Skip navigation links
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ 

A

AbstractBin - Class in hex.tree.dt.binning
Single bin holding limits (min excluded), count of samples and count of class 0.
AbstractBin() - Constructor for class hex.tree.dt.binning.AbstractBin
 
AbstractCompressedNode - Class in hex.tree.dt
 
AbstractCompressedNode() - Constructor for class hex.tree.dt.AbstractCompressedNode
 
AbstractCompressedNode - Class in hex.tree.isoforextended.isolationtree
Upper class for CompressedNode and CompressedLeaf used to access both types from array.
AbstractCompressedNode(int) - Constructor for class hex.tree.isoforextended.isolationtree.AbstractCompressedNode
 
AbstractFeatureLimits - Class in hex.tree.dt
Limits for one feature.
AbstractFeatureLimits() - Constructor for class hex.tree.dt.AbstractFeatureLimits
 
AbstractSplittingRule - Class in hex.tree.dt
 
AbstractSplittingRule() - Constructor for class hex.tree.dt.AbstractSplittingRule
 
accumulateLeftStatistics(int, int) - Method in class hex.tree.dt.binning.SplitStatistics
 
accumulateRightStatistics(int, int) - Method in class hex.tree.dt.binning.SplitStatistics
 
accuracy(int) - Method in class hex.tree.drf.TreeMeasuresCollector.TreeMeasures
Returns a list of accuracies per tree.
accuracy() - Method in class hex.tree.drf.TreeMeasuresCollector.TreeMeasures
 
accuracy(int) - Method in class hex.tree.drf.TreeMeasuresCollector.TreeSSE
 
accuracy(int) - Method in class hex.tree.drf.TreeMeasuresCollector.TreeVotes
Returns accuracy per individual trees.
activation - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
The activation function (non-linearity) to be used by the neurons in the hidden layers.
activeBC() - Method in class hex.glm.ComputationState
 
activeCols() - Method in class hex.DataInfo
 
activeConstraints(ConstrainedGLMUtils.LinearConstraints[], ConstrainedGLMUtils.LinearConstraints[]) - Static method in class hex.glm.ConstrainedGLMUtils
 
activeData() - Method in class hex.glm.ComputationState
 
activeDataMultinomial() - Method in class hex.glm.ComputationState
 
activeDataMultinomial(int) - Method in class hex.glm.ComputationState
 
actNBins() - Method in class hex.tree.DHistogram
 
actual_best_model_key - Variable in class hex.deeplearning.DeepLearningModel
 
actual_mtries() - Method in class hex.tree.DTree
 
actual_train_samples_per_iteration - Variable in class hex.deeplearning.DeepLearningModel
 
AdaBoost - Class in hex.adaboost
Implementation of AdaBoost algorithm based on Raul Rojas, "Adaboost and the Super Bowl of Classifiers A Tutorial Introduction to Adaptive Boosting" Alexandru Niculescu-Mizil and Richard A.
AdaBoost(AdaBoostModel.AdaBoostParameters) - Constructor for class hex.adaboost.AdaBoost
 
AdaBoost(boolean) - Constructor for class hex.adaboost.AdaBoost
 
AdaBoostModel - Class in hex.adaboost
 
AdaBoostModel(Key<AdaBoostModel>, AdaBoostModel.AdaBoostParameters, AdaBoostModel.AdaBoostOutput) - Constructor for class hex.adaboost.AdaBoostModel
 
AdaBoostModel.AdaBoostOutput - Class in hex.adaboost
 
AdaBoostModel.AdaBoostParameters - Class in hex.adaboost
 
AdaBoostModel.Algorithm - Enum in hex.adaboost
 
AdaBoostModelOutputV3() - Constructor for class hex.schemas.AdaBoostModelV3.AdaBoostModelOutputV3
 
AdaBoostModelV3 - Class in hex.schemas
 
AdaBoostModelV3() - Constructor for class hex.schemas.AdaBoostModelV3
 
AdaBoostModelV3.AdaBoostModelOutputV3 - Class in hex.schemas
 
AdaBoostOutput(AdaBoost) - Constructor for class hex.adaboost.AdaBoostModel.AdaBoostOutput
 
AdaBoostParameters() - Constructor for class hex.adaboost.AdaBoostModel.AdaBoostParameters
 
AdaBoostParametersV3() - Constructor for class hex.schemas.AdaBoostV3.AdaBoostParametersV3
 
AdaBoostV3 - Class in hex.schemas
 
AdaBoostV3() - Constructor for class hex.schemas.AdaBoostV3
 
AdaBoostV3.AdaBoostParametersV3 - Class in hex.schemas
 
adaptFrameForScore(Frame, boolean) - Method in class hex.generic.GenericModel
 
adaptive_rate - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
The implemented adaptive learning rate algorithm (ADADELTA) automatically combines the benefits of learning rate annealing and momentum training to avoid slow convergence.
adaptTestForJavaScoring(Frame, boolean) - Method in class hex.coxph.CoxPHModel
 
adaptTestForTrain(Frame, boolean, boolean) - Method in class hex.coxph.CoxPHModel
 
adaptTestForTrain(Frame, boolean, boolean) - Method in class hex.gam.GAMModel
This method will massage the input training frame such that it can be used for scoring for a GAM model.
adaptTestForTrain(Frame, boolean, boolean) - Method in class hex.tree.isofor.IsolationForestModel
 
adaptValidFrame(Frame, Frame, GAMModel.GAMParameters, String[][], double[][][], double[][][], double[][][], double[][][], int[][][], double[][], double[][], int[]) - Static method in class hex.gam.GAMModel
 
add(int, int, double) - Method in class hex.coxph.Storage.DenseRowMatrix
 
add(int, int, double) - Method in interface hex.coxph.Storage.Matrix
 
add(DeepLearningModelInfo) - Method in class hex.deeplearning.DeepLearningModelInfo
Add another model info into this This will add the weights/biases/learning rate helpers, and the number of processed training samples Note: It will NOT add the elastic averaging helpers, which are always kept constant (they already are the result of a reduction)
add(int, int, float) - Method in class hex.deeplearning.Storage.DenseColMatrix
 
add(int, int, float) - Method in class hex.deeplearning.Storage.DenseRowMatrix
 
add(int, double) - Method in class hex.deeplearning.Storage.DenseVector
 
add(int, int, float) - Method in interface hex.deeplearning.Storage.Matrix
 
add(int, int, float) - Method in class hex.deeplearning.Storage.SparseRowMatrix
 
add(int, int, int, float) - Method in interface hex.deeplearning.Storage.Tensor
 
add(int, double) - Method in interface hex.deeplearning.Storage.Vector
 
add(double, double[], double, double) - Method in class hex.glm.GLMMetricBuilder
 
add(double, double, double, double) - Method in class hex.glm.GLMMetricBuilder
 
add(Gram) - Method in class hex.gram.Gram
 
add(DHistogram) - Method in class hex.tree.DHistogram
 
add(double[], double[]) - Static method in class hex.tree.FriedmanPopescusH
 
add_processed_global(long) - Method in class hex.deeplearning.DeepLearningModelInfo
 
add_processed_local(long) - Method in class hex.deeplearning.DeepLearningModelInfo
 
addBCEqualityConstraint(List<ConstrainedGLMUtils.LinearConstraints>, GLM.BetaConstraint, String[], int) - Static method in class hex.glm.ConstrainedGLMUtils
This method will extract the equality constraint and add to equalityC from beta constraint by doing the following transformation: val <= beta <= val: transformed to beta-val == 0, add to equalTo constraint.
addBCGreaterThanConstraint(List<ConstrainedGLMUtils.LinearConstraints>, GLM.BetaConstraint, String[], int) - Static method in class hex.glm.ConstrainedGLMUtils
This method will extract the greater than constraint and add to lessThanC from beta constraint by doing the following transformation: low_val <= beta <= Infinity: transformed to low_val - beta <= 0.
addBCLessThanConstraint(List<ConstrainedGLMUtils.LinearConstraints>, GLM.BetaConstraint, String[], int) - Static method in class hex.glm.ConstrainedGLMUtils
This method will extract the less than constraint and add to lessThanC from beta constraint by doing the following transformation: -Infinity <= beta <= high_val: transformed to beta - high_val <= 0.
addCols(double[], int[], int[], ComputationState.GramXY, double[][], double[]) - Static method in class hex.glm.ComputationState.GramXY
 
addConstraintGradient(double[], ConstrainedGLMUtils.ConstraintsDerivatives[], GLM.GLMGradientInfo) - Static method in class hex.glm.ConstrainedGLMUtils
Add contribution of constraints to objective/likelihood/gradient.
addConstraintObj(double[], ConstrainedGLMUtils.LinearConstraints[], double) - Static method in class hex.glm.ComputationState
This method adds to objective function the contribution of transpose(lambda)*constraint vector + ck/2*transpose(constraint vector)*constraint vector
addContribToNewChunk(float[], NewChunk[]) - Method in class hex.tree.drf.DRFModel.ScoreContributionsTaskDRF
 
addContribToNewChunk(float[], int[], NewChunk[]) - Method in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsSortingTask
 
addContribToNewChunk(float[], NewChunk[]) - Method in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsTask
 
addContribToNewChunk(double[], NewChunk[]) - Method in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsWithBackgroundTask
 
