class hex.schemas.GrepModelV3.GrepModelOutputV3
-
- GrepModelV3 - Class in hex.schemas
-
- GrepModelV3() - Constructor for class hex.schemas.GrepModelV3
-
- GrepModelV3.GrepModelOutputV3 - Class in hex.schemas
-
- GrepOutput(Grep) - Constructor for class hex.grep.GrepModel.GrepOutput
-
- GrepParameters() - Constructor for class hex.grep.GrepModel.GrepParameters
-
- GrepParametersV3() - Constructor for class hex.schemas.GrepV3.GrepParametersV3
-
- GrepV3 - Class in hex.schemas
-
- GrepV3() - Constructor for class hex.schemas.GrepV3
-
- GrepV3.GrepParametersV3 - Class in hex.schemas
-
- gslvr() - Method in class hex.glm.ComputationState
-
- gslvrMultinomial(int) - Method in class hex.glm.ComputationState
-
- GuidedSplitPoints - Class in hex.tree
-
Implements a method for finding new histogram bins split-points based on a result of previous binning.
- GuidedSplitPoints() - Constructor for class hex.tree.GuidedSplitPoints
-
- icf(DataInfo, Kernel, int, double) - Static method in class hex.psvm.psvm.IncompleteCholeskyFactorization
-
- idx_nids(int) - Method in class hex.tree.SharedTree
-
- idx_offset() - Method in class hex.tree.SharedTree
-
- idx_oobt() - Method in class hex.tree.SharedTree
-
- idx_resp() - Method in class hex.tree.SharedTree
-
- idx_treatment() - Method in class hex.tree.SharedTree
-
- idx_tree(int) - Method in class hex.tree.SharedTree
-
- idx_weight() - Method in class hex.tree.SharedTree
-
- idx_work(int) - Method in class hex.tree.SharedTree
-
- idx_xnew(int, int, int) - Static method in class hex.glrm.GLRM
-
- idx_xold(int, int) - Static method in class hex.glrm.GLRM
-
- idxs - Variable in class hex.glm.GLMModel.Submodel
-
- ignoreBadColumns(int, boolean) - Method in class hex.ensemble.StackedEnsemble
-
- ignoreBadColumns(int, boolean) - Method in class hex.word2vec.Word2Vec
-
- ignoreInvalidColumns(int, boolean) - Method in class hex.tree.SharedTree
-
- imp(T) - Method in class hex.tree.drf.TreeMeasuresCollector.TreeMeasures
-
Compute variable importance with respect to given votes.
- imp(TreeMeasuresCollector.TreeSSE) - Method in class hex.tree.drf.TreeMeasuresCollector.TreeSSE
-
- imp(TreeMeasuresCollector.TreeVotes) - Method in class hex.tree.drf.TreeMeasuresCollector.TreeVotes
-
Compute variable importance with respect to given votes.
- importance - Variable in class hex.schemas.GLRMModelV3.GLRMModelOutputV3
-
- importance - Variable in class hex.schemas.PCAModelV3.PCAModelOutputV3
-
- importMojoModel(String, boolean) - Static method in class hex.generic.Generic
-
Convenience method for importing MOJO into H2O.
- importMojoModel(URI) - Static method in class hex.generic.Generic
-
- impute_missing - Variable in class hex.schemas.PCAV3.PCAParametersV3
-
- impute_original - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
-
- imputeCat(Vec) - Static method in class hex.DataInfo
-
- imputeCat(Vec, boolean) - Static method in class hex.DataInfo
-
- imputeCat(String, Vec, boolean) - Method in interface hex.DataInfo.Imputer
-
- imputeCat(String, Vec, boolean) - Method in class hex.DataInfo.MeanImputer
-
- imputeCat(String, Vec, boolean) - Method in class hex.glm.GLM.PlugValuesImputer
-
- imputeInteraction(String, InteractionWrappedVec, double[]) - Method in interface hex.DataInfo.Imputer
-
- imputeInteraction(String, InteractionWrappedVec, double[]) - Method in class hex.DataInfo.MeanImputer
-
- imputeInteraction(String, InteractionWrappedVec, double[]) - Method in class hex.glm.GLM.PlugValuesImputer
-
- imputeMissing() - Method in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
-
- imputeMissing() - Method in class hex.glm.GLMModel.GLMParameters
-
- imputeMissing() - Method in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
-
- imputeNA(int) - Method in class hex.anovaglm.GenerateTransformColumns
-
- imputeNum(String, Vec) - Method in interface hex.DataInfo.Imputer
-
- imputeNum(String, Vec) - Method in class hex.DataInfo.MeanImputer
-
- imputeNum(String, Vec) - Method in class hex.glm.GLM.PlugValuesImputer
-
- in_training_checkpoints_dir - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
-
- in_training_checkpoints_tree_interval - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
-
- IncompleteCholeskyFactorization - Class in hex.psvm.psvm
-
Implementation of ICF based on https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/34638.pdf
This implementation is based on and takes clues from the reference PSVM implementation in C++:
https://code.google.com/archive/p/psvm/source/default/source
original code: Copyright 2007 Google Inc., Apache License, Version 2.0
- IncompleteCholeskyFactorization() - Constructor for class hex.psvm.psvm.IncompleteCholeskyFactorization
-
- influence - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- influence - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
- init(boolean) - Method in class hex.adaboost.AdaBoost
-
- init(boolean) - Method in class hex.aggregator.Aggregator
-
- init(boolean) - Method in class hex.anovaglm.ANOVAGLM
-
- init(boolean) - Method in class hex.coxph.CoxPH
-
Initialize the ModelBuilder, validating all arguments and preparing the
training frame.
- init(boolean) - Method in class hex.deeplearning.DeepLearning
-
Initialize the ModelBuilder, validating all arguments and preparing the
training frame.
- init(Neurons[], int, DeepLearningModel.DeepLearningParameters, DeepLearningModelInfo, boolean) - Method in class hex.deeplearning.Neurons
-
Initialization of the parameters and connectivity of a Neuron layer
- init(boolean) - Method in class hex.ensemble.StackedEnsemble
-
- init(boolean) - Method in class hex.gam.GAM
-
- init(boolean) - Method in class hex.generic.Generic
-
- init(boolean) - Method in class hex.glm.GLM
-
- init(boolean) - Method in class hex.glrm.GLRM
-
Validate all parameters, and prepare the model for training.
- init(boolean) - Method in class hex.grep.Grep
-
Initialize the ModelBuilder, validating all arguments and preparing the
training frame.
- init(boolean) - Method in class hex.isotonic.IsotonicRegression
-
- init(boolean) - Method in class hex.kmeans.KMeans
-
Initialize the ModelBuilder, validating all arguments and preparing the
training frame.
- init(boolean) - Method in class hex.modelselection.ModelSelection
-
- init(boolean) - Method in class hex.naivebayes.NaiveBayes
-
- init(boolean) - Method in class hex.pca.PCA
-
- init(boolean) - Method in class hex.psvm.PSVM
-
- init(boolean) - Method in class hex.rulefit.RuleFit
-
- init - Variable in class hex.schemas.CoxPHV3.CoxPHParametersV3
-
- init - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
-
- init - Variable in class hex.schemas.KMeansV3.KMeansParametersV3
-
- init(boolean) - Method in class hex.svd.SVD
-
- init() - Method in class hex.tree.DHistogram
-
- init(double[]) - Method in class hex.tree.DHistogram
-
- init(double[], double[]) - Method in class hex.tree.DHistogram
-
- init(boolean) - Method in class hex.tree.drf.DRF
-
Initialize the ModelBuilder, validating all arguments and preparing the
training frame.
- init(boolean) - Method in class hex.tree.gbm.GBM
-
Initialize the ModelBuilder, validating all arguments and preparing the
training frame.
- init(boolean) - Method in class hex.tree.isofor.IsolationForest
-
- init(boolean) - Method in class hex.tree.isoforextended.ExtendedIsolationForest
-
- init(boolean) - Method in class hex.tree.SharedTree
-
Initialize the ModelBuilder, validating all arguments and preparing the
training frame.
- init(boolean) - Method in class hex.tree.uplift.UpliftDRF
-
Initialize the ModelBuilder, validating all arguments and preparing the
training frame.
- init(boolean) - Method in class hex.word2vec.Word2Vec
-
Initialize the ModelBuilder, validating all arguments and preparing the
training frame.
- init_dispersion_parameter - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- init_getNClass() - Method in class hex.coxph.CoxPH
-
- init_getNClass() - Method in class hex.psvm.PSVM
-
- init_learning_rate - Variable in class hex.schemas.Word2VecV3.Word2VecParametersV3
-
- init_optimal_glm - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- init_step_size - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
-
- initActualParamValues() - Method in class hex.deeplearning.DeepLearning.DeepLearningDriver
-
- initActualParamValues() - Method in class hex.deeplearning.DeepLearningModel
-
- initActualParamValues() - Method in class hex.ensemble.StackedEnsembleModel
-
- initActualParamValues() - Method in class hex.glm.GLMModel
-
- initActualParamValues() - Method in class hex.kmeans.KMeansModel
-
- initActualParamValues() - Method in class hex.naivebayes.NaiveBayesModel
-
- initActualParamValues() - Method in class hex.tree.drf.DRFModel
-
- initActualParamValues() - Method in class hex.tree.gbm.GBMModel
-
- initActualParamValues() - Method in class hex.tree.isofor.IsolationForestModel
-
- initActualParamValues() - Method in class hex.tree.uplift.UpliftDRFModel
-
- initActualParamValuesAfterGlmCreation() - Method in class hex.gam.GAMModel
-
- initActualParamValuesAfterOutputSetup(boolean) - Method in class hex.tree.drf.DRFModel
-
- initActualParamValuesAfterOutputSetup(int, boolean) - Method in class hex.tree.gbm.GBMModel
-
- initCalibration(CalibrationHelper.ModelBuilderWithCalibration, CalibrationHelper.ParamsWithCalibration, boolean) - Static method in class hex.tree.CalibrationHelper
-
- initCalibrationMethod(CalibrationHelper.ParamsWithCalibration) - Static method in class hex.util.EffectiveParametersUtils
-
- initCategoricalEncoding(Model.Parameters, Model.Parameters.CategoricalEncodingScheme) - Static method in class hex.util.EffectiveParametersUtils
-
- initConstraintDerivatives(ConstrainedGLMUtils.LinearConstraints[], ConstrainedGLMUtils.LinearConstraints[], List<String>) - Method in class hex.glm.ComputationState
-
This method calculates
1.
- initDistribution(Model.Parameters, int) - Static method in class hex.util.EffectiveParametersUtils
-
- initFoldAssignment(Model.Parameters) - Static method in class hex.util.EffectiveParametersUtils
-
- initHistogramType(SharedTreeModel.SharedTreeParameters) - Static method in class hex.util.EffectiveParametersUtils
-
- initial_biases - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
- initial_weight_distribution - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
The distribution from which initial weights are to be drawn.
- initial_weight_scale - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
The scale of the distribution function for Uniform or Normal distributions.
- initial_weights - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
- initialHist(Frame, int, int, DHistogram[], long, SharedTreeModel.SharedTreeParameters, Key<DHistogram.HistoSplitPoints>[], Constraints, boolean, GlobalInteractionConstraints) - Static method in class hex.tree.DHistogram
-
The initial histogram bins are setup from the Vec rollups.
- initialInteractionConstraints(GlobalInteractionConstraints) - Method in class hex.tree.gbm.GBMModel.GBMParameters
-
- initializeModelSpecifics() - Method in class hex.tree.SharedTree.Driver
-
- initMetalearnerParams() - Method in class hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters
-
- initMetalearnerParams(Metalearner.Algorithm) - Method in class hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters
-
- initStats(CoxPHModel, DataInfo, double[]) - Method in class hex.coxph.CoxPH.CoxPHDriver
-
- initStoppingMetric(Model.Parameters, boolean) - Static method in class hex.util.EffectiveParametersUtils
-
- initUpliftMetric(UpliftDRFModel.UpliftDRFParameters) - Static method in class hex.util.EffectiveParametersUtils
-
- innerProduct(double[]) - Method in class hex.DataInfo.Row
-
- innerProduct(double[], boolean) - Method in class hex.DataInfo.Row
-
- innerProduct(DataInfo.Row) - Method in class hex.DataInfo.Row
-
- innerProductChunk(DataInfo.Row, DataInfo.Row, Chunk[], Chunk[]) - Method in class hex.gram.Gram.OuterGramTask
-
- input_dropout_ratio - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
A fraction of the features for each training row to be omitted from training in order
to improve generalization (dimension sampling).
- INT_NA - Static variable in class hex.tree.DHistogram
-
- integratePolynomial(double[], double[][]) - Static method in class hex.gam.GamSplines.NBSplinesUtils
-
Perform integration of polynomials as described in Section VI.IV, equation 17 of doc I.
- interaction_constraints - Variable in class hex.schemas.GBMV3.GBMParametersV3
-
- interaction_pairs - Variable in class hex.schemas.CoxPHV3.CoxPHParametersV3
-
- interaction_pairs - Variable in class hex.schemas.GAMV3.GAMParametersV3
-
- interaction_pairs - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- interactionBuilder() - Method in class hex.coxph.CoxPHModel.CoxPHOutput
-
- interactionBuilder() - Method in class hex.glm.GLMModel.GLMOutput
-
- interactionConstraints(Frame) - Method in class hex.tree.gbm.GBMModel.GBMParameters
-
- interactions - Variable in class hex.schemas.CoxPHV3.CoxPHParametersV3
-
- interactions - Variable in class hex.schemas.DataInfoFrameV3
-
- interactions - Variable in class hex.schemas.GAMV3.GAMParametersV3
-
- interactions - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- interactions_only - Variable in class hex.schemas.CoxPHV3.CoxPHParametersV3
-
- interactions_only - Variable in class hex.schemas.DataInfoFrameV3
-
- interactionSpec() - Method in class hex.gam.GAMModel.GAMParameters
-
- interactionSpec() - Method in class hex.glm.GLMModel.GLMParameters
-
- intercept - Variable in class hex.schemas.GAMV3.GAMParametersV3
-
- intercept - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- intercept - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
- intercept - Variable in class hex.schemas.RuleFitModelV3.RuleFitModelOutputV3
-
- intersection(IcedHashSet<IcedInt>) - Method in class hex.tree.BranchInteractionConstraints
-
Important method to decide which indices are allowed for the next level of constraints.
- invalidPath() - Method in class hex.tree.SharedTreeModel.BufStringDecisionPathTracker
-
- isAllowedIndex(int) - Method in class hex.tree.BranchInteractionConstraints
-
- isAutoencoder() - Method in class hex.deeplearning.DeepLearningModel.DeepLearningModelOutput
-
- isBad() - Method in class hex.DataInfo.Row
-
- isBinomialClassifier() - Method in class hex.tree.uplift.UpliftDRFModel.UpliftDRFOutput
-
- isCalibrated() - Method in interface hex.tree.CalibrationHelper.OutputWithCalibration
-
- isConstant() - Method in class hex.tree.dt.binning.FeatureBins
-
- isConstant(int) - Method in class hex.tree.dt.binning.Histogram
-
- isDecidedRow(int) - Static method in class hex.tree.ScoreBuildHistogram
-
- isDistributionHuber() - Method in class hex.deeplearning.DeepLearningModel
-
- isFeatureUsedInPredict(String) - Method in class hex.deeplearning.DeepLearningModel
-
- isFeatureUsedInPredict(int) - Method in class hex.glm.GLMModel
-
- isFeatureUsedInPredict(int) - Method in class hex.naivebayes.NaiveBayesModel
-
- isFeatureUsedInPredict(String) - Method in class hex.tree.SharedTreeModel
-
- isGeneric() - Method in class hex.generic.GenericModel
-
- isInteractionVec(int) - Method in class hex.DataInfo
-
- isMeanAdjusted() - Method in enum hex.DataInfo.TransformType
-
- isNAsIncluded() - Method in class hex.rulefit.Condition
-
- IsolationForest - Class in hex.tree.isofor
-
Isolation Forest
- IsolationForest(IsolationForestModel.IsolationForestParameters) - Constructor for class hex.tree.isofor.IsolationForest
-
- IsolationForest(IsolationForestModel.IsolationForestParameters, Key<IsolationForestModel>) - Constructor for class hex.tree.isofor.IsolationForest
-
- IsolationForest(IsolationForestModel.IsolationForestParameters, Job) - Constructor for class hex.tree.isofor.IsolationForest
-
- IsolationForest(boolean) - Constructor for class hex.tree.isofor.IsolationForest
-
- IsolationForest.VarSplits - Class in hex.tree.isofor
-
- IsolationForestModel - Class in hex.tree.isofor
-
- IsolationForestModel(Key<IsolationForestModel>, IsolationForestModel.IsolationForestParameters, IsolationForestModel.IsolationForestOutput) - Constructor for class hex.tree.isofor.IsolationForestModel
-
- IsolationForestModel.IsolationForestOutput - Class in hex.tree.isofor
-
- IsolationForestModel.IsolationForestParameters - Class in hex.tree.isofor
-
- IsolationForestModelOutputV3() - Constructor for class hex.schemas.IsolationForestModelV3.IsolationForestModelOutputV3
-
- IsolationForestModelV3 - Class in hex.schemas
-
- IsolationForestModelV3() - Constructor for class hex.schemas.IsolationForestModelV3
-
- IsolationForestModelV3.IsolationForestModelOutputV3 - Class in hex.schemas
-
- IsolationForestMojoWriter - Class in hex.tree.isofor
-
Mojo definition for Isolation Forest model.
- IsolationForestMojoWriter() - Constructor for class hex.tree.isofor.IsolationForestMojoWriter
-
- IsolationForestMojoWriter(IsolationForestModel) - Constructor for class hex.tree.isofor.IsolationForestMojoWriter
-
- IsolationForestOutput(IsolationForest) - Constructor for class hex.tree.isofor.IsolationForestModel.IsolationForestOutput
-
- IsolationForestParameters() - Constructor for class hex.tree.isofor.IsolationForestModel.IsolationForestParameters
-
- IsolationForestParametersV3() - Constructor for class hex.schemas.IsolationForestV3.IsolationForestParametersV3
-
- IsolationForestV3 - Class in hex.schemas
-
- IsolationForestV3() - Constructor for class hex.schemas.IsolationForestV3
-
- IsolationForestV3.IsolationForestParametersV3 - Class in hex.schemas
-
- IsolationTree - Class in hex.tree.isoforextended.isolationtree
-
IsolationTree class implements Algorithm 2 (iTree)
Naming convention comes from the Extended Isolation Forest paper.
- IsolationTree(int, int) - Constructor for class hex.tree.isoforextended.isolationtree.IsolationTree
-
- IsolationTree.FilteredData - Class in hex.tree.isoforextended.isolationtree
-
- IsolationTree.Node - Class in hex.tree.isoforextended.isolationtree
-
IsolationTree Node.