AddCSGamColumns - Class in hex.gam.MatrixFrameUtils
Given a Frame, the class will generate all the gamified columns.
AddCSGamColumns(double[][][], double[][][], double[][][], int[], Frame, int[]) - Constructor for class hex.gam.MatrixFrameUtils.AddCSGamColumns
 
addCustomInfo(IsolationForestModel.IsolationForestOutput) - Method in class hex.tree.isofor.IsolationForest
 
addCustomInfo(O) - Method in class hex.tree.SharedTree
 
addCustomInfo(UpliftDRFModel.UpliftDRFOutput) - Method in class hex.tree.uplift.UpliftDRF
 
addDiag(double[]) - Method in class hex.gram.Gram
 
addDiag(double) - Method in class hex.gram.Gram
 
addDiag(double, boolean) - Method in class hex.gram.Gram
 
addExemplar(Aggregator.Exemplar[], Aggregator.Exemplar) - Static method in class hex.aggregator.Aggregator.Exemplar
Add a new exemplar to the input array (doubling it if necessary)
addGAMPenalty(Integer[], double[][][], int[][]) - Method in class hex.gram.Gram
Add the effect of gam column smoothness factor.
addGAMPenalty(double[][][], int[][], double[][]) - Method in class hex.gram.Gram
 
addIndividualPred(String[], List<String[]>) - Static method in class hex.anovaglm.ANOVAGLMUtils
 
AddISGamColumns - Class in hex.gam.MatrixFrameUtils
class to gamified all gam_columns with bs set to 2.
AddISGamColumns(double[][][], int[], int[], int[], Frame) - Constructor for class hex.gam.MatrixFrameUtils.AddISGamColumns
 
additionalParameters - Variable in class hex.schemas.GenericV3.GenericParametersV3
 
addKTrees(DTree[]) - Method in class hex.tree.SharedTreeModel.SharedTreeOutput
 
AddMSGamColumns - Class in hex.gam.MatrixFrameUtils
This task will gamified all gam predictors with bs=3.
AddMSGamColumns(double[][][], double[][][], int[], int[], int[], Frame) - Constructor for class hex.gam.MatrixFrameUtils.AddMSGamColumns
 
addNewPred2CPM(double[][], Frame, double[][], int[], int[][], boolean) - Static method in class hex.modelselection.ModelSelectionUtils
Given current CPM which has been swept already, we need to add the lastest predictor to the current CPM that have not been swept.
addNum(int, double) - Method in class hex.DataInfo.Row
 
addOffset2Cols(int[]) - Method in class hex.glm.ComputationState
 
addOneRow2ScoringHistory(TwoDimTable, TwoDimTable, int, int, int, int, int, boolean, boolean, List<Integer>, TwoDimTable, int) - Static method in class hex.glm.GLMUtils
 
addOutput(String, Vec) - Method in class hex.DataInfo
 
addPenaltyGradient(ConstrainedGLMUtils.ConstraintsDerivatives[], ConstrainedGLMUtils.LinearConstraints[], GLM.GLMGradientInfo, double) - Static method in class hex.glm.ConstrainedGLMUtils
This method adds the contribution to the gradient from the penalty term ck/2*transpose(h(beta))*h(beta)
addPermutationList(List<Integer[]>, List<List<Integer>>) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
 
addResponse(String[], Vec[]) - Method in class hex.DataInfo
 
addRow(DataInfo.Row, double) - Method in class hex.gram.Gram
 
addRowDense(DataInfo.Row, double) - Method in class hex.gram.Gram
 
addRowSparse(DataInfo.Row, double) - Method in class hex.gram.Gram
 
addScoringInfo(GLMModel.GLMParameters, int, long, int) - Method in class hex.glm.GLMModel
 
addSingleVariableGamColumns(Frame, GAMModel.GAMParameters, String[][], double[][][], double[][][], double[][][], int[]) - Static method in class hex.gam.GAMModel
 
addSubmodel(int, GLMModel.Submodel) - Method in class hex.glm.GLMModel
 
addToArray(double, double[]) - Method in class hex.DataInfo.Row
 
addTPGamCols(double[][], double[][]) - Method in class hex.gam.MatrixFrameUtils.AddTPKnotsGamColumns
 
addTPGamColumns(Frame, GAMModel.GAMParameters, double[][][], double[][][], int[][][], double[][][], double[][], double[][]) - Static method in class hex.gam.GAMModel
 
AddTPKnotsGamColumns - Class in hex.gam.MatrixFrameUtils
 
AddTPKnotsGamColumns(GAMModel.GAMParameters, double[][][], double[][][], int[][][], double[][][], Frame) - Constructor for class hex.gam.MatrixFrameUtils.AddTPKnotsGamColumns
 
AddTPKnotsGamColumns.ApplyTPRegressionSmootherWithKnots - Class in hex.gam.MatrixFrameUtils
 
adjustGradient(double[], double[]) - Method in class hex.glm.GLM.BetaConstraint
 
adjustLambda(ConstrainedGLMUtils.LinearConstraints[], double[]) - Static method in class hex.glm.ConstrainedGLMUtils
 
ADMM - Class in hex.optimization
Created by tomasnykodym on 3/2/15.
ADMM() - Constructor for class hex.optimization.ADMM
 
ADMM.L1Solver - Class in hex.optimization
 
ADMM.ProximalSolver - Interface in hex.optimization
 
aggregate_method - Variable in class hex.schemas.Word2VecTransformV3
 
Aggregator - Class in hex.aggregator
 
Aggregator(AggregatorModel.AggregatorParameters) - Constructor for class hex.aggregator.Aggregator
 
Aggregator(boolean) - Constructor for class hex.aggregator.Aggregator
 
Aggregator.Exemplar - Class in hex.aggregator
 
AggregatorModel - Class in hex.aggregator
 
AggregatorModel(Key, AggregatorModel.AggregatorParameters, AggregatorModel.AggregatorOutput) - Constructor for class hex.aggregator.AggregatorModel
 
AggregatorModel.AggregatorOutput - Class in hex.aggregator
 
AggregatorModel.AggregatorParameters - Class in hex.aggregator
 
AggregatorModelMetrics(int) - Constructor for class hex.aggregator.ModelMetricsAggregator.AggregatorModelMetrics
 
AggregatorModelOutputV99() - Constructor for class hex.schemas.AggregatorModelV99.AggregatorModelOutputV99
 
AggregatorModelV99 - Class in hex.schemas
 
AggregatorModelV99() - Constructor for class hex.schemas.AggregatorModelV99
 
AggregatorModelV99.AggregatorModelOutputV99 - Class in hex.schemas
 
AggregatorOutput(Aggregator) - Constructor for class hex.aggregator.AggregatorModel.AggregatorOutput
 
AggregatorParameters() - Constructor for class hex.aggregator.AggregatorModel.AggregatorParameters
 
AggregatorParametersV99() - Constructor for class hex.schemas.AggregatorV99.AggregatorParametersV99
 
AggregatorV99 - Class in hex.schemas
 
AggregatorV99() - Constructor for class hex.schemas.AggregatorV99
 
AggregatorV99.AggregatorParametersV99 - Class in hex.schemas
 
aic(double) - Method in class hex.generic.GenericModel
 
algoName() - Method in class hex.adaboost.AdaBoostModel.AdaBoostParameters
 
algoName() - Method in class hex.aggregator.AggregatorModel.AggregatorParameters
 
algoName() - Method in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
 
algoName() - Method in class hex.coxph.CoxPHModel.CoxPHParameters
 
algoName() - Method in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
 
algoName() - Method in class hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters
 
algoName() - Method in class hex.gam.GAMModel.GAMParameters
 
algoName() - Method in class hex.generic.GenericModelParameters
 
algoName() - Method in class hex.glm.GLMModel.GLMParameters
 
algoName() - Method in class hex.glrm.GLRMModel.GLRMParameters
 
algoName() - Method in class hex.grep.GrepModel.GrepParameters
 
algoName() - Method in class hex.hglm.HGLMModel.HGLMParameters
 
algoName() - Method in class hex.isotonic.IsotonicRegressionModel.IsotonicRegressionParameters
 
algoName() - Method in class hex.kmeans.KMeansModel.KMeansParameters
 
algoName() - Method in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
algoName() - Method in class hex.naivebayes.NaiveBayesModel.NaiveBayesParameters
 
algoName() - Method in class hex.pca.PCAModel.PCAParameters
 
algoName() - Method in class hex.psvm.PSVMModel.PSVMParameters
 
algoName() - Method in class hex.rulefit.RuleFitModel.RuleFitParameters
 
algoName() - Method in class hex.svd.SVDModel.SVDParameters
 
algoName() - Method in class hex.tree.drf.DRFModel.DRFParameters
 
algoName() - Method in class hex.tree.dt.DTModel.DTParameters
 
algoName() - Method in class hex.tree.gbm.GBMModel.GBMParameters
 
algoName() - Method in class hex.tree.isofor.IsolationForestModel.IsolationForestParameters
 