- IsolationTreeStats - Class in hex.tree.isoforextended.isolationtree
-
Inspired by TreeStats
- IsolationTreeStats() - Constructor for class hex.tree.isoforextended.isolationtree.IsolationTreeStats
-
- isOOBRow(int) - Static method in class hex.tree.ScoreBuildHistogram
-
- IsotonicRegression - Class in hex.isotonic
-
- IsotonicRegression(boolean) - Constructor for class hex.isotonic.IsotonicRegression
-
- IsotonicRegression(IsotonicRegressionModel.IsotonicRegressionParameters) - Constructor for class hex.isotonic.IsotonicRegression
-
- IsotonicRegressionModel - Class in hex.isotonic
-
- IsotonicRegressionModel(Key<IsotonicRegressionModel>, IsotonicRegressionModel.IsotonicRegressionParameters, IsotonicRegressionModel.IsotonicRegressionOutput) - Constructor for class hex.isotonic.IsotonicRegressionModel
-
- IsotonicRegressionModel.IsotonicRegressionOutput - Class in hex.isotonic
-
- IsotonicRegressionModel.IsotonicRegressionParameters - Class in hex.isotonic
-
- IsotonicRegressionModel.OutOfBoundsHandling - Enum in hex.isotonic
-
- IsotonicRegressionModelOutputV3() - Constructor for class hex.schemas.IsotonicRegressionModelV3.IsotonicRegressionModelOutputV3
-
- IsotonicRegressionModelV3 - Class in hex.schemas
-
- IsotonicRegressionModelV3() - Constructor for class hex.schemas.IsotonicRegressionModelV3
-
- IsotonicRegressionModelV3.IsotonicRegressionModelOutputV3 - Class in hex.schemas
-
- IsotonicRegressionMojoWriter - Class in hex.isotonic
-
- IsotonicRegressionMojoWriter() - Constructor for class hex.isotonic.IsotonicRegressionMojoWriter
-
- IsotonicRegressionMojoWriter(IsotonicRegressionModel) - Constructor for class hex.isotonic.IsotonicRegressionMojoWriter
-
- IsotonicRegressionOutput(IsotonicRegression) - Constructor for class hex.isotonic.IsotonicRegressionModel.IsotonicRegressionOutput
-
- IsotonicRegressionParameters() - Constructor for class hex.isotonic.IsotonicRegressionModel.IsotonicRegressionParameters
-
- IsotonicRegressionParametersV3() - Constructor for class hex.schemas.IsotonicRegressionV3.IsotonicRegressionParametersV3
-
- IsotonicRegressionV3 - Class in hex.schemas
-
- IsotonicRegressionV3() - Constructor for class hex.schemas.IsotonicRegressionV3
-
- IsotonicRegressionV3.IsotonicRegressionParametersV3 - Class in hex.schemas
-
- isResponseOptional() - Method in class hex.tree.isofor.IsolationForest
-
- isRootNode(DTree.Node) - Static method in class hex.tree.DTree
-
- isSigmaScaled() - Method in enum hex.DataInfo.TransformType
-
- isSparse() - Method in class hex.DataInfo.Row
-
- isSPD() - Method in class hex.gram.Gram.Cholesky
-
- isSPD() - Method in class hex.gram.Gram.InPlaceCholesky
-
- isStandardized() - Method in class hex.glm.GLMModel.GLMOutput
-
- isStochastic() - Method in class hex.tree.SharedTreeModel.SharedTreeParameters
-
- isSupervised() - Method in class hex.adaboost.AdaBoost
-
- isSupervised() - Method in class hex.aggregator.Aggregator
-
- isSupervised() - Method in class hex.anovaglm.ANOVAGLM
-
- isSupervised() - Method in class hex.coxph.CoxPH
-
- isSupervised() - Method in class hex.deeplearning.DeepLearning
-
- isSupervised() - Method in class hex.deeplearning.DeepLearningModel.DeepLearningModelOutput
-
- isSupervised() - Method in class hex.ensemble.StackedEnsemble
-
- isSupervised() - Method in class hex.gam.GAM
-
- isSupervised() - Method in class hex.generic.Generic
-
- isSupervised() - Method in class hex.glm.GLM
-
- isSupervised() - Method in class hex.glm.GLMModel.GLMOutput
-
- isSupervised() - Method in class hex.glrm.GLRM
-
- isSupervised() - Method in class hex.grep.Grep
-
- isSupervised() - Method in class hex.isotonic.IsotonicRegression
-
- isSupervised() - Method in class hex.modelselection.ModelSelection
-
- isSupervised() - Method in class hex.naivebayes.NaiveBayes
-
- isSupervised() - Method in class hex.pca.PCA
-
- isSupervised() - Method in class hex.psvm.PSVM
-
- isSupervised() - Method in class hex.rulefit.RuleFit
-
- isSupervised() - Method in class hex.svd.SVD
-
- isSupervised() - Method in class hex.tree.dt.DT
-
- isSupervised() - Method in class hex.tree.isofor.IsolationForest
-
- isSupervised() - Method in class hex.tree.isoforextended.ExtendedIsolationForest
-
- isSupervised() - Method in class hex.tree.SharedTree
-
- isSupervised() - Method in class hex.word2vec.Word2Vec
-
- isUnstable() - Method in class hex.deeplearning.DeepLearningModelInfo
-
- isUplift() - Method in class hex.tree.SharedTree
-
- isUplift() - Method in class hex.tree.uplift.UpliftDRF
-
- isUsingBinomialOpt(SharedTreeMojoModel, CompressedTree[][]) - Static method in class hex.tree.MojoUtils
-
- isValid() - Method in class hex.optimization.OptimizationUtils.GradientInfo
-
- isValid() - Method in class hex.tree.TreeStats
-
- iter() - Method in class hex.glm.GLM.GramSolver
-
- iter() - Method in class hex.glm.GLM.ProximalGradientSolver
-
- iter() - Method in interface hex.optimization.ADMM.ProximalSolver
-
- iter - Variable in class hex.optimization.L_BFGS.Result
-
- iteration - Variable in class hex.glm.GLMModel.Submodel
-
- iterations - Variable in class hex.deeplearning.DeepLearningModel
-
- iterations - Variable in class hex.deeplearning.DeepLearningScoringInfo
-
- iterations() - Method in class hex.deeplearning.DeepLearningScoringInfo
-
- iterations - Variable in class hex.glm.GLMScoringInfo
-
- iterations() - Method in class hex.glm.GLMScoringInfo
-
- iterations - Variable in class hex.schemas.GLRMModelV3.GLRMModelOutputV3
-
- l - Variable in class hex.glm.GLMModel.GLMWeights
-
- l1 - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
A regularization method that constrains the absolute value of the weights and
has the net effect of dropping some weights (setting them to zero) from a model
to reduce complexity and avoid overfitting.
- l1pen() - Method in class hex.glm.ComputationState
-
- L1Solver(double, int, double[]) - Constructor for class hex.optimization.ADMM.L1Solver
-
- L1Solver(double, int, double, double, double[]) - Constructor for class hex.optimization.ADMM.L1Solver
-
- l2 - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
A regularization method that constrains the sum of the squared
weights.
- l2pen() - Method in class hex.glm.ComputationState
-
- L_BFGS - Class in hex.optimization
-
Created by tomasnykodym on 9/15/14.
- L_BFGS() - Constructor for class hex.optimization.L_BFGS
-
- L_BFGS.History - Class in hex.optimization
-
Keeps L-BFGS history ie curvature information recorded over the last m steps.
- L_BFGS.ProgressMonitor - Interface in hex.optimization
-
Monitor progress and enable early termination.
- L_BFGS.Result - Class in hex.optimization
-
- lambda() - Method in class hex.glm.ComputationState
-
- lambda - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
-
- lambda - Variable in class hex.schemas.GAMV3.GAMParametersV3
-
- lambda - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- lambda - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
- lambda - Variable in class hex.schemas.RuleFitV3.RuleFitParametersV3
-
- lambda_1se() - Method in class hex.glm.GLMModel.GLMOutput
-
- lambda_best() - Method in class hex.glm.GLMModel.GLMOutput
-
- lambda_min_ratio - Variable in class hex.schemas.GAMV3.GAMParametersV3
-
- lambda_min_ratio - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- lambda_min_ratio - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
- lambda_search - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
-
- lambda_search - Variable in class hex.schemas.GAMV3.GAMParametersV3
-
- lambda_search - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- lambda_search - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
- lambda_selected() - Method in class hex.glm.GLMModel.GLMOutput
-
- lambda_value - Variable in class hex.glm.GLMModel.Submodel
-
- lambdas - Variable in class hex.schemas.GLMRegularizationPathV3
-
- languageCatTreshold - Variable in class hex.rulefit.Condition
-
- languageCondition - Variable in class hex.rulefit.Condition
-
- laplace - Variable in class hex.schemas.NaiveBayesV3.NaiveBayesParametersV3
-
- largestCat() - Method in class hex.DataInfo
-
- last_scored() - Method in class hex.deeplearning.DeepLearningModel
-
- lastSpecialColumnIdx() - Method in class hex.coxph.CoxPHModel.CoxPHOutput
-
- leaf(float) - Method in class hex.tree.TreeVisitor
-
- LeafNode(DTree, int) - Constructor for class hex.tree.DTree.LeafNode
-
- LeafNode(DTree, int, int) - Constructor for class hex.tree.DTree.LeafNode
-
- LeafNode(DTree.LeafNode, DTree) - Constructor for class hex.tree.DTree.LeafNode
-
- learn_rate - Variable in class hex.schemas.AdaBoostV3.AdaBoostParametersV3
-
- learn_rate - Variable in class hex.schemas.GBMV3.GBMParametersV3
-
- learn_rate_annealing - Variable in class hex.schemas.GBMV3.GBMParametersV3
-
- left_children - Variable in class hex.schemas.TreeV3
-
- len() - Method in class hex.tree.DTree
-
- levels - Variable in class hex.schemas.NaiveBayesModelV3.NaiveBayesModelOutputV3
-
- levels - Variable in class hex.schemas.TreeV3
-
- levels - Variable in class hex.tree.TreeHandler.TreeProperties
-
- lfv_du_dv(GLMModel.GLMParameters.Family[], GLMModel.GLMParameters.Link[], double[], double[]) - Method in class hex.glm.GLM.GLMDriver
-
- likelihood(double, double, double[]) - Method in class hex.generic.GenericModel
-
- likelihood - Variable in class hex.glm.ComputationState.GramXY
-
- likelihood() - Method in class hex.glm.ComputationState
-
- likelihood(double, double) - Method in class hex.glm.GLMModel.GLMParameters
-
- likelihood(double, double, double[]) - Method in class hex.glm.GLMModel.GLMParameters
-
- likelihood(double, double, double) - Method in class hex.glm.GLMModel.GLMWeightsFun
-
- likelihood(double, double) - Method in class hex.glm.GLMModel.GLMWeightsFun
-
- likelihood(double, double, double[]) - Method in class hex.glm.GLMModel
-
- likelihoodAndDeviance(double, GLMModel.GLMWeights, double) - Method in class hex.glm.GLMModel.GLMWeightsFun
-
- LIMIT_MAX - Static variable in class hex.tree.dt.NumericFeatureLimits
-
- LIMIT_MIN - Static variable in class hex.tree.dt.NumericFeatureLimits
-
- Linear() - Constructor for class hex.deeplearning.Neurons.Linear
-
- linear_constraints - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- LinearAlgebraUtils - Class in hex.util
-
- LinearAlgebraUtils() - Constructor for class hex.util.LinearAlgebraUtils
-
- LinearAlgebraUtils.BMulInPlaceTask - Class in hex.util
-
Computes B = XY where X is n by k and Y is k by p, saving result in same frame
Input: [X,B] (large frame) passed to doAll, where we write to B
yt = Y' = transpose of Y (small matrix)
ncolX = number of columns in X
- LinearAlgebraUtils.BMulTask - Class in hex.util
-
Computes B = XY where X is n by k and Y is k by p, saving result in new vecs
Input: dinfo = X (large frame) with dinfo._adaptedFrame passed to doAll
yt = Y' = transpose of Y (small matrix)
Output: XY (large frame) is n by p
- LinearAlgebraUtils.BMulTaskMatrices - Class in hex.util
-
Compute B = XY where where X is n by k and Y is k by p and they are both stored as Frames.
- LinearAlgebraUtils.CopyQtoQMatrix - Class in hex.util
-
- LinearAlgebraUtils.FindMaxIndex - Class in hex.util
-
- LinearAlgebraUtils.ForwardSolve - Class in hex.util
-
Given lower triangular L, solve for Q in QL' = A (LQ' = A') using forward substitution
Dimensions: A is n by p, Q is n by p, R = L' is p by p
Input: [A,Q] (large frame) passed to doAll, where we write to Q
- LinearAlgebraUtils.ForwardSolveInPlace - Class in hex.util
-
Given lower triangular L, solve for Q in QL' = A (LQ' = A') using forward substitution
Dimensions: A is n by p, Q is n by p, R = L' is p by p
Input: A (large frame) passed to doAll, where we overwrite each row of A with its row of Q
- LinearAlgebraUtils.SMulTask - Class in hex.util
-
Computes A'Q where A is n by p and Q is n by k
Input: [A,Q] (large frame) passed to doAll
Output: atq = A'Q (small matrix) is \tilde{p} by k where \tilde{p} = number of cols in A with categoricals expanded
- LinearConstraintConditions(String[], String[], double[], String[], String[], boolean) - Constructor for class hex.glm.ConstrainedGLMUtils.LinearConstraintConditions
-
- LinearConstraints() - Constructor for class hex.glm.ConstrainedGLMUtils.LinearConstraints
-
- link(double) - Method in class hex.glm.GLMModel.GLMWeightsFun
-
Given the estimated model output x, we want to find the linear part which is transpose(beta)*p+intercept if
beta does not contain the intercept.
- link - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
-
- link - Variable in class hex.schemas.GAMV3.GAMParametersV3
-
- link - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- link - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
- linkDeriv(double) - Method in class hex.glm.GLMModel.GLMParameters
-
- linkDeriv(double) - Method in class hex.glm.GLMModel.GLMWeightsFun
-
- linkInv(double) - Method in class hex.gam.GAMModel.GAMParameters
-
- linkInv(double) - Method in class hex.glm.GLMModel.GLMParameters
-
- linkInv(double) - Method in class hex.glm.GLMModel.GLMWeightsFun
-
Given the linear combination transpose(beta)*p+intercept (if
beta does not contain the intercept), this method will provide the estimated model output.
- linkInvDeriv(double) - Method in class hex.glm.GLMModel.GLMWeightsFun
-
- linkInvDeriv2(double) - Method in class hex.glm.GLMModel.GLMWeightsFun
-
- lmulCatBlock(double[], int) - Method in class hex.glrm.GLRM.Archetypes
-
- lmulNumCol(double[], int) - Method in class hex.glrm.GLRM.Archetypes
-
- loadFrames() - Method in class hex.ContributionsWithBackgroundFrameTask
-
- loading_name - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
-
- localModelInfoKey(H2ONode) - Method in class hex.deeplearning.DeepLearningModelInfo
-
- logLikelihood(double, double) - Method in class hex.glm.TweedieEstimator
-
- logLikelihood(double, double, double) - Method in class hex.glm.TweedieEstimator
-
- logLikelihood(double, double, double, double) - Static method in class hex.glm.TweedieEstimator
-
- logNodesHeight(Level) - Method in class hex.tree.isoforextended.isolationtree.IsolationTree
-
Helper method.
- logNodesNumRows(Level) - Method in class hex.tree.isoforextended.isolationtree.IsolationTree
-
Helper method.
- loss - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
The loss (error) function to be minimized by the model.
- loss - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
-
- loss_by_col - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
-
- loss_by_col_idx - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
-
- lre_min - Variable in class hex.schemas.CoxPHV3.CoxPHParametersV3
-
- LSTask(H2O.H2OCountedCompleter, DataInfo, Key) - Constructor for class hex.glm.GLMTask.LSTask
-
- main(String[]) - Static method in class water.tools.MojoConvertTool
-
- make(KernelType, KernelParameters) - Static method in class hex.psvm.psvm.KernelFactory
-
- make(String, int, byte, double, double, boolean, boolean, long, SharedTreeModel.SharedTreeParameters, Key<DHistogram.HistoSplitPoints>, Constraints, boolean, double[]) - Static method in class hex.tree.DHistogram
-
- make_model(int, MakeGLMModelV3) - Method in class hex.api.MakeGLMModelHandler
-
- makeAdaptFrameParameters() - Method in class hex.generic.GenericModel
-
- makeAdaptFrameParameters(Model.Parameters.CategoricalEncodingScheme) - Method in class hex.generic.GenericModel
-
- makeAllTreeColumnNames() - Method in class hex.tree.SharedTreeModel
-
- makeBigScoreTask(String[][], String[], Frame, boolean, boolean, Job, CFuncRef) - Method in class hex.isotonic.IsotonicRegressionModel
-
- makeConstraintSummaryTable(GLMModel, ConstrainedGLMUtils.LinearConstraintConditions) - Static method in class hex.glm.ConstrainedGLMUtils
-
- makeDecided(DTree.UndecidedNode, DHistogram[], Constraints) - Method in class hex.tree.isofor.IsolationForest
-
- makeDecided(DTree.UndecidedNode, DHistogram[], Constraints) - Method in class hex.tree.SharedTree
-
- makeDHistogramMonitor(int, int, int) - Method in class hex.tree.SharedTree.SharedTreeDebugParams
-
- makeGAMParameters(GAMModel.GAMParameters) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
-
- MakeGLMModelHandler - Class in hex.api
-
Created by tomasnykodym on 3/25/15.
- MakeGLMModelHandler() - Constructor for class hex.api.MakeGLMModelHandler
-
- MakeGLMModelV3 - Class in hex.schemas
-
End point to update a model.
- MakeGLMModelV3() - Constructor for class hex.schemas.MakeGLMModelV3
-
- makeImputer() - Method in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
-
- makeImputer() - Method in class hex.gam.GAMModel.GAMParameters
-
- makeImputer() - Method in class hex.glm.GLMModel.GLMParameters
-
- makeImputer() - Method in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
-
- makeLeafFromNode(int[], int) - Method in class hex.tree.dt.DT
-
Set decision value to the node.
- makeMetricBuilder(String[]) - Method in class hex.adaboost.AdaBoostModel
-
- makeMetricBuilder(String[]) - Method in class hex.aggregator.AggregatorModel
-
- makeMetricBuilder(String[]) - Method in class hex.anovaglm.ANOVAGLMModel
-
- makeMetricBuilder(String[]) - Method in class hex.coxph.CoxPHModel
-
- makeMetricBuilder(String[]) - Method in class hex.deeplearning.DeepLearningModel
-
- makeMetricBuilder(String[]) - Method in class hex.ensemble.StackedEnsembleModel
-
- makeMetricBuilder(String[]) - Method in class hex.gam.GAMModel
-
- makeMetricBuilder(String[]) - Method in class hex.generic.GenericModel
-
- makeMetricBuilder(String[]) - Method in class hex.glm.GLMModel
-
- makeMetricBuilder(String[]) - Method in class hex.glrm.GLRMModel
-
- makeMetricBuilder(String[]) - Method in class hex.grep.GrepModel
-
- makeMetricBuilder(String[]) - Method in class hex.isotonic.IsotonicRegressionModel
-
- makeMetricBuilder(String[]) - Method in class hex.kmeans.KMeansModel
-
- makeMetricBuilder(String[]) - Method in class hex.modelselection.ModelSelectionModel
-
- makeMetricBuilder(String[]) - Method in class hex.naivebayes.NaiveBayesModel
-
- makeMetricBuilder(String[]) - Method in class hex.pca.PCAModel
-
- makeMetricBuilder(String[]) - Method in class hex.psvm.PSVMModel
-
- makeMetricBuilder(String[]) - Method in class hex.rulefit.RuleFitModel
-
- makeMetricBuilder(String[]) - Method in class hex.svd.SVDModel
-
- makeMetricBuilder(String[]) - Method in class hex.tree.dt.DTModel
-
- makeMetricBuilder(String[]) - Method in class hex.tree.isofor.IsolationForestModel
-
- makeMetricBuilder(String[]) - Method in class hex.tree.isoforextended.ExtendedIsolationForestModel
-
- makeMetricBuilder(String[]) - Method in class hex.tree.SharedTreeModel
-
- makeMetricBuilder(String[]) - Method in class hex.tree.uplift.UpliftDRFModel
-
- makeMetricBuilder(String[]) - Method in class hex.word2vec.Word2VecModel
-
- makeModel(Key<M>, P) - Method in class hex.tree.SharedTree.Driver
-
- makeModelMetrics(Model, Frame) - Method in class hex.aggregator.ModelMetricsAggregator.AggregatorModelMetrics
-
- makeModelMetrics(Model, Frame, Frame, Frame) - Method in class hex.gam.MetricBuilderGAM
-
- makeModelMetrics(Model, Frame, Frame, Frame) - Method in class hex.glm.GLMMetricBuilder
-
- makeModelMetrics(Model, Frame) - Method in class hex.glrm.ModelMetricsGLRM.GlrmModelMetricsBuilder
-
- makeModelMetrics(Model, Frame) - Method in class hex.pca.ModelMetricsPCA.PCAModelMetrics
-
- makeModelMetrics(Model, Frame, Frame, Frame) - Method in class hex.psvm.MetricBuilderPSVM
-
Create a ModelMetrics for a given model and frame
- makeModelMetrics(Model, Frame) - Method in class hex.svd.SVDModel.ModelMetricsSVD.SVDModelMetrics
-
- makeModelMetrics() - Method in class hex.tree.dt.DT
-
- makeModelMetrics(Model, Frame, Frame, Frame) - Method in class hex.tree.isofor.MetricBuilderAnomalySupervised
-
Create a ModelMetrics for a given model and frame
- makeModelMetrics(Model, Frame) - Method in class hex.tree.isofor.ModelMetricsAnomaly.MetricBuilderAnomaly
-
- makeNeuronsForTesting(DeepLearningModelInfo) - Static method in class hex.deeplearning.DeepLearningTask
-
- makeNeuronsForTraining(DeepLearningModelInfo) - Static method in class hex.deeplearning.DeepLearningTask
-
- makePojoWriter() - Method in class hex.generic.GenericModel
-
- makePojoWriter(Model<?, ?, ?>, MojoModel) - Method in class hex.tree.drf.DRF
-
- makePojoWriter(Model<?, ?, ?>, MojoModel) - Method in class hex.tree.gbm.GBM
-
- makePojoWriter() - Method in class hex.tree.SharedTreeModel
-
- makeScoreExtension() - Method in class hex.tree.SharedTree
-
- makeScoreExtension() - Method in class hex.tree.uplift.UpliftDRF
-
- makeScorer(KernelType, KernelParameters, byte[], int, boolean) - Static method in class hex.psvm.BulkScorerFactory
-
Creates an instance of BulkSupportVectorScorer.
- makeScoringDomains(Frame, boolean, String[]) - Method in class hex.isotonic.IsotonicRegressionModel
-
- makeScoringDomains(Frame, boolean, String[]) - Method in class hex.tree.isofor.IsolationForestModel
-
- makeScoringDomains(Frame, boolean, String[]) - Method in class hex.tree.isoforextended.ExtendedIsolationForestModel
-
- makeScoringNames() - Method in class hex.adaboost.AdaBoostModel
-
- makeScoringNames() - Method in class hex.gam.GAMModel
-
- makeScoringNames() - Method in class hex.generic.GenericModel
-
- makeScoringNames() - Method in class hex.glm.GLMModel
-
- makeScoringNames() - Method in class hex.isotonic.IsotonicRegressionModel
-
- makeScoringNames() - Method in class hex.tree.isofor.IsolationForestModel
-
- makeScoringNames() - Method in class hex.tree.isoforextended.ExtendedIsolationForestModel
-
- makeTreeKey(int, int) - Static method in class hex.tree.CompressedTree
-
- makeTreePojoWriter() - Method in class hex.tree.drf.DRFModel
-
- makeTreePojoWriter() - Method in class hex.tree.gbm.GBMModel
-
- makeTreePojoWriter() - Method in class hex.tree.SharedTreeModel
-
- makeUndecidedNode(DHistogram[], Constraints, BranchInteractionConstraints) - Method in class hex.tree.DTree.DecidedNode
-
- makeValidWorkspace() - Method in class hex.tree.SharedTree.Driver
-
- makeZeroOrOneFrame(long, int, int, String[]) - Method in class hex.glm.GLM.GLMDriver
-
- makeZeros(double[], double[]) - Static method in class hex.glm.DispersionUtils
-
- map(Chunk[], NewChunk[]) - Method in class hex.anovaglm.GenerateTransformColumns
-
- map(Chunk[], NewChunk[]) - Method in class hex.ContributionsMeanAggregator
-
- map(Chunk[], NewChunk[]) - Method in class hex.ContributionsWithBackgroundFrameTask
-
- map(Chunk[], Chunk[], NewChunk[]) - Method in class hex.ContributionsWithBackgroundFrameTask
-
- map(Chunk[]) - Method in class hex.FrameTask.ExtractDenseRow
-
- map(Chunk[], NewChunk[]) - Method in class hex.FrameTask
-
Extracts the values, applies regularization to numerics, adds appropriate offsets to categoricals,
and adapts response according to the CaseMode/CaseValue if set.