algoName() - Method in class hex.tree.isoforextended.ExtendedIsolationForestModel.ExtendedIsolationForestParameters
 
algoName() - Method in class hex.tree.uplift.UpliftDRFModel.UpliftDRFParameters
 
algoName() - Method in class hex.word2vec.Word2VecModel.Word2VecParameters
 
algorithm - Variable in class hex.schemas.RuleFitV3.RuleFitParametersV3
 
AlgorithmValuesProvider() - Constructor for class hex.schemas.StackedEnsembleV99.StackedEnsembleParametersV99.AlgorithmValuesProvider
 
allocate2DArray(GamUtils.AllocateType, int) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
 
allocate3DArray(int, GAMModel.GAMParameters, GamUtils.AllocateType) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
 
allocate3DArrayCS(int, GAMModel.GAMParameters, GamUtils.AllocateType) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
 
allocate3DArrayTP(int, GAMModel.GAMParameters, int[], int[]) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
 
allocateRow(int[]) - Static method in class hex.anovaglm.GenerateTransformColumns
 
allowedInteractionContainsColumn(int) - Method in class hex.tree.GlobalInteractionConstraints
 
alpha() - Method in class hex.glm.ComputationState
 
alpha - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
 
alpha - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
alpha - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
alpha - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
alpha_best() - Method in class hex.glm.GLMModel.GLMOutput
 
alpha_key - Variable in class hex.schemas.PSVMModelV3.PSVMModelOutputV3
 
alpha_value - Variable in class hex.glm.GLMModel.Submodel
 
alphas - Variable in class hex.adaboost.AdaBoostModel.AdaBoostOutput
 
alphas - Variable in class hex.schemas.GLMRegularizationPathV3
 
ANOVAGLM - Class in hex.anovaglm
 
ANOVAGLM(boolean) - Constructor for class hex.anovaglm.ANOVAGLM
 
ANOVAGLM(ANOVAGLMModel.ANOVAGLMParameters) - Constructor for class hex.anovaglm.ANOVAGLM
 
ANOVAGLM(ANOVAGLMModel.ANOVAGLMParameters, Key<ANOVAGLMModel>) - Constructor for class hex.anovaglm.ANOVAGLM
 
ANOVAGLMModel - Class in hex.anovaglm
 
ANOVAGLMModel(Key<ANOVAGLMModel>, ANOVAGLMModel.ANOVAGLMParameters, ANOVAGLMModel.ANOVAGLMModelOutput) - Constructor for class hex.anovaglm.ANOVAGLMModel
 
ANOVAGLMModel.ANOVAGLMModelOutput - Class in hex.anovaglm
 
ANOVAGLMModel.ANOVAGLMParameters - Class in hex.anovaglm
 
ANOVAGLMModelOutput(ANOVAGLM, DataInfo) - Constructor for class hex.anovaglm.ANOVAGLMModel.ANOVAGLMModelOutput
 
ANOVAGLMModelOutputV3() - Constructor for class hex.schemas.ANOVAGLMModelV3.ANOVAGLMModelOutputV3
 
ANOVAGLMModelV3 - Class in hex.schemas
 
ANOVAGLMModelV3() - Constructor for class hex.schemas.ANOVAGLMModelV3
 
ANOVAGLMModelV3.ANOVAGLMModelOutputV3 - Class in hex.schemas
 
ANOVAGLMParameters() - Constructor for class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
 
ANOVAGLMParametersV3() - Constructor for class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
 
ANOVAGLMUtils - Class in hex.anovaglm
 
ANOVAGLMUtils() - Constructor for class hex.anovaglm.ANOVAGLMUtils
 
ANOVAGLMV3 - Class in hex.schemas
 
ANOVAGLMV3() - Constructor for class hex.schemas.ANOVAGLMV3
 
ANOVAGLMV3.ANOVAGLMParametersV3 - Class in hex.schemas
 
append(T) - Method in class hex.tree.drf.TreeMeasuresCollector.TreeMeasures
 
append(TreeMeasuresCollector.TreeSSE) - Method in class hex.tree.drf.TreeMeasuresCollector.TreeSSE
 
append(float, double) - Method in class hex.tree.drf.TreeMeasuresCollector.TreeSSE
Append a tree sse to a list of trees.
append(double, double) - Method in class hex.tree.drf.TreeMeasuresCollector.TreeVotes
Append a tree votes to a list of trees.
append(TreeMeasuresCollector.TreeVotes) - Method in class hex.tree.drf.TreeMeasuresCollector.TreeVotes
 
appendToStringMetrics(StringBuilder) - Method in class hex.tree.isofor.ModelMetricsAnomaly
 
apply(Env, Env.StackHelp, AstRoot[]) - Method in class water.rapids.prims.AstPredictedVsActualByVar
 
apply(Env, Env.StackHelp, AstRoot[]) - Method in class water.rapids.prims.AstSetCalibrationModel
 
apply(Env, Env.StackHelp, AstRoot[]) - Method in class water.rapids.prims.isotonic.AstPoolAdjacentViolators
 
apply(Env, Env.StackHelp, AstRoot[]) - Method in class water.rapids.prims.rulefit.AstPredictRule
 
apply(Env, Env.StackHelp, AstRoot[]) - Method in class water.rapids.prims.tree.AstTreeUpdateWeights
 
apply(Env, Env.StackHelp, AstRoot[]) - Method in class water.rapids.prims.word2vec.AstWord2VecToFrame
 
applyAllBounds(double[]) - Method in class hex.glm.GLM.BetaConstraint
 
applyBounds(double, int) - Method in class hex.glm.GLM.BetaConstraint
 
applyGramSchmit(double[][]) - Static method in class hex.util.LinearAlgebraUtils
 
applyStrongRules(double, double) - Method in class hex.glm.ComputationState
Apply strong rules to filter out expected inactive (with zero coefficient) predictors.
applyStrongRulesMultinomial(double, double) - Method in class hex.glm.ComputationState
Apply strong rules to filter out expected inactive (with zero coefficient) predictors.
applyStrongRulesMultinomial_old(double, double) - Method in class hex.glm.ComputationState
Apply strong rules to filter out expected inactive (with zero coefficient) predictors.
applySweepVectors2NewPred(ModelSelectionUtils.SweepVector[][], double[][], int, int[]) - Static method in class hex.modelselection.ModelSelectionUtils
This method will sweep the rows/columns added to the CPM due to the addition of the new predictor using sweep vector arrays.
ApplyTPRegressionSmootherWithKnots(Frame, GAMModel.GAMParameters, int, double[][], int, double[][], double[][], int[][], double[], double[]) - Constructor for class hex.gam.MatrixFrameUtils.AddTPKnotsGamColumns.ApplyTPRegressionSmootherWithKnots
 
applyTransform(Frame, String, GAMModel.GAMParameters, double[][], int) - Static method in class hex.gam.GamSplines.ThinPlateDistanceWithKnots
This function perform the operation described in 3.3 regarding the part of data Xnmd.
apriori - Variable in class hex.schemas.NaiveBayesModelV3.NaiveBayesModelOutputV3
 
archetypes - Variable in class hex.schemas.GLRMModelV3.GLRMModelOutputV3
 
args() - Method in class water.rapids.prims.AstPredictedVsActualByVar
 
args() - Method in class water.rapids.prims.AstSetCalibrationModel
 
args() - Method in class water.rapids.prims.isotonic.AstPoolAdjacentViolators
 
args() - Method in class water.rapids.prims.rulefit.AstPredictRule
 
args() - Method in class water.rapids.prims.tree.AstTreeUpdateWeights
 
args() - Method in class water.rapids.prims.word2vec.AstWord2VecToFrame
 
assertValidGAMColumnsCountSplineTypes() - Method in class hex.gam.GAM
Check and make sure correct BS type is assigned to the various gam_columns specified.
asSSE(TreeMeasuresCollector.TreeMeasures) - Static method in class hex.tree.drf.TreeMeasuresCollector
 
AstPoolAdjacentViolators - Class in water.rapids.prims.isotonic
 
AstPoolAdjacentViolators() - Constructor for class water.rapids.prims.isotonic.AstPoolAdjacentViolators
 
AstPredictedVsActualByVar - Class in water.rapids.prims
 
AstPredictedVsActualByVar() - Constructor for class water.rapids.prims.AstPredictedVsActualByVar
 
AstPredictRule - Class in water.rapids.prims.rulefit
Evaluates validity of the given rules on the given data.
AstPredictRule() - Constructor for class water.rapids.prims.rulefit.AstPredictRule
 
AstSetCalibrationModel - Class in water.rapids.prims
 
AstSetCalibrationModel() - Constructor for class water.rapids.prims.AstSetCalibrationModel
 
AstTreeUpdateWeights - Class in water.rapids.prims.tree
Re-weights auxiliary trees in a TreeModel
AstTreeUpdateWeights() - Constructor for class water.rapids.prims.tree.AstTreeUpdateWeights
 