- map(Chunk[]) - Method in class hex.FrameTask2
-
- map(Chunk[], NewChunk[]) - Method in class hex.gam.GamSplines.ThinPlateDistanceWithKnots
-
- map(Chunk[], NewChunk[]) - Method in class hex.gam.GamSplines.ThinPlatePolynomialWithKnots
-
- map(Chunk[], NewChunk[]) - Method in class hex.gam.GamSplines.ThinPlateRegressionUtils.ScaleTPPenalty
-
- map(Chunk[], NewChunk[]) - Method in class hex.gam.MatrixFrameUtils.AddCSGamColumns
-
- map(Chunk[], NewChunk[]) - Method in class hex.gam.MatrixFrameUtils.AddISGamColumns
-
- map(Chunk[], NewChunk[]) - Method in class hex.gam.MatrixFrameUtils.AddMSGamColumns
-
- map(Chunk[], NewChunk[]) - Method in class hex.gam.MatrixFrameUtils.GenCSSplineGamOneColumn
-
- map(Chunk[], NewChunk[]) - Method in class hex.gam.MatrixFrameUtils.GenISplineGamOneColumn
-
- map(Chunk[], NewChunk[]) - Method in class hex.gam.MatrixFrameUtils.GenMSplineGamOneColumn
-
- map(Chunk[]) - Method in class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk
-
- map(Chunk[], NewChunk[]) - Method in class hex.glm.DispersionTask.ComputeTweedieConstTsk
-
- map(Chunk[], NewChunk[]) - Method in class hex.glm.DispersionTask.GenPrediction
-
- map(Chunk[], NewChunk[]) - Method in class hex.glm.GLMScore
-
- map(Chunk[]) - Method in class hex.glm.GLMTask.CalculateAugZW
-
- map(Chunk[]) - Method in class hex.glm.GLMTask.CalculateAugZWData
-
- map(Chunk[]) - Method in class hex.glm.GLMTask.CalculateAugZWRandCols
-
- map(Chunk[]) - Method in class hex.glm.GLMTask.CalculateEtaInfo
-
- map(Chunk[]) - Method in class hex.glm.GLMTask.CalculateW4Data
-
- map(Chunk[]) - Method in class hex.glm.GLMTask.CalculateW4Rand
-
- map(Chunk[]) - Method in class hex.glm.GLMTask.CopyPartsOfFrame
-
- map(Chunk[]) - Method in class hex.glm.GLMTask.DataAddW2AugXZ
-
- map(Chunk[]) - Method in class hex.glm.GLMTask.ExpandRandomColumns
-
- map(Chunk[]) - Method in class hex.glm.GLMTask.ExtractFrameFromSourceWithProcess
-
- map(Chunk[]) - Method in class hex.glm.GLMTask.GenerateResid
-
- map(Chunk[]) - Method in class hex.glm.GLMTask.GLMCoordinateDescentTaskSeqIntercept
-
- map(Chunk[]) - Method in class hex.glm.GLMTask.GLMCoordinateDescentTaskSeqNaive
-
- map(Chunk[]) - Method in class hex.glm.GLMTask.GLMGenerateWeightsTask
-
- map(Chunk[]) - Method in class hex.glm.GLMTask.GLMMultinomialGradientBaseTask
-
- map(Chunk[]) - Method in class hex.glm.GLMTask.GLMMultinomialUpdate
-
- map(Chunk[]) - Method in class hex.glm.GLMTask.HelpercAIC
-
- map(Chunk[]) - Method in class hex.glm.GLMTask.RandColAddW2AugXZ
-
- map(Chunk[]) - Method in class hex.glm.GLMTask.ReturnGLMMMERunInfo
-
- map(Chunk[]) - Method in class hex.glm.GLMTask.ReturnGLMMMERunInfoData
-
- map(Chunk[]) - Method in class hex.glm.GLMTask.ReturnGLMMMERunInfoRandCols
-
- map(Chunk[]) - Method in class hex.glm.GLMTask.YMUTask
-
- map(Chunk[], NewChunk[]) - Method in class hex.glm.RegressionInfluenceDiagnosticsTasks.ComputeNewBetaVarEstimatedGaussian
-
- map(Chunk[], NewChunk[]) - Method in class hex.glm.RegressionInfluenceDiagnosticsTasks.RegressionInfluenceDiagBinomial
-
- map(Chunk[], NewChunk[]) - Method in class hex.glm.RegressionInfluenceDiagnosticsTasks.RegressionInfluenceDiagGaussian
-
- map(Chunk[]) - Method in class hex.glm.TweedieEstimator
-
- map(Chunk[]) - Method in class hex.glrm.GLRM.updateXVecs
-
- map(Chunk[], NewChunk[]) - Method in class hex.glrm.GLRMGenX
-
- map(Chunk[]) - Method in class hex.gram.Gram.OuterGramTask
-
- map(Chunk[]) - Method in class hex.modelselection.ModelSelectionTasks.SweepFrameParallel
-
- map(Chunk[], byte[]) - Method in class hex.rulefit.Condition
-
- map(Chunk[], byte[]) - Method in class hex.rulefit.Rule
-
- map(Chunk[]) - Method in class hex.tree.drf.TreeMeasuresCollector
-
- map(Chunk, Chunk) - Method in class hex.tree.drf.TreeMeasuresCollector.ShuffleTask
-
- map(Chunk[]) - Method in class hex.tree.dt.mrtasks.CountBinsSamplesCountsMRTask
-
- map(Chunk[], NewChunk[]) - Method in class hex.tree.dt.mrtasks.FeaturesLimitsMRTask
-
- map(Chunk[]) - Method in class hex.tree.dt.mrtasks.GetClassCountsMRTask
-
- map(Chunk[]) - Method in class hex.tree.dt.mrtasks.ScoreDTTask
-
- map(Chunk[]) - Method in class hex.tree.ExactSplitPoints
-
- map(Chunk[]) - Method in class hex.tree.gbm.GBM.DiffMinusMedianDiff
-
- map(Chunk[]) - Method in class hex.tree.ReconstructTreeState
-
- map(Chunk, Chunk) - Method in class hex.tree.Sample
-
- map(Chunk[]) - Method in class hex.tree.Score
-
- map(Chunk[]) - Method in class hex.tree.ScoreBuildHistogram2
-
- map(Chunk[], NewChunk[]) - Method in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsSortingTask
-
- map(Chunk[], NewChunk[]) - Method in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsTask
-
- map(Chunk[], Chunk[], NewChunk[]) - Method in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsWithBackgroundTask
-
- map(Chunk[]) - Method in class hex.util.LinearAlgebraUtils.BMulInPlaceTask
-
- map(Chunk[]) - Method in class hex.util.LinearAlgebraUtils.BMulTaskMatrices
-
- map(Chunk[]) - Method in class hex.util.LinearAlgebraUtils.CopyQtoQMatrix
-
- map(Chunk[]) - Method in class hex.util.LinearAlgebraUtils.FindMaxIndex
-
- map(Chunk[]) - Method in class hex.util.LinearAlgebraUtils.ForwardSolve
-
- map(Chunk[]) - Method in class hex.util.LinearAlgebraUtils.ForwardSolveInPlace
-
- map(Chunk[]) - Method in class hex.util.LinearAlgebraUtils.SMulTask
-
- map(Chunk) - Method in class hex.word2vec.WordCountTask
-
- map(Chunk[]) - Method in class hex.word2vec.WordVectorConverter
-
- map(Chunk) - Method in class hex.word2vec.WordVectorTrainer
-
- mapBasicVector2Multiple(ModelSelectionUtils.SweepVector[][], int) - Static method in class hex.modelselection.ModelSelectionUtils
-
When multiple rows/columns are added to the CPM due to the new predictor being categorical, we need to map the
old sweep vector arrays to new bigger sweep vector arrays.
- mapNames(String[]) - Method in class hex.DataInfo
-
- mapping_frame - Variable in class hex.schemas.AggregatorModelV99.AggregatorModelOutputV99
-
- mapPredIndex2CPMIndices(DataInfo, int, List<Integer>) - Static method in class hex.modelselection.ModelSelectionUtils
-
This method attempts to map all predictors into the corresponding cpm indices that refer to that predictor.
- match(double[], int[]) - Method in class hex.glm.ComputationState.GramXY
-
- matches - Variable in class hex.schemas.GrepModelV3.GrepModelOutputV3
-
- matrixMultiply(double[][], double[][]) - Static method in class hex.util.LinearAlgebraUtils
-
- matrixMultiplyTriagonal(double[][], TriDiagonalMatrix, boolean) - Static method in class hex.util.LinearAlgebraUtils
-
- MatrixUtils - Class in hex.psvm.psvm
-
Utils class for matrix operations.
- MatrixUtils() - Constructor for class hex.psvm.psvm.MatrixUtils
-
- max_abs_leafnode_pred - Variable in class hex.schemas.GBMV3.GBMParametersV3
-
- max_active_predictors - Variable in class hex.schemas.GAMV3.GAMParametersV3
-
- max_active_predictors - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- max_active_predictors - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
- max_after_balance_size - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
-
When classes are balanced, limit the resulting dataset size to the
specified multiple of the original dataset size.
- max_after_balance_size - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
When classes are balanced, limit the resulting dataset size to the
specified multiple of the original dataset size.
- max_after_balance_size - Variable in class hex.schemas.GAMV3.GAMParametersV3
-
When classes are balanced, limit the resulting dataset size to the
specified multiple of the original dataset size.
- max_after_balance_size - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
When classes are balanced, limit the resulting dataset size to the
specified multiple of the original dataset size.
- max_after_balance_size - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
When classes are balanced, limit the resulting dataset size to the
specified multiple of the original dataset size.
- max_after_balance_size - Variable in class hex.schemas.NaiveBayesV3.NaiveBayesParametersV3
-
When classes are balanced, limit the resulting dataset size to the
specified multiple of the original dataset size.
- max_after_balance_size - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
-
When classes are balanced, limit the resulting dataset size to the
specified multiple of the original dataset size.
- max_categorical_features - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
- max_confusion_matrix_size - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
For classification models, the maximum size (in terms of classes) of
the confusion matrix for it to be printed.
- max_confusion_matrix_size - Variable in class hex.schemas.GAMV3.GAMParametersV3
-
For classification models, the maximum size (in terms of classes) of
the confusion matrix for it to be printed.
- max_confusion_matrix_size - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
For classification models, the maximum size (in terms of classes) of
the confusion matrix for it to be printed.
- max_confusion_matrix_size - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
For classification models, the maximum size (in terms of classes) of
the confusion matrix for it to be printed.
- max_confusion_matrix_size - Variable in class hex.schemas.NaiveBayesV3.NaiveBayesParametersV3
-
For classification models, the maximum size (in terms of classes) of
the confusion matrix for it to be printed.
- max_confusion_matrix_size - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
-
For classification models, the maximum size (in terms of classes) of
the confusion matrix for it to be printed.
- max_depth - Variable in class hex.schemas.DTV3.DTParametersV3
-
- max_depth - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
-
- max_depth - Variable in class hex.schemas.TreeStatsV3
-
- MAX_INDEX - Static variable in class hex.tree.dt.binning.NumericBin
-
- max_iterations - Variable in class hex.schemas.AggregatorV99.AggregatorParametersV99
-
- max_iterations - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
-
- max_iterations - Variable in class hex.schemas.CoxPHV3.CoxPHParametersV3
-
- max_iterations - Variable in class hex.schemas.GAMV3.GAMParametersV3
-
- max_iterations - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- max_iterations - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
-
- max_iterations - Variable in class hex.schemas.KMeansV3.KMeansParametersV3
-
- max_iterations - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
- max_iterations - Variable in class hex.schemas.PCAV3.PCAParametersV3
-
- max_iterations - Variable in class hex.schemas.PSVMV3.PSVMParametersV3
-
- max_iterations - Variable in class hex.schemas.SVDV99.SVDParametersV99
-
- max_iterations_dispersion - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- max_leaves - Variable in class hex.schemas.TreeStatsV3
-
- MAX_NTREES - Static variable in class hex.tree.isoforextended.ExtendedIsolationForest
-
- MAX_NTREES - Static variable in class hex.tree.SharedTree
-
- max_num_rules - Variable in class hex.schemas.RuleFitV3.RuleFitParametersV3
-
- max_predictor_number - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
- max_rule_length - Variable in class hex.schemas.RuleFitV3.RuleFitParametersV3
-
- MAX_SAMPLE_SIZE - Static variable in class hex.tree.isoforextended.ExtendedIsolationForest
-
- max_updates - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
-
- max_w2 - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
A maximum on the sum of the squared incoming weights into
any one neuron.
- max_x - Variable in class hex.schemas.IsotonicRegressionModelV3.IsotonicRegressionModelOutputV3
-
- maxIter() - Method in class hex.optimization.L_BFGS
-
- Maxout(DeepLearningModel.DeepLearningParameters, short, int) - Constructor for class hex.deeplearning.Neurons.Maxout
-
- MaxoutDropout(DeepLearningModel.DeepLearningParameters, short, int) - Constructor for class hex.deeplearning.Neurons.MaxoutDropout
-
- mean_a - Variable in class hex.deeplearning.DeepLearningModelInfo
-
- mean_depth - Variable in class hex.schemas.TreeStatsV3
-
- mean_leaves - Variable in class hex.schemas.TreeStatsV3
-
- mean_normalized_score - Variable in class water.api.ModelMetricsAnomalyV3
-
- mean_score - Variable in class water.api.ModelMetricsAnomalyV3
-
- MeanImputer() - Constructor for class hex.DataInfo.MeanImputer
-
- meanLoss(DataInfo.Row[]) - Method in class hex.deeplearning.DeepLearningModel
-
Compute the loss function
- mergeCombos(ArrayList<int[]>, Integer[], int[], List<Integer[]>) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
-
- mergeWith(TreeStats) - Method in class hex.tree.TreeStats
-
- messages - Variable in class hex.optimization.OptimizationUtils.MoreThuente
-
- Metalearner<B extends hex.ModelBuilder<M,P,?>,M extends hex.Model<M,P,?>,P extends hex.Model.Parameters> - Class in hex.ensemble
-
- Metalearner() - Constructor for class hex.ensemble.Metalearner
-
- Metalearner.Algorithm - Enum in hex.ensemble
-
Using an enum to list possible algos is not the greatest idea here
as it forces us to hardcode supported algos and creates a dependency to metalearners provided in extensions (XGBoost).
- metalearner_algorithm - Variable in class hex.schemas.StackedEnsembleV99.StackedEnsembleParametersV99
-
- metalearner_fold_assignment - Variable in class hex.schemas.StackedEnsembleV99.StackedEnsembleParametersV99
-
- metalearner_fold_column - Variable in class hex.schemas.StackedEnsembleV99.StackedEnsembleParametersV99
-
- metalearner_nfolds - Variable in class hex.schemas.StackedEnsembleV99.StackedEnsembleParametersV99
-
- metalearner_params - Variable in class hex.schemas.StackedEnsembleV99.StackedEnsembleParametersV99
-
- metalearner_transform - Variable in class hex.schemas.StackedEnsembleV99.StackedEnsembleParametersV99
-
- MetalearnerProvider<M extends Metalearner> - Interface in hex.ensemble
-
- Metalearners - Class in hex.ensemble
-
Entry point class to load and access the supported metalearners.
- Metalearners() - Constructor for class hex.ensemble.Metalearners
-
- Metalearners.SimpleMetalearner - Class in hex.ensemble
-
A simple implementation of
Metalearner
suitable for any algo; it is just using the algo with its default parameters.
- metric(double, double) - Method in class hex.tree.uplift.ChiSquaredDivergence
-
- metric(double, double) - Method in class hex.tree.uplift.Divergence
-
Calculate distance divergence metric between two probabilities.
- metric(double, double) - Method in class hex.tree.uplift.EuclideanDistance
-
- metric(double, double) - Method in class hex.tree.uplift.KLDivergence
-
- MetricBuilderAnomaly() - Constructor for class hex.tree.isofor.ModelMetricsAnomaly.MetricBuilderAnomaly
-
- MetricBuilderAnomaly(String, boolean) - Constructor for class hex.tree.isofor.ModelMetricsAnomaly.MetricBuilderAnomaly
-
- MetricBuilderAnomalySupervised - Class in hex.tree.isofor
-
- MetricBuilderAnomalySupervised(String[]) - Constructor for class hex.tree.isofor.MetricBuilderAnomalySupervised
-
- MetricBuilderGAM - Class in hex.gam
-
- MetricBuilderGAM(String[], double[], GLMModel.GLMWeightsFun, int, boolean, boolean, int, MultinomialAucType) - Constructor for class hex.gam.MetricBuilderGAM
-
- MetricBuilderPSVM<T extends MetricBuilderPSVM<T>> - Class in hex.psvm
-
Binomial Metric builder tailored to SVM
SVM doesn't predict probabilities, only probabilities 0-1 are returned, this renders some binomial metric misleading (eg.
- MetricBuilderPSVM(String[]) - Constructor for class hex.psvm.MetricBuilderPSVM
-
- mid(int, float, int) - Method in class hex.tree.TreeVisitor
-
- min_depth - Variable in class hex.schemas.TreeStatsV3
-
- MIN_IMPROVEMENT - Static variable in class hex.tree.dt.DT
-
- MIN_INDEX - Static variable in class hex.tree.dt.binning.NumericBin
-
- min_leaves - Variable in class hex.schemas.TreeStatsV3
-
- min_predictor_number - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
- min_prob - Variable in class hex.schemas.NaiveBayesV3.NaiveBayesParametersV3
-
- min_rows - Variable in class hex.schemas.DTV3.DTParametersV3
-
- min_rows - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
-
- min_rule_length - Variable in class hex.schemas.RuleFitV3.RuleFitParametersV3
-
- min_sdev - Variable in class hex.schemas.NaiveBayesV3.NaiveBayesParametersV3
-
- min_split_improvement - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
-
- min_step_size - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
-
- min_word_freq - Variable in class hex.schemas.Word2VecV3.Word2VecParametersV3
-
- min_x - Variable in class hex.schemas.IsotonicRegressionModelV3.IsotonicRegressionModelOutputV3
-
- mini_batch_size - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
- minMemoryPerNode() - Static method in class hex.ContributionsWithBackgroundFrameTask
-
- missing_values_handling - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
-
- missing_values_handling - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
- missing_values_handling - Variable in class hex.schemas.GAMV3.GAMParametersV3
-
- missing_values_handling - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- missing_values_handling - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
- missingColumnsType() - Method in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
-
- missingValuesHandling() - Method in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
-
- missingValuesHandling() - Method in class hex.gam.GAMModel.GAMParameters
-
- missingValuesHandling() - Method in class hex.glm.GLMModel.GLMParameters
-
- missingValuesHandling() - Method in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
-
- mode - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
- model - Variable in class hex.schemas.GLMRegularizationPathV3
-
- model - Variable in class hex.schemas.MakeGLMModelV3
-
- model - Variable in class hex.schemas.TreeV3
-
- model - Variable in class hex.schemas.Word2VecSynonymsV3
-
- model - Variable in class hex.schemas.Word2VecTransformV3
-
- model_info() - Method in class hex.deeplearning.DeepLearningModel
-
- model_info() - Method in class hex.deeplearning.DeepLearningTask
-
Accessor to the object containing the (final) state of the Deep Learning model
Should only be queried after calling this.doAll(Frame training)
- model_info() - Method in class hex.deeplearning.DeepLearningTask2
-
Returns the aggregated DeepLearning model that was trained by all nodes (over all the training data)
- model_info_key - Variable in class hex.deeplearning.DeepLearningModel
-
- model_key - Variable in class hex.schemas.GenericV3.GenericParametersV3
-
- model_type - Variable in class hex.schemas.RuleFitV3.RuleFitParametersV3
-
- modelCategory - Variable in class hex.ensemble.StackedEnsembleModel
-
- modelDescriptor() - Method in class hex.coxph.CoxPHModel
-
- ModelMetricsAggregator - Class in hex.aggregator
-
- ModelMetricsAggregator(Model, Frame, CustomMetric) - Constructor for class hex.aggregator.ModelMetricsAggregator
-
- ModelMetricsAggregator.AggregatorModelMetrics - Class in hex.aggregator
-
- ModelMetricsAnomaly - Class in hex.tree.isofor
-
- ModelMetricsAnomaly(Model, Frame, CustomMetric, long, double, double, String) - Constructor for class hex.tree.isofor.ModelMetricsAnomaly
-
- ModelMetricsAnomaly.MetricBuilderAnomaly - Class in hex.tree.isofor
-
- ModelMetricsAnomalyV3 - Class in water.api
-
- ModelMetricsAnomalyV3() - Constructor for class water.api.ModelMetricsAnomalyV3
-
- ModelMetricsGLRM - Class in hex.glrm
-
- ModelMetricsGLRM(Model, Frame, double, double, CustomMetric) - Constructor for class hex.glrm.ModelMetricsGLRM
-
- ModelMetricsGLRM(Model, Frame, double, double, long, long, CustomMetric) - Constructor for class hex.glrm.ModelMetricsGLRM
-
- ModelMetricsGLRM.GlrmModelMetricsBuilder - Class in hex.glrm
-
- ModelMetricsGLRMV99 - Class in water.api
-
- ModelMetricsGLRMV99() - Constructor for class water.api.ModelMetricsGLRMV99
-
- ModelMetricsPCA - Class in hex.pca
-
- ModelMetricsPCA(Model, Frame, CustomMetric) - Constructor for class hex.pca.ModelMetricsPCA
-
- ModelMetricsPCA.PCAModelMetrics - Class in hex.pca
-
- ModelMetricsPCAV3 - Class in water.api
-
- ModelMetricsPCAV3() - Constructor for class water.api.ModelMetricsPCAV3
-
- ModelMetricsSVD(Model, Frame, CustomMetric) - Constructor for class hex.svd.SVDModel.ModelMetricsSVD
-
- ModelMetricsSVDV99 - Class in water.api
-
- ModelMetricsSVDV99() - Constructor for class water.api.ModelMetricsSVDV99
-
- models - Variable in class hex.adaboost.AdaBoostModel.AdaBoostOutput
-
- ModelSelection - Class in hex.modelselection
-
- ModelSelection(boolean) - Constructor for class hex.modelselection.ModelSelection
-
- ModelSelection(ModelSelectionModel.ModelSelectionParameters) - Constructor for class hex.modelselection.ModelSelection
-
- ModelSelection(ModelSelectionModel.ModelSelectionParameters, Key<ModelSelectionModel>) - Constructor for class hex.modelselection.ModelSelection
-
- ModelSelection.ModelSelectionDriver - Class in hex.modelselection
-
- ModelSelection.SweepModel - Class in hex.modelselection
-
Contains information of a predictor subsets like predictor indices of the subset (with the newest predictor as
the last element of the array), CPM associated with predictor subset minus the latest element and the error
variance of the CPM.