AstWord2VecToFrame - Class in water.rapids.prims.word2vec
Converts a word2vec model to a Frame
AstWord2VecToFrame() - Constructor for class water.rapids.prims.word2vec.AstWord2VecToFrame
 
asVotes(TreeMeasuresCollector.TreeMeasures) - Static method in class hex.tree.drf.TreeMeasuresCollector
 
auto_rebalance - Variable in class hex.schemas.GBMV3.GBMParametersV3
 
autoencoder - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
 
autoEncoderGradient(int, int) - Method in class hex.deeplearning.Neurons
Helper to compute the reconstruction error for auto-encoders (part of the gradient computation)
auuc_nbins - Variable in class hex.schemas.UpliftDRFV3.UpliftDRFParametersV3
 
auuc_type - Variable in class hex.schemas.UpliftDRFV3.UpliftDRFParametersV3
 
average_activation - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
 
avg_change_obj - Variable in class hex.schemas.GLRMModelV3.GLRMModelOutputV3
 

B

backwardSolve(double[][], double[], double[]) - Static method in class hex.util.LinearAlgebraUtils
 
balance_classes - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
For imbalanced data, balance training data class counts via over/under-sampling.
balance_classes - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
For imbalanced data, balance training data class counts via over/under-sampling.
balance_classes - Variable in class hex.schemas.GAMV3.GAMParametersV3
For imbalanced data, balance training data class counts via over/under-sampling.
balance_classes - Variable in class hex.schemas.GLMV3.GLMParametersV3
For imbalanced data, balance training data class counts via over/under-sampling.
balance_classes - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
For imbalanced data, balance training data class counts via over/under-sampling.
balance_classes - Variable in class hex.schemas.NaiveBayesV3.NaiveBayesParametersV3
For imbalanced data, balance training data class counts via over/under-sampling.
balance_classes - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
For imbalanced data, balance training data class counts via over/under-sampling.
base_models - Variable in class hex.schemas.StackedEnsembleV99.StackedEnsembleParametersV99
 
bestCol(DTree.UndecidedNode, DHistogram[], Constraints) - Method in class hex.tree.DTree.DecidedNode
 
bestSubmodel() - Method in class hex.glm.GLMModel.GLMOutput
 
bestSubmodelIndex() - Method in class hex.glm.GLMModel.GLMOutput
 
beta() - Method in class hex.glm.ComputationState
 
beta - Variable in class hex.glm.ComputationState.GramGrad
 
beta() - Method in class hex.glm.GLMModel
 
beta(double) - Method in class hex.glm.GLMModel
 
beta() - Method in class hex.glm.GLMModel.GLMOutput
 
beta - Variable in class hex.glm.GLMModel.Submodel
 
beta() - Method in class hex.modelselection.ModelSelectionModel.ModelSelectionModelOutput
 
beta - Variable in class hex.schemas.HGLMModelV3.HGLMModelOutputV3
 
beta - Variable in class hex.schemas.MakeGLMModelV3
 
beta_constraints - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
beta_constraints - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
beta_constraints - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
beta_epsilon - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
beta_epsilon - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
beta_epsilon - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
beta_internal() - Method in class hex.glm.GLMModel
 
beta_std(double) - Method in class hex.glm.GLMModel
 
BetaConstraint() - Constructor for class hex.glm.GLM.BetaConstraint
 
BetaConstraint(Frame) - Constructor for class hex.glm.GLM.BetaConstraint
 
BetaInfo(int, int) - Constructor for class hex.glm.GLM.BetaInfo
 
betaMultinomial() - Method in class hex.glm.ComputationState
 
betaMultinomial(int, double[]) - Method in class hex.glm.ComputationState
 
betaMultinomialFull(int, double[]) - Method in class hex.glm.ComputationState
 
bin(double) - Method in class hex.tree.DHistogram
 
bin() - Method in class hex.tree.DTree.Split
 
binaryEntropy() - Method in class hex.tree.dt.binning.SplitStatistics
 
binAt(int) - Method in class hex.tree.DHistogram
 
binIds - Variable in class hex.DataInfo.Row
 
BinningStrategy - Enum in hex.tree.dt.binning
Strategy for binning.
binomial_double_trees - Variable in class hex.schemas.DRFV3.DRFParametersV3
 
binomialOpt() - Method in class hex.tree.drf.DRFModel
 
binomialOpt() - Method in class hex.tree.SharedTreeModel
 
binomialOpt() - Method in class hex.tree.uplift.UpliftDRFModel
 
bins(int) - Method in class hex.tree.DHistogram
 
bits() - Method in class hex.deeplearning.Dropout
 
blending() - Method in class hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters
 
blending_frame - Variable in class hex.schemas.StackedEnsembleV99.StackedEnsembleParametersV99
 
BMulInPlaceTask(DataInfo, double[][], int) - Constructor for class hex.util.LinearAlgebraUtils.BMulInPlaceTask
 
BMulInPlaceTask(DataInfo, double[][], int, boolean) - Constructor for class hex.util.LinearAlgebraUtils.BMulInPlaceTask
 
BMulTask(Key<Job>, DataInfo, double[][]) - Constructor for class hex.util.LinearAlgebraUtils.BMulTask
 
BMulTaskMatrices(Frame) - Constructor for class hex.util.LinearAlgebraUtils.BMulTaskMatrices
 
bprop(int) - Method in class hex.deeplearning.Neurons
Back propagation of error terms stored in _e (for non-final layers)
bprop(int) - Method in class hex.deeplearning.Neurons.ExpRectifier
 
bprop(int) - Method in class hex.deeplearning.Neurons.Input
 
bprop(int) - Method in class hex.deeplearning.Neurons.Maxout
 
bprop(int) - Method in class hex.deeplearning.Neurons.Output
 
bprop(int) - Method in class hex.deeplearning.Neurons.Rectifier
 
bprop(int) - Method in class hex.deeplearning.Neurons.Tanh
 
bpropMiniBatch(Neurons[], int) - Static method in class hex.deeplearning.DeepLearningTask
Helper to apply back-propagation without clearing out the gradients afterwards Used for gradient checking
bpropOutputLayer(int) - Method in class hex.deeplearning.Neurons
Back-propagate gradient in output layer
BranchInteractionConstraints - Class in hex.tree
Local branch interaction constraints class to save information about allowed interaction between columns indices
BranchInteractionConstraints(IcedHashSet<IcedInt>) - Constructor for class hex.tree.BranchInteractionConstraints
 
bs - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
bsv_count - Variable in class hex.schemas.PSVMModelV3.PSVMModelOutputV3
 
BufStringDecisionPathTracker() - Constructor for class hex.tree.SharedTreeModel.BufStringDecisionPathTracker
 
build_glm_model - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
build_null_model - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
build_tree_one_node - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
 
buildCalibrationModel(CalibrationHelper.ModelBuilderWithCalibration<M, P, O>, CalibrationHelper.ParamsWithCalibration, Job, M) - Static method in class hex.tree.CalibrationHelper
 
buildCVGamModels(GAMModel, GLMModel, GAMModel.GAMParameters, String) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
 
builderVisibility() - Method in class hex.adaboost.AdaBoost
 
builderVisibility() - Method in class hex.aggregator.Aggregator
 
builderVisibility() - Method in class hex.coxph.CoxPH
 
builderVisibility() - Method in class hex.ensemble.StackedEnsemble
 
builderVisibility() - Method in class hex.gam.GAM
 
builderVisibility() - Method in class hex.generic.Generic
 
builderVisibility() - Method in class hex.grep.Grep
 
builderVisibility() - Method in class hex.hglm.HGLM
 
builderVisibility() - Method in class hex.isotonic.IsotonicRegression
 
builderVisibility() - Method in class hex.psvm.PSVM
 
builderVisibility() - Method in class hex.svd.SVD
 
builderVisibility() - Method in class hex.tree.dt.DT
 
builderVisibility() - Method in class hex.tree.isofor.IsolationForest
 
builderVisibility() - Method in class hex.word2vec.Word2Vec
 
buildExtractBestR2Model(Frame[], ModelSelectionModel.ModelSelectionParameters, int, String, Model.Parameters.FoldAssignmentScheme) - Static method in class hex.modelselection.ModelSelection
Given the training Frame array, build models for each training frame and return the GLMModel with the best R2 values.
buildGamFrame(GAMModel.GAMParameters, Frame, Key<Frame>[], String) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
 
buildGLMBuilders(GLMModel.GLMParameters[]) - Static method in class hex.anovaglm.ANOVAGLMUtils
 
buildGLMBuilders(GLMModel.GLMParameters[]) - Static method in class hex.modelselection.ModelSelectionUtils
 
buildGLMModel(List<Integer>) - Method in class hex.modelselection.ModelSelection.ModelSelectionDriver
 
buildGLMParameters(Frame[], ANOVAGLMModel.ANOVAGLMParameters) - Static method in class hex.anovaglm.ANOVAGLMUtils
 
buildLayer(Frame, int, DTree[], int[], DHistogram[][][], boolean) - Method in class hex.tree.SharedTree
 
buildLayer(Frame, int, DTree, int[], DHistogram[][][], boolean) - Method in class hex.tree.uplift.UpliftDRF
 
buildModel() - Method in class hex.deeplearning.DeepLearning.DeepLearningDriver
Train a Deep Learning model, assumes that all members are populated If checkpoint == null, then start training a new model, otherwise continue from a checkpoint
buildModel() - Method in class hex.modelselection.ModelSelection.ModelSelectionDriver
 