- ModelSelectionDriver() - Constructor for class hex.modelselection.ModelSelection.ModelSelectionDriver
-
- ModelSelectionModel - Class in hex.modelselection
-
- ModelSelectionModel(Key<ModelSelectionModel>, ModelSelectionModel.ModelSelectionParameters, ModelSelectionModel.ModelSelectionModelOutput) - Constructor for class hex.modelselection.ModelSelectionModel
-
- ModelSelectionModel.ModelSelectionModelOutput - Class in hex.modelselection
-
- ModelSelectionModel.ModelSelectionParameters - Class in hex.modelselection
-
- ModelSelectionModel.ModelSelectionParameters.Mode - Enum in hex.modelselection
-
- ModelSelectionModelOutput(ModelSelection, DataInfo) - Constructor for class hex.modelselection.ModelSelectionModel.ModelSelectionModelOutput
-
- ModelSelectionModelOutputV3() - Constructor for class hex.schemas.ModelSelectionModelV3.ModelSelectionModelOutputV3
-
- ModelSelectionModelV3 - Class in hex.schemas
-
- ModelSelectionModelV3() - Constructor for class hex.schemas.ModelSelectionModelV3
-
- ModelSelectionModelV3.ModelSelectionModelOutputV3 - Class in hex.schemas
-
- ModelSelectionModeProvider() - Constructor for class hex.schemas.ModelSelectionV3.ModelSelectionModeProvider
-
- ModelSelectionParameters() - Constructor for class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
-
- ModelSelectionParametersV3() - Constructor for class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
- ModelSelectionTasks - Class in hex.modelselection
-
- ModelSelectionTasks() - Constructor for class hex.modelselection.ModelSelectionTasks
-
- ModelSelectionTasks.SweepFrameParallel - Class in hex.modelselection
-
- ModelSelectionUtils - Class in hex.modelselection
-
- ModelSelectionUtils() - Constructor for class hex.modelselection.ModelSelectionUtils
-
- ModelSelectionUtils.SweepVector - Class in hex.modelselection
-
store information on sweeping actions that are to be performed to new rows/columns added to CPM due to the
addition of new predcitors.
- ModelSelectionV3 - Class in hex.schemas
-
- ModelSelectionV3() - Constructor for class hex.schemas.ModelSelectionV3
-
- ModelSelectionV3.ModelSelectionModeProvider - Class in hex.schemas
-
- ModelSelectionV3.ModelSelectionParametersV3 - Class in hex.schemas
-
- modifiesVolatileVecs() - Method in class hex.tree.Score
-
- MojoConvertTool - Class in water.tools
-
Convenience command line tool for converting H2O MOJO to POJO
- MojoConvertTool(File, File) - Constructor for class water.tools.MojoConvertTool
-
- MojoUtils - Class in hex.tree
-
- MojoUtils() - Constructor for class hex.tree.MojoUtils
-
- mojoVersion() - Method in class hex.coxph.CoxPHMojoWriter
-
- mojoVersion() - Method in class hex.deeplearning.DeepLearningMojoWriter
-
- mojoVersion() - Method in class hex.ensemble.StackedEnsembleMojoWriter
-
- mojoVersion() - Method in class hex.gam.GAMMojoWriter
-
- mojoVersion() - Method in class hex.generic.GenericModelMojoWriter
-
- mojoVersion() - Method in class hex.glm.GLMMojoWriter
-
- mojoVersion() - Method in class hex.glrm.GlrmMojoWriter
-
- mojoVersion() - Method in class hex.isotonic.IsotonicRegressionMojoWriter
-
- mojoVersion() - Method in class hex.kmeans.KMeansMojoWriter
-
- mojoVersion() - Method in class hex.pca.PCAMojoWriter
-
- mojoVersion() - Method in class hex.rulefit.RuleFitMojoWriter
-
- mojoVersion() - Method in class hex.tree.drf.DrfMojoWriter
-
- mojoVersion() - Method in class hex.tree.gbm.GbmMojoWriter
-
- mojoVersion() - Method in class hex.tree.isofor.IsolationForestMojoWriter
-
- mojoVersion() - Method in class hex.tree.isoforextended.ExtendedIsolationForestMojoWriter
-
- mojoVersion() - Method in class hex.tree.uplift.UpliftDrfMojoWriter
-
- mojoVersion() - Method in class hex.word2vec.Word2VecMojoWriter
-
- momentum() - Method in class hex.deeplearning.Neurons
-
- momentum(double) - Method in class hex.deeplearning.Neurons
-
The momentum - real number in [0, 1)
Can be a linear ramp from momentum_start to momentum_stable, over momentum_ramp training samples
- momentum_ramp - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
The momentum_ramp parameter controls the amount of learning for which momentum increases
(assuming momentum_stable is larger than momentum_start).
- momentum_stable - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
The momentum_stable parameter controls the final momentum value reached after momentum_ramp training samples.
- momentum_start - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
The momentum_start parameter controls the amount of momentum at the beginning of training.
- monotone_constraints - Variable in class hex.schemas.GBMV3.GBMParametersV3
-
- MoreThuente(OptimizationUtils.GradientSolver, double[]) - Constructor for class hex.optimization.OptimizationUtils.MoreThuente
-
- MoreThuente(OptimizationUtils.GradientSolver, double[], OptimizationUtils.GradientInfo) - Constructor for class hex.optimization.OptimizationUtils.MoreThuente
-
- MoreThuente(OptimizationUtils.GradientSolver, double[], OptimizationUtils.GradientInfo, double, double, double) - Constructor for class hex.optimization.OptimizationUtils.MoreThuente
-
- mtries - Variable in class hex.schemas.DRFV3.DRFParametersV3
-
- mtries - Variable in class hex.schemas.IsolationForestV3.IsolationForestParametersV3
-
- mtries - Variable in class hex.schemas.UpliftDRFV3.UpliftDRFParametersV3
-
- mtrxMul(double[][], double[]) - Method in class hex.DataInfo.Row
-
- mu - Variable in class hex.glm.GLMModel.GLMWeights
-
- mu_factor - Variable in class hex.schemas.PSVMV3.PSVMParametersV3
-
- MUIND - Static variable in class hex.glm.DispersionTask
-
- mul(double) - Method in class hex.gram.Gram
-
- mul(double[]) - Method in class hex.gram.Gram
-
- mul(double[], double[]) - Method in class hex.gram.Gram
-
- mult(double) - Method in class hex.deeplearning.DeepLearningModelInfo
-
Multiply all weights/biases by a real-valued number
- multi_loss - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
-
- multiClassCoeffNames() - Method in class hex.glm.GLMModel.GLMOutput
-
- multinode_mode - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
- MurmurHash - Class in hex.deeplearning
-
This is a very fast, non-cryptographic hash suitable for general hash-based
lookup.
- MurmurHash() - Constructor for class hex.deeplearning.MurmurHash
-
- n0() - Method in class hex.tree.DTree.Split
-
- n1() - Method in class hex.tree.DTree.Split
-
- NaiveBayes - Class in hex.naivebayes
-
Naive Bayes
This is an algorithm for computing the conditional a-posterior probabilities of a categorical
response from independent predictors using Bayes rule.
- NaiveBayes(NaiveBayesModel.NaiveBayesParameters) - Constructor for class hex.naivebayes.NaiveBayes
-
- NaiveBayes(boolean) - Constructor for class hex.naivebayes.NaiveBayes
-
- NaiveBayesModel - Class in hex.naivebayes
-
- NaiveBayesModel(Key, NaiveBayesModel.NaiveBayesParameters, NaiveBayesModel.NaiveBayesOutput) - Constructor for class hex.naivebayes.NaiveBayesModel
-
- NaiveBayesModel.NaiveBayesOutput - Class in hex.naivebayes
-
- NaiveBayesModel.NaiveBayesParameters - Class in hex.naivebayes
-
- NaiveBayesModelOutputV3() - Constructor for class hex.schemas.NaiveBayesModelV3.NaiveBayesModelOutputV3
-
- NaiveBayesModelV3 - Class in hex.schemas
-
- NaiveBayesModelV3() - Constructor for class hex.schemas.NaiveBayesModelV3
-
- NaiveBayesModelV3.NaiveBayesModelOutputV3 - Class in hex.schemas
-
- NaiveBayesOutput(NaiveBayes) - Constructor for class hex.naivebayes.NaiveBayesModel.NaiveBayesOutput
-
- NaiveBayesParameters() - Constructor for class hex.naivebayes.NaiveBayesModel.NaiveBayesParameters
-
- NaiveBayesParametersV3() - Constructor for class hex.schemas.NaiveBayesV3.NaiveBayesParametersV3
-
- NaiveBayesV3 - Class in hex.schemas
-
- NaiveBayesV3() - Constructor for class hex.schemas.NaiveBayesV3
-
- NaiveBayesV3.NaiveBayesParametersV3 - Class in hex.schemas
-
- names() - Method in class hex.glm.GLMModel
-
- names - Variable in class hex.schemas.MakeGLMModelV3
-
- nargs() - Method in class water.rapids.prims.AstPredictedVsActualByVar
-
- nargs() - Method in class water.rapids.prims.AstSetCalibrationModel
-
- nargs() - Method in class water.rapids.prims.isotonic.AstPoolAdjacentViolators
-
- nargs() - Method in class water.rapids.prims.rulefit.AstPredictRule
-
- nargs() - Method in class water.rapids.prims.tree.AstTreeUpdateWeights
-
- nargs() - Method in class water.rapids.prims.word2vec.AstWord2VecToFrame
-
- nas - Variable in class hex.schemas.TreeV3
-
- NAsIncluded - Variable in class hex.rulefit.Condition
-
- naSplitDir() - Method in class hex.tree.DTree.Split
-
- nBins - Variable in class hex.DataInfo.Row
-
- nbins - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
-
- nbins() - Method in class hex.tree.DHistogram
-
- nbins_cats - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
-
- nbins_top_level - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
-
- NBSplinesTypeIDerivative - Class in hex.gam.GamSplines
-
- NBSplinesTypeIDerivative(int, int, double[]) - Constructor for class hex.gam.GamSplines.NBSplinesTypeIDerivative
-
- NBSplinesUtils - Class in hex.gam.GamSplines
-
- NBSplinesUtils() - Constructor for class hex.gam.GamSplines.NBSplinesUtils
-
- nclasses() - Method in class hex.coxph.CoxPHModel.CoxPHOutput
-
- nclasses() - Method in class hex.ensemble.StackedEnsemble
-
- nclasses() - Method in class hex.gam.GAMModel.GAMModelOutput
-
- nclasses() - Method in class hex.glm.GLM
-
- nclasses() - Method in class hex.glm.GLMModel.GLMOutput
-
- nclasses() - Method in class hex.tree.gbm.GBMModel.GBMOutput
-
- needsPostProcess() - Method in class hex.adaboost.AdaBoostModel
-
- needsPostProcess() - Method in class hex.generic.GenericModel
-
- needsPostProcess() - Method in class hex.glm.GLMModel
-
- negative_weight - Variable in class hex.schemas.PSVMV3.PSVMParametersV3
-
- nesterov_accelerated_gradient - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
-
The Nesterov accelerated gradient descent method is a modification to
traditional gradient descent for convex functions.