buildNextKTrees() - Method in class hex.tree.SharedTree.Driver
 
buildNextNode(Queue<DataFeaturesLimits>, int) - Method in class hex.tree.dt.DT
Build next node from the first limits in queue.
buildRIDFrame(GLMModel.GLMParameters, Frame, Frame) - Static method in class hex.glm.GLMUtils
 
buildSpecificFrame(int[], Frame, String[][], ANOVAGLMModel.ANOVAGLMParameters) - Static method in class hex.anovaglm.ANOVAGLMUtils
This method is used to attach the weight/offset columns if they exist and the response columns, specific transformed columns to a training frames.
buildTable(String[], boolean) - Method in class hex.glrm.GLRM.Archetypes
 
buildTrainingFrames(Key<Frame>, int, String[][], ANOVAGLMModel.ANOVAGLMParameters) - Static method in class hex.anovaglm.ANOVAGLMUtils
This method will take the frame that contains transformed columns of predictor A, predictor B, interaction of predictor A and B and generate new training frames that contains the following columns: - transformed columns of predictor B, interaction of predictor A and B, response - transformed columns of predictor A, interaction of predictor A and B, response - transformed columns of predictor A, predictor B, response - transformed columns of predictor A, predictor B, interaction of predictor A and B, response The same logic applies if there are more than two individual predictors.
buildTree(double[][], long, int) - Method in class hex.tree.isoforextended.isolationtree.IsolationTree
Implementation of Algorithm 2 (iTree) from paper.
buildVariableInflationFactors(Frame, DataInfo) - Method in class hex.glm.GLMModel
This method will calculate the variable inflation factor of each numerical predictor using the following procedure: 1.
buildVariableInflationFactors(GLMModel.GLMParameters, String[], String[]) - Method in class hex.glm.GLMModel
 
bulkScore0(Chunk[]) - Method in interface hex.psvm.BulkSupportVectorScorer
 
BulkScorerFactory - Class in hex.psvm
 
BulkScorerFactory() - Constructor for class hex.psvm.BulkScorerFactory
 
BulkSupportVectorScorer - Interface in hex.psvm
 

C

calc_like - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
calc_like - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
calcCounts(CoxPHModel, CoxPH.CoxPHTask) - Method in class hex.coxph.CoxPH.CoxPHDriver
 
calcCumhaz_0(CoxPHModel, CoxPH.CoxPHTask) - Method in class hex.coxph.CoxPH.CoxPHDriver
 
calcKernel(DataInfo.Row, DataInfo.Row) - Method in interface hex.psvm.psvm.Kernel
 
calcKernelWithLabel(DataInfo.Row, DataInfo.Row) - Method in interface hex.psvm.psvm.Kernel
 
calcLoglik(DataInfo, CoxPH.ComputationState, CoxPHModel.CoxPHParameters, CoxPH.CoxPHTask) - Method in class hex.coxph.CoxPH.CoxPHDriver
 
calcModelStats(CoxPHModel, double[], CoxPH.ComputationState) - Method in class hex.coxph.CoxPH.CoxPHDriver
 
calculate(int, double, double, double, double) - Method in interface hex.glm.DispersionTask.ComputeMaxSumSeriesTsk.CalWVdWVd2WV
 
calculate(int, double, double, double, double) - Method in class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk.EvalLogD2WVEnv
 
calculate(int, double, double, double, double) - Method in class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk.EvalLogDWVEnv
 
calculate(int, double, double, double, double) - Method in class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk.EvalLogWVEnv
 
calculateConstraintSquare(ComputationState, ConstrainedGLMUtils.LinearConstraints[], ConstrainedGLMUtils.LinearConstraints[]) - Static method in class hex.glm.ConstrainedGLMUtils
 
calculatem(int) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
For thin plate regression, given d (number of predictors for a smooth), it will return m where (m-1) is the maximum polynomial degree in the polynomial basis functions.
calculateM(int, int) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
 
calculatePredComboNumber(int, int) - Static method in class hex.anovaglm.ANOVAGLMUtils
Given the number of individual predictors, the highest order of interaction terms allowed, this method will calculate the total number of predictors that will be used to build the full model.
calculatePValuesFromZValues(double[], boolean, long) - Static method in class hex.glm.GLMModel.GLMOutput
 
calculateSplitStatisticsForCategoricalFeature() - Method in class hex.tree.dt.binning.FeatureBins
 
calculateSplitStatisticsForCategoricalFeature(int) - Method in class hex.tree.dt.binning.Histogram
 
calculateSplitStatisticsForNumericFeature() - Method in class hex.tree.dt.binning.FeatureBins
Calculates statistics for bins depending on all other bins - see BinAccumulatedStatistics.
calculateSplitStatisticsForNumericFeature(int) - Method in class hex.tree.dt.binning.Histogram
 
calculateStatisticsForCategoricalFeatureBinomialClassification() - Method in class hex.tree.dt.binning.FeatureBins
 
calculateStdErrFromZValues(double[], double[]) - Static method in class hex.glm.GLMModel.GLMOutput
 
calculateVarimp() - Method in class hex.glm.GLMModel.GLMOutput
 
calculateVarimpBase(double[], int[], double[]) - Static method in class hex.schemas.GLMModelV3
 
calculateVarimpMultinomial(double[], int[], double[][]) - Static method in class hex.schemas.GLMModelV3.GLMModelOutputV3
 
calDerivatives(ConstrainedGLMUtils.LinearConstraints[], List<String>) - Static method in class hex.glm.ComputationState
This methold will calculate the first derivative of h(beta).
calDerivConst(Chunk[], NewChunk[], int, int[]) - Method in class hex.glm.DispersionTask.ComputeTweedieConstTsk
 
calGradient(double[], ComputationState, GLM.GLMGradientSolver, double[], double[], ConstrainedGLMUtils.LinearConstraints[], ConstrainedGLMUtils.LinearConstraints[]) - Static method in class hex.glm.ConstrainedGLMUtils
This method calls getGradient to calculate the gradient, likelhood and objective function values.
calGram(ConstrainedGLMUtils.ConstraintsDerivatives[]) - Static method in class hex.glm.ComputationState
This method to calculate contribution of penalty to gram (d2H/dbidbj), refer to the doc Section VI.II
calHGLMLlg(long, double[][], double, double[][][], double, double[][]) - Static method in class hex.hglm.MetricBuilderHGLM
This method calculates the log-likelihood as described in section II.V of the doc.
calibrate_model - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
 
calibrateModel() - Method in interface hex.tree.CalibrationHelper.ParamsWithCalibration
 
calibrateModel() - Method in class hex.tree.SharedTreeModel.SharedTreeParameters
 
calibration_frame - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
 
calibration_method - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
 
CalibrationHelper - Class in hex.tree
 
CalibrationHelper() - Constructor for class hex.tree.CalibrationHelper
 
CalibrationHelper.CalibrationMethod - Enum in hex.tree
 
CalibrationHelper.ModelBuilderWithCalibration<M extends hex.Model<M,P,O>,P extends hex.Model.Parameters,O extends hex.Model.Output> - Interface in hex.tree
 
CalibrationHelper.OutputWithCalibration - Interface in hex.tree
 
CalibrationHelper.ParamsWithCalibration - Interface in hex.tree
 
calibrationModel() - Method in interface hex.tree.CalibrationHelper.OutputWithCalibration
 
calibrationModel() - Method in class hex.tree.SharedTreeModel.SharedTreeOutput
 
calInvTPZjTZ(double[][], double[][], double) - Static method in class hex.hglm.MetricBuilderHGLM
 
calJMaxConst(Chunk[], NewChunk[], int, int) - Method in class hex.glm.DispersionTask.ComputeTweedieConstTsk
 
calLogWVMax(Chunk[], int, int, double) - Method in class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk
 
calLogZ(Chunk[], int, int) - Method in class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk
 
calMultipliersNGradients(double[][], double[][], double[], double[], int[], Chunk, Chunk[], int, int, int) - Method in class hex.glm.GLMTask.GLMMultinomialGradientBaseTask
 
calMultipliersNGradients(double[][], double[][], double[], double[], int[], Chunk, Chunk[], int, int, int) - Method in class hex.glm.GLMTask.GLMMultinomialGradientTask
 
calPart1LogConst(Chunk[], NewChunk[], int, int) - Method in class hex.glm.DispersionTask.ComputeTweedieConstTsk
 
calPart1LogPIConst(Chunk[], NewChunk[], int, int) - Method in class hex.glm.DispersionTask.ComputeTweedieConstTsk
 
calPart2Const(Chunk[], NewChunk[], int, int) - Method in class hex.glm.DispersionTask.ComputeTweedieConstTsk
 
calR2Scale(Frame, String) - Static method in class hex.modelselection.ModelSelectionUtils
 
calSmoothNess(double[], double[][][], int[][]) - Static method in class hex.glm.GLMUtils
 
calSmoothNess(double[][], double[][][], int[][]) - Static method in class hex.glm.GLMUtils
 
calTauEvarEq17(double, double, double[][][], double[][][], double) - Static method in class hex.hglm.HGLMUtils
 
calZConst(Chunk[], NewChunk[], int, int) - Method in class hex.glm.DispersionTask.ComputeTweedieConstTsk
 
can_build() - Method in class hex.adaboost.AdaBoost
 
can_build() - Method in class hex.aggregator.Aggregator
 
can_build() - Method in class hex.anovaglm.ANOVAGLM
 
can_build() - Method in class hex.coxph.CoxPH
 
can_build() - Method in class hex.deeplearning.DeepLearning
Types of models we can build with DeepLearning
can_build() - Method in class hex.ensemble.StackedEnsemble
 
can_build() - Method in class hex.gam.GAM
 
can_build() - Method in class hex.generic.Generic
 
can_build() - Method in class hex.glm.GLM
 
can_build() - Method in class hex.glrm.GLRM
 
can_build() - Method in class hex.grep.Grep
 
can_build() - Method in class hex.hglm.HGLM
 
can_build() - Method in class hex.isotonic.IsotonicRegression
 
can_build() - Method in class hex.kmeans.KMeans
 
can_build() - Method in class hex.modelselection.ModelSelection
 
can_build() - Method in class hex.naivebayes.NaiveBayes
 
can_build() - Method in class hex.pca.PCA
 
can_build() - Method in class hex.psvm.PSVM
 
can_build() - Method in class hex.rulefit.RuleFit
 
can_build() - Method in class hex.svd.SVD
 
can_build() - Method in class hex.tree.drf.DRF
 
can_build() - Method in class hex.tree.dt.DT
 
can_build() - Method in class hex.tree.gbm.GBM
 
can_build() - Method in class hex.tree.isofor.IsolationForest
 
can_build() - Method in class hex.tree.isoforextended.ExtendedIsolationForest
 
can_build() - Method in class hex.tree.uplift.UpliftDRF
 
can_build() - Method in class hex.word2vec.Word2Vec
 
canLearnFromNAs() - Method in class hex.tree.SharedTree
 
canonical() - Method in class hex.glm.GLMModel.GLMParameters
 
catcnt - Variable in class water.api.ModelMetricsGLRMV99
 
CategoricalBin - Class in hex.tree.dt.binning
For categorical features values are already binned to categories - each bin corresponds to one value (category)
CategoricalBin(int, int, int) - Constructor for class hex.tree.dt.binning.CategoricalBin
 
CategoricalBin(int) - Constructor for class hex.tree.dt.binning.CategoricalBin
 
CategoricalFeatureLimits - Class in hex.tree.dt
Limits for one feature.
CategoricalFeatureLimits(boolean[]) - Constructor for class hex.tree.dt.CategoricalFeatureLimits
 
CategoricalFeatureLimits(double[]) - Constructor for class hex.tree.dt.CategoricalFeatureLimits
 
CategoricalFeatureLimits(int) - Constructor for class hex.tree.dt.CategoricalFeatureLimits
 
CategoricalSplittingRule - Class in hex.tree.dt
 
CategoricalSplittingRule(int, boolean[], double) - Constructor for class hex.tree.dt.CategoricalSplittingRule
 
CategoricalSplittingRule(boolean[]) - Constructor for class hex.tree.dt.CategoricalSplittingRule
 
caterr - Variable in class water.api.ModelMetricsGLRMV99
 
catNAFill() - Method in class hex.DataInfo
 
catNAFill(int) - Method in class hex.DataInfo
 
catTreshold - Variable in class hex.rulefit.Condition
 
centers - Variable in class hex.schemas.KMeansModelV3.KMeansModelOutputV3
 
centers_std - Variable in class hex.schemas.KMeansModelV3.KMeansModelOutputV3
 
centralizeFrame(Frame, String, GAMModel.GAMParameters) - Method in class hex.gam.MatrixFrameUtils.GenCSSplineGamOneColumn
 
centralizeFrame(Frame, String, GAMModel.GAMParameters, double[][]) - Static method in class hex.gam.MatrixFrameUtils.GenCSSplineGamOneColumn
 
centralizeFrame(Frame, String, GAMModel.GAMParameters) - Method in class hex.gam.MatrixFrameUtils.GenMSplineGamOneColumn
 
changeCoeffBetainfo(String[]) - Method in class hex.glm.GLM.GLMDriver
 
check() - Method in class hex.glm.GLM.BetaConstraint
 
check_constant_response - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
 
checkConsistency() - Method in class hex.aggregator.AggregatorModel
 
checkDistributions() - Method in class hex.psvm.PSVM
 
checkEarlyStoppingReproducibility() - Method in class hex.tree.SharedTree
 
checkFrameRowNA(Frame, long) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
 
checkGAMParamsLengths() - Method in class hex.gam.GAM
Check and make sure if related parameters are defined, they must be of correct length.
checkInteractionConstraints(ModelBuilder<?, ?, ?>, Frame, String[][]) - Static method in class hex.tree.TreeUtils
 
checkKKTConditions(double[], GLM.GLMGradientInfo, int) - Method in class hex.glm.GLM.GLMDriver
We will check it the constraint stopping conditions are met.
checkKKTs() - Method in class hex.glm.ComputationState
 
checkKKTsMultinomial() - Method in class hex.glm.ComputationState
 
checkMemoryFootPrint(DataInfo) - Method in class hex.glm.GLM
 
checkMemoryFootPrint(int) - Method in class hex.modelselection.ModelSelection
 
checkMemoryFootPrint_impl() - Method in class hex.deeplearning.DeepLearning
 
checkMemoryFootPrint_impl() - Method in class hex.glrm.GLRM
 
checkMemoryFootPrint_impl() - Method in class hex.kmeans.KMeans
 
checkMemoryFootPrint_impl() - Method in class hex.naivebayes.NaiveBayes
 
checkMemoryFootPrint_impl() - Method in class hex.pca.PCA
 
checkMemoryFootPrint_impl() - Method in class hex.svd.SVD
 
checkMemoryFootPrint_impl() - Method in class hex.tree.isoforextended.ExtendedIsolationForest
 
checkMemoryFootPrint_impl() - Method in class hex.tree.SharedTree
 
checkMonotoneConstraints(ModelBuilder<?, ?, ?>, Frame, KeyValue[]) - Static method in class hex.tree.TreeUtils
 
checkNFamilyNLinkAssignment() - Method in class hex.gam.GAM
check if _parms._family = AUTO, the correct link functions are assigned according to the response type.
checkNonAutoParmsNotChanged(Model.Parameters, Model.Parameters) - Method in class hex.deeplearning.DeepLearning.DeepLearningDriver
 
checkOrChooseNumKnots() - Method in class hex.gam.GAM
set default num_knots to 10 for gam_columns where there is no knot_id specified for CS smoothers for TP smoothers, default is set to be max of 10 or _M+2.
CheckpointUtils - Class in hex.util
 
CheckpointUtils() - Constructor for class hex.util.CheckpointUtils
 
checkPositiveG(int, double[][]) - Static method in class hex.hglm.HGLMUtils
 
checkRowNA(Chunk[], int) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
 
checksum_impl() - Method in class hex.DataInfo
 
checksum_impl() - Method in class hex.deeplearning.DeepLearningModel
 
checksum_impl() - Method in class hex.deeplearning.DeepLearningModelInfo
Unique identifier for this model's state, based on raw numbers
checksum_impl() - Method in class hex.glm.GLMModel
 
checksum_impl() - Method in class hex.glm.GLMModel.GLMOutput
 
checksum_impl() - Method in class hex.tree.CompressedTree
 
checkThinPlateParams() - Method in class hex.gam.GAM
verify and check thin plate regression smoothers specific parameters
checkTrainRowNumKnots() - Method in class hex.gam.GAM
Check and make sure the there are enough number of rows in the training dataset to accomodate the num_knot settings.
ChiSquaredDivergence - Class in hex.tree.uplift
 
ChiSquaredDivergence() - Constructor for class hex.tree.uplift.ChiSquaredDivergence
 
chk_nids(Chunk[], int) - Method in class hex.tree.SharedTree
 
chk_offset(Chunk[]) - Method in class hex.tree.SharedTree
 
chk_oobt(Chunk[]) - Method in class hex.tree.SharedTree
 
chk_resp(Chunk[]) - Method in class hex.tree.SharedTree
 
chk_tree(Chunk[], int) - Method in class hex.tree.SharedTree
 
chk_weight(Chunk[]) - Method in class hex.tree.SharedTree
 
chk_work(Chunk[], int) - Method in class hex.tree.SharedTree
 
chol2Inv(double[][], boolean) - Static method in class hex.util.LinearAlgebraUtils
 
chol2Inv(double[][]) - Static method in class hex.util.LinearAlgebraUtils
Given the cholesky decomposition of X = QR, this method will return the inverse of transpose(X)*X by attempting to solve for transpose(R)*R*XTX_inverse = Identity matrix
cholesky(Gram.Cholesky, double[][]) - Method in class hex.glm.ComputationState.GramGrad
 
cholesky(Gram.Cholesky) - Method in class hex.gram.Gram
 
cholesky(Gram.Cholesky, boolean, String) - Method in class hex.gram.Gram
Compute the Cholesky decomposition.
Cholesky(double[][], double[]) - Constructor for class hex.gram.Gram.Cholesky
 