- Neurons - Class in hex.deeplearning
-
This class implements the concept of a Neuron layer in a Neural Network
During training, every MRTask F/J thread is expected to create these neurons for every map call (Cheap to make).
- Neurons.ExpRectifier - Class in hex.deeplearning
-
- Neurons.ExpRectifierDropout - Class in hex.deeplearning
-
Exponential Rectifier with dropout
- Neurons.Input - Class in hex.deeplearning
-
Input layer of the Neural Network
This layer is different from other layers as it has no incoming weights,
but instead gets its activation values from the training points.
- Neurons.Linear - Class in hex.deeplearning
-
Output neurons for regression - Linear units
- Neurons.Maxout - Class in hex.deeplearning
-
Maxout neurons (picks the max out of the k activation_j = sum(A_ij*x_i) + b_j)
Requires k times the model parameters (weights/biases) as a "normal" neuron
- Neurons.MaxoutDropout - Class in hex.deeplearning
-
Maxout neurons with dropout
- Neurons.Output - Class in hex.deeplearning
-
Abstract class for Output neurons
- Neurons.Rectifier - Class in hex.deeplearning
-
Rectifier linear unit (ReLU) neurons
- Neurons.RectifierDropout - Class in hex.deeplearning
-
Rectifier linear unit (ReLU) neurons with dropout
- Neurons.Softmax - Class in hex.deeplearning
-
Output neurons for classification - Softmax
- Neurons.Tanh - Class in hex.deeplearning
-
Tanh neurons - most common, most stable
- Neurons.TanhDropout - Class in hex.deeplearning
-
Tanh neurons with dropout
- newDenseRow() - Method in class hex.DataInfo
-
- newDenseRow(double[], long) - Method in class hex.DataInfo
-
- newInstance() - Method in interface hex.ensemble.MetalearnerProvider
-
- newParametersSchemaInstance() - Method in interface hex.ensemble.MetalearnerProvider
-
- nextLevelConstraints(Constraints, int, double, SharedTreeModel.SharedTreeParameters) - Method in class hex.tree.DTree.Split
-
- nextLevelHistos(DHistogram[], int, double, SharedTreeModel.SharedTreeParameters, Constraints, BranchInteractionConstraints) - Method in class hex.tree.DTree.Split
-
Prepare children histograms, one per column.
- nextLevelInteractionConstraints(GlobalInteractionConstraints, int) - Method in class hex.tree.BranchInteractionConstraints
-
Decide which column indices is allowed to be used for the next split in the next level of a tree.
- nextNumericIdx(int) - Method in class hex.DataInfo
-
Get the next expanded number-column index.
- nfeatures() - Method in class hex.aggregator.AggregatorModel.AggregatorOutput
-
- nfeatures() - Method in class hex.ensemble.StackedEnsembleModel.StackedEnsembleOutput
-
- nfeatures() - Method in class hex.generic.GenericModelOutput
-
- nfeatures() - Method in class hex.glrm.GLRM.Archetypes
-
- nfeatures() - Method in class hex.glrm.GLRMModel.GLRMOutput
-
Override because base class implements ncols-1 for features with the
last column as a response variable; for GLRM all the columns are features.
- nfeatures() - Method in class hex.pca.PCAModel.PCAOutput
-
Override because base class implements ncols-1 for features with the
last column as a response variable; for PCA all the columns are
features.
- nfeval() - Method in interface hex.optimization.OptimizationUtils.LineSearchSolver
-
- nfeval() - Method in class hex.optimization.OptimizationUtils.MoreThuente
-
- nfeval() - Method in class hex.optimization.OptimizationUtils.SimpleBacktrackingLS
-
- nid() - Method in class hex.tree.DTree.Node
-
- nid2Oob(int) - Static method in class hex.tree.ScoreBuildHistogram
-
- nids0Index - Variable in class hex.tree.SharedTree.FrameMap
-
- nlambdas - Variable in class hex.schemas.GAMV3.GAMParametersV3
-
- nlambdas - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- nlambdas - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
- nlearners - Variable in class hex.schemas.AdaBoostV3.AdaBoostParametersV3
-
- nModelsInParallel(int) - Method in class hex.anovaglm.ANOVAGLM
-
- nModelsInParallel(int) - Method in class hex.gam.GAM
-
- nModelsInParallel(int) - Method in class hex.modelselection.ModelSelection
-
- nModelsInParallel(int) - Method in class hex.tree.gbm.GBM
-
- nNums - Variable in class hex.DataInfo.Row
-
- NO_PARENT - Static variable in class hex.tree.DTree
-
- nobs() - Method in class hex.glm.GLMTask.YMUTask
-
- node(int) - Method in class hex.tree.DTree
-
- Node(double[][], int, int) - Constructor for class hex.tree.isoforextended.isolationtree.IsolationTree.Node
-
- node(double, double) - Method in class hex.tree.uplift.Divergence
-
Calculate distance metric between two probabilities in the node.
- nomNA() - Method in class hex.tree.DHistogram
-
- non_negative - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
-
- non_negative - Variable in class hex.schemas.GAMV3.GAMParametersV3
-
- non_negative - Variable in class hex.schemas.GLMV3.GLMParametersV3
-
- non_negative - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
- nonEmptyBins() - Method in class hex.tree.DHistogram
-
- NonSPDMatrixException() - Constructor for exception hex.gram.Gram.NonSPDMatrixException
-
- NonSPDMatrixException(String) - Constructor for exception hex.gram.Gram.NonSPDMatrixException
-
- norm(double, double, double, double) - Method in class hex.tree.uplift.Divergence
-
Calculate normalization factor to normalize gain.
- norm(double, double, double, double) - Method in class hex.tree.uplift.EuclideanDistance
-
- norm(double, double, double, double) - Method in class hex.tree.uplift.KLDivergence
-
- norm_model - Variable in class hex.schemas.Word2VecV3.Word2VecParametersV3
-
- normalizeBeta(double[], boolean) - Method in class hex.DataInfo
-
- normMul(int) - Method in class hex.DataInfo
-
- normSub(int) - Method in class hex.DataInfo
-
- notZeroLambdas(double[]) - Static method in class hex.glm.GLMUtils
-
- nparallelism - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
-
- nparallelism - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
-
- npredictors() - Method in class hex.tree.drf.TreeMeasuresCollector.TreeMeasures
-
Returns number of voting predictors
- nrows() - Method in class hex.tree.drf.TreeMeasuresCollector.TreeMeasures
-
Returns number of rows which were used during voting per individual tree.
- nTreeEnsemblesInParallel(int) - Method in class hex.rulefit.RuleFit
-
- ntrees - Variable in class hex.schemas.ExtendedIsolationForestV3.ExtendedIsolationForestParametersV3
-
- ntrees - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
-
- ntrees() - Method in class hex.tree.CompressedForest
-
- ntrees() - Method in class hex.tree.DTreeScorer
-
- nullDOF() - Method in class hex.gam.MetricBuilderGAM
-
- nullDOF() - Method in class hex.glm.GLMMetricBuilder
-
- num_iteration_without_new_exemplar - Variable in class hex.schemas.AggregatorV99.AggregatorParametersV99
-
- num_knots - Variable in class hex.schemas.GAMV3.GAMParametersV3
-
- numCats() - Method in class hex.DataInfo
-
- numcnt - Variable in class water.api.ModelMetricsGLRMV99
-
- numColsExp(Frame, boolean) - Static method in class hex.util.LinearAlgebraUtils
-
Number of columns with categoricals expanded.
- numControlNA() - Method in class hex.tree.DHistogram
-
- NUMERICAL_FLAG - Static variable in class hex.tree.dt.mrtasks.CountBinsSamplesCountsMRTask
-
- NUMERICAL_FLAG - Static variable in class hex.tree.dt.NumericFeatureLimits
-
- NumericBin - Class in hex.tree.dt.binning
-
Single bin holding limits (min excluded), count of samples and count of class 0.
- NumericBin(double, double, int, int) - Constructor for class hex.tree.dt.binning.NumericBin
-
- NumericBin(double, double) - Constructor for class hex.tree.dt.binning.NumericBin
-
- NumericBin(Pair<Double, Double>) - Constructor for class hex.tree.dt.binning.NumericBin
-
- NumericFeatureLimits - Class in hex.tree.dt
-
Limits for one feature.
- NumericFeatureLimits(double, double) - Constructor for class hex.tree.dt.NumericFeatureLimits
-
- NumericSplittingRule - Class in hex.tree.dt
-
- NumericSplittingRule(int, double, double) - Constructor for class hex.tree.dt.NumericSplittingRule
-
- NumericSplittingRule(double) - Constructor for class hex.tree.dt.NumericSplittingRule
-
- numerr - Variable in class water.api.ModelMetricsGLRMV99
-
- numIds - Variable in class hex.DataInfo.Row
-
- numNAFill() - Method in class hex.DataInfo
-
- numNAFill(int) - Method in class hex.DataInfo
-
- numNodes() - Method in class hex.tree.DTree.DecidedNode
-
- numNodes() - Method in class hex.tree.DTree.LeafNode
-
- numNodes() - Method in class hex.tree.DTree.Node
-
- numNodes() - Method in class hex.tree.DTree.UndecidedNode
-
- numNums() - Method in class hex.DataInfo
-
- numStart() - Method in class hex.DataInfo
-
- numTreatmentNA() - Method in class hex.tree.DHistogram
-
- numTreshold - Variable in class hex.rulefit.Condition
-
- numVals - Variable in class hex.DataInfo.Row
-
- nv - Variable in class hex.schemas.SVDV99.SVDParametersV99
-