Cholesky(double[][], double[], boolean) - Constructor for class hex.gram.Gram.Cholesky
 
choleskySymDiagMat(double[][]) - Static method in class hex.util.LinearAlgebraUtils
compute the cholesky of xx which stores the lower part of a symmetric square tridiagonal matrix.
chunkDone(long) - Method in class hex.deeplearning.DeepLearningTask
After each chunk, add the number of processed rows to the counter
chunkDone(long) - Method in class hex.FrameTask
Override this to do post-chunk processing work.
chunkDone() - Method in class hex.FrameTask2
Perform action after processing one "chunk" of data/
chunkDone() - Method in class hex.glm.GLMTask.GLMIterationTask
 
chunkDone() - Method in class hex.gram.Gram.GramTask
 
chunkDone() - Method in class hex.gram.Gram.OuterGramTask
 
chunkInit() - Method in class hex.coxph.CoxPH.CoxPHTask
 
chunkInit() - Method in class hex.deeplearning.DeepLearningTask
 
chunkInit() - Method in class hex.FrameTask
Override this to initialize at the beginning of chunk processing.
chunkInit() - Method in class hex.FrameTask2
Initialization method, called once per "chunk".
chunkInit() - Method in class hex.glm.GLMTask.ComputeDiTriGammaTsk
 
chunkInit() - Method in class hex.glm.GLMTask.ComputeGammaMLSETsk
 
chunkInit() - Method in class hex.glm.GLMTask.ComputeSEorDEVIANCETsk
 
chunkInit() - Method in class hex.glm.GLMTask.GLMIterationTask
 
chunkInit() - Method in class hex.glm.GLMTask.GLMIterationTaskMultinomial
 
chunkInit() - Method in class hex.glm.GLMTask.GLMMultinomialUpdate
 
chunkInit() - Method in class hex.glm.GLMTask.GLMMultinomialWLSTask
 
chunkInit() - Method in class hex.glm.GLMTask.GLMWLSTask
 
chunkInit() - Method in class hex.glm.GLMTask.LSTask
 
chunkInit() - Method in class hex.gram.Gram.GramTask
 
chunkInit() - Method in class hex.gram.Gram.OuterGramTask
 
cid - Variable in class hex.DataInfo.Row
 
class_sampling_factors - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
Desired over/under-sampling ratios per class (lexicographic order).
class_sampling_factors - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
Desired over/under-sampling ratios per class (lexicographic order).
class_sampling_factors - Variable in class hex.schemas.GAMV3.GAMParametersV3
Desired over/under-sampling ratios per class (lexicographic order).
class_sampling_factors - Variable in class hex.schemas.GLMV3.GLMParametersV3
Desired over/under-sampling ratios per class (lexicographic order).
class_sampling_factors - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
Desired over/under-sampling ratios per class (lexicographic order).
class_sampling_factors - Variable in class hex.schemas.NaiveBayesV3.NaiveBayesParametersV3
Desired over/under-sampling ratios per class (lexicographic order).
class_sampling_factors - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
Desired over/under-sampling ratios per class (lexicographic order).
classification_stop - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
The stopping criteria in terms of classification error (1-accuracy) on the training data scoring dataset.
classNames() - Method in class hex.gam.GAMModel.GAMModelOutput
Names of levels for a categorical response column.
classNames() - Method in class hex.glm.GLMModel.GLMOutput
 
classNames() - Method in class hex.isotonic.IsotonicRegressionModel.IsotonicRegressionOutput
 
classNames() - Method in class hex.tree.gbm.GBMModel.GBMOutput
 
classPrediction - Variable in class hex.tree.dt.DTPrediction
 
cleanup() - Method in class hex.ensemble.Metalearner
 
cleanUp() - Method in class hex.glm.TweedieMLDispersionOnly
 
cleanUpInputFrame(Frame) - Method in class hex.gam.GAMModel
 
cleanUpInputFrame(Frame, GAMModel.GAMParameters, String[][], double[][][], double[][][], double[][][], double[][][], int[][][], double[][], double[][], int[]) - Static method in class hex.gam.GAMModel
 
clone() - Method in class hex.tree.dt.AbstractFeatureLimits
 
clone() - Method in class hex.tree.dt.binning.AbstractBin
 
clone() - Method in class hex.tree.dt.binning.CategoricalBin
 
clone() - Method in class hex.tree.dt.binning.NumericBin
 
clone() - Method in class hex.tree.dt.CategoricalFeatureLimits
 
clone() - Method in class hex.tree.dt.DataFeaturesLimits
 
clone() - Method in class hex.tree.dt.NumericFeatureLimits
 
closeLocal() - Method in class hex.deeplearning.DeepLearningTask
After all maps are done on a node, this is called to store the per-node model into DKV (for elastic averaging) Otherwise, do nothing.
closeLocal() - Method in class hex.FrameTask
 
cluster_size_constraints - Variable in class hex.schemas.KMeansV3.KMeansParametersV3
 
ClusteringUtils - Class in hex.util
 
ClusteringUtils() - Constructor for class hex.util.ClusteringUtils
 
COD_solve(ComputationState.GramXY, double, double) - Method in class hex.glm.GLM
 
coefficient_names - Variable in class hex.schemas.GLMRegularizationPathV3
 
coefficient_names - Variable in class hex.schemas.HGLMModelV3.HGLMModelOutputV3
 
coefficientNames() - Method in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMModelOutput
 
coefficientNames() - Method in class hex.glm.GLMModel.GLMOutput
 
coefficientNames() - Method in class hex.modelselection.ModelSelectionModel.ModelSelectionModelOutput
 
coefficients() - Method in class hex.glm.GLMModel
get beta coefficients in a map indexed by name
coefficients(boolean) - Method in class hex.glm.GLMModel
 
coefficients() - Method in class hex.modelselection.ModelSelectionModel
 
coefficients(boolean) - Method in class hex.modelselection.ModelSelectionModel
 
coefficients(int) - Method in class hex.modelselection.ModelSelectionModel
 
coefficients(int, boolean) - Method in class hex.modelselection.ModelSelectionModel
 
coefficients - Variable in class hex.schemas.GLMRegularizationPathV3
 
coefficients_std - Variable in class hex.schemas.GLMRegularizationPathV3
 
CoefIndices - Interface in hex.glm
 
CoefIndices(int, int) - Constructor for class hex.glm.ConstrainedGLMUtils.CoefIndices
 
coefNames() - Method in class hex.DataInfo
 
coefOriginalColumnIndices(Frame) - Method in class hex.DataInfo
 
coefOriginalColumnIndices() - Method in class hex.DataInfo
 
coefOriginalNames(Frame) - Method in class hex.DataInfo
 
coefOriginalNames() - Method in class hex.DataInfo
 
coefs - Variable in class hex.optimization.L_BFGS.Result
 
col() - Method in class hex.tree.DTree.Split
 
col_major - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
 
col_sample_rate - Variable in class hex.schemas.GBMV3.GBMParametersV3
 
col_sample_rate_change_per_level - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
 
col_sample_rate_per_tree - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
 
cold_start - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
cold_start - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
cold_start - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
CollinearColumnsException() - Constructor for exception hex.gram.Gram.CollinearColumnsException
 
CollinearColumnsException(String) - Constructor for exception hex.gram.Gram.CollinearColumnsException
 
collinearInConstraints(String[], String[]) - Static method in class hex.glm.ConstrainedGLMUtils
 
cols() - Method in class hex.coxph.Storage.DenseRowMatrix
 
cols() - Method in interface hex.coxph.Storage.Matrix
 
cols() - Method in class hex.deeplearning.Storage.DenseColMatrix
 
cols() - Method in class hex.deeplearning.Storage.DenseRowMatrix
 
cols() - Method in interface hex.deeplearning.Storage.Matrix
 
cols() - Method in class hex.deeplearning.Storage.SparseRowMatrix
 
cols() - Method in interface hex.deeplearning.Storage.Tensor
 
combineAndFlat(String[][]) - Static method in class hex.anovaglm.ANOVAGLMUtils
 
combineConstraints(ConstrainedGLMUtils.LinearConstraints[], ConstrainedGLMUtils.LinearConstraints[]) - Static method in class hex.glm.ConstrainedGLMUtils
 
combineScoringHistory(TwoDimTable, TwoDimTable) - Static method in class hex.glm.GLMUtils
 
combineTableContents(TwoDimTable, TwoDimTable, TwoDimTable, List<Integer>, int, int, int) - Static method in class hex.glm.GLMUtils
 
compareTo(EigenPair) - Method in class hex.util.EigenPair
Compare an eigenPair = (eigenvalue, eigenVector) against otherEigenPair based on respective eigenValues
compress(int, int, String[][]) - Method in class hex.tree.DTree
 
compress(AutoBuffer, AutoBuffer) - Method in class hex.tree.DTree.DecidedNode
 
compress(AutoBuffer, AutoBuffer) - Method in class hex.tree.DTree.LeafNode
 
compress(AutoBuffer, AutoBuffer) - Method in class hex.tree.DTree.Node
 
compress(AutoBuffer, AutoBuffer) - Method in class hex.tree.DTree.UndecidedNode
 
CompressedDT - Class in hex.tree.dt
Compressed DT class containing tree as array.
CompressedDT(AbstractCompressedNode[], int) - Constructor for class hex.tree.dt.CompressedDT
 
CompressedForest - Class in hex.tree
Collection of Compressed Trees contains: - keys to trees - metadata shared among all the trees (eg.
CompressedForest(Key<CompressedTree>[][], String[][]) - Constructor for class hex.tree.CompressedForest
 
CompressedForest.LocalCompressedForest - Class in hex.tree
Node-local representation of a collection of trees.
CompressedIsolationTree - Class in hex.tree.isoforextended.isolationtree
IsolationTree structure with better memory performance.
CompressedIsolationTree(int) - Constructor for class hex.tree.isoforextended.isolationtree.CompressedIsolationTree
 
CompressedLeaf - Class in hex.tree.dt
 
CompressedLeaf(double, double) - Constructor for class hex.tree.dt.CompressedLeaf
 
CompressedLeaf - Class in hex.tree.isoforextended.isolationtree
IsolationTree Leaf Node with better memory performance.
CompressedLeaf(IsolationTree.Node) - Constructor for class hex.tree.isoforextended.isolationtree.CompressedLeaf
 
CompressedLeaf(int, int) - Constructor for class hex.tree.isoforextended.isolationtree.CompressedLeaf
 
CompressedNode - Class in hex.tree.dt
 
CompressedNode(AbstractSplittingRule) - Constructor for class hex.tree.dt.CompressedNode
 
CompressedNode - Class in hex.tree.isoforextended.isolationtree
IsolationTree Node with better memory performance.
CompressedNode(IsolationTree.Node) - Constructor for class hex.tree.isoforextended.isolationtree.CompressedNode
 
CompressedNode(double[], double[], int) - Constructor for class hex.tree.isoforextended.isolationtree.CompressedNode
 
CompressedTree - Class in hex.tree
 
CompressedTree(byte[], long, int, int) - Constructor for class hex.tree.CompressedTree
 
ComputationEngineTask(Job, HGLMModel.HGLMParameters, DataInfo) - Constructor for class hex.hglm.HGLMTask.ComputationEngineTask
 
ComputationState - Class in hex.glm
 
ComputationState(Job, GLMModel.GLMParameters, DataInfo, GLM.BetaConstraint, GLM.BetaInfo) - Constructor for class hex.glm.ComputationState
 
ComputationState(Job, GLMModel.GLMParameters, DataInfo, GLM.BetaConstraint, GLM.BetaInfo, double[][][], int[][]) - Constructor for class hex.glm.ComputationState
 
ComputationState.GLMSubsetGinfo - Class in hex.glm
This method will grab a subset of the gradient for each multinomial class.
ComputationState.GramGrad - Class in hex.glm
 
ComputationState.GramXY - Class in hex.glm
Cached state of COD (with covariate updates) solver.
ComputationStateHGLM - Class in hex.hglm
 
ComputationStateHGLM(Job, HGLMModel.HGLMParameters, DataInfo, HGLMTask.ComputationEngineTask, int) - Constructor for class hex.hglm.ComputationStateHGLM
 
ComputationStateHGLM.ComputationStateSimple - Class in hex.hglm
 
ComputationStateSimple(double[], double[][], double[][], double) - Constructor for class hex.hglm.ComputationStateHGLM.ComputationStateSimple
 
compute(Vec, Vec, Vec) - Method in class hex.glm.TweedieEstimator
 
compute() - Method in class hex.tree.DTree.DecidedNode.FindSplits
 
compute2() - Method in class hex.tree.SharedTree.ScoreBuildOneTree
 
compute_metrics - Variable in class hex.schemas.NaiveBayesV3.NaiveBayesParametersV3
 
compute_metrics - Variable in class hex.schemas.PCAV3.PCAParametersV3
 
compute_p_values - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
 
compute_p_values - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
compute_p_values - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
compute_p_values - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
computeAIC() - Method in class hex.gam.MetricBuilderGAM
 
computeAIC(GLMModel) - Method in class hex.glm.GLMMetricBuilder
 
computeCategoricalEtas(Chunk[], double[][], double[], int[]) - Method in class hex.glm.GLMTask.GLMMultinomialGradientBaseTask
 
computeCategoricalGrads(Chunk[], double[][], double[], int[]) - Method in class hex.glm.GLMTask.GLMMultinomialGradientBaseTask
 
computeCrossValidation() - Method in class hex.glm.GLM
GLM implementation of N-fold cross-validation.
ComputeDiTriGammaTsk(H2O.H2OCountedCompleter, DataInfo, Key, double[], GLMModel.GLMParameters, double) - Constructor for class hex.glm.GLMTask.ComputeDiTriGammaTsk
 
ComputeGammaMLSETsk(H2O.H2OCountedCompleter, DataInfo, Key, double[], GLMModel.GLMParameters) - Constructor for class hex.glm.GLMTask.ComputeGammaMLSETsk
 
computeGradientMultipliers(double[], double[], double[]) - Method in class hex.glm.GLMTask.GLMGaussianGradientTask
 
computeGram(int, GramV3) - Method in class hex.api.MakeGLMModelHandler
 
computeGram(double[], GLM.GLMGradientInfo) - Method in class hex.glm.ComputationState
This function calculates the following values: 1.
computeGram(double[], GLMModel.GLMParameters.Solver) - Method in class hex.glm.ComputationState
 
computeGramRCC(double[], GLMModel.GLMParameters.Solver) - Method in class hex.glm.ComputationState
This method is used only for multinomial family.
computeImpl() - Method in class hex.coxph.CoxPH.CoxPHDriver
 
computeImpl() - Method in class hex.deeplearning.DeepLearning.DeepLearningDriver
 
computeImpl() - Method in class hex.glm.GLM.GLMDriver
 
computeImpl() - Method in class hex.modelselection.ModelSelection.ModelSelectionDriver
 
computeImpl() - Method in class hex.tree.SharedTree.Driver
 
ComputeMaxSumSeriesTsk(TweedieMLDispersionOnly, GLMModel.GLMParameters, boolean) - Constructor for class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk
 
ComputeNewBetaVarEstimatedGaussian(double[][], double[], Job, DataInfo, double[][], double, double, double[]) - Constructor for class hex.glm.RegressionInfluenceDiagnosticsTasks.ComputeNewBetaVarEstimatedGaussian
 
computeNewGram(DataInfo, double[], GLMModel.GLMParameters.Solver) - Method in class hex.glm.ComputationState
 
computeNumericEtas(Chunk[], double[][], double[], int[]) - Method in class hex.glm.GLMTask.GLMMultinomialGradientBaseTask
 
computeNumericGrads(Chunk[], double[][], double[], int[]) - Method in class hex.glm.GLMTask.GLMMultinomialGradientBaseTask
 
computePathLength(double[]) - Method in class hex.tree.isoforextended.isolationtree.CompressedIsolationTree
Implementation of Algorithm 3 (pathLength) from paper.
computePriorClassDistribution() - Method in class hex.gam.GAM
 
computePriorClassDistribution() - Method in class hex.glm.GLM
 
computePriorClassDistribution() - Method in class hex.psvm.PSVM
 
computePriorClassDistribution() - Method in class hex.tree.SharedTree
 
computeQ(Key<Job>, DataInfo, Frame, double[][]) - Static method in class hex.util.LinearAlgebraUtils
Solve for Q from Y = QR factorization and write into new frame
computeQ(Key<Job>, DataInfo, Frame) - Static method in class hex.util.LinearAlgebraUtils
 
computeQInPlace(Key<Job>, DataInfo) - Static method in class hex.util.LinearAlgebraUtils
Solve for Q from Y = QR factorization and write into Y frame
computeR(Key<Job>, DataInfo, boolean) - Static method in class hex.util.LinearAlgebraUtils
Get R = L' from Cholesky decomposition Y'Y = LL' (same as R from Y = QR)
ComputeSEorDEVIANCETsk(H2O.H2OCountedCompleter, DataInfo, Key, double[], GLMModel.GLMParameters, GLMModel) - Constructor for class hex.glm.GLMTask.ComputeSEorDEVIANCETsk
 
computeSplit() - Method in class hex.tree.DTree.DecidedNode.FindSplits
 
computeStats() - Method in class hex.deeplearning.DeepLearningModelInfo
Compute statistics about this model on all nodes
computeSubmodel(int, double, double, double) - Method in class hex.glm.GLM.GLMDriver
 
ComputeTweedieConstTsk(double, Frame) - Constructor for class hex.glm.DispersionTask.ComputeTweedieConstTsk
 
computeVariableImportances() - Method in class hex.deeplearning.DeepLearningModelInfo
Compute Variable Importance, based on GEDEON: DATA MINING OF INPUTS: ANALYSING MAGNITUDE AND FUNCTIONAL MEASURES
computeWeights(double, double, double, double, GLMModel.GLMWeights) - Method in class hex.glm.GLMModel.GLMWeightsFun
 
concateGamVecs(Key<Frame>[]) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
 
Condition - Class in hex.rulefit
 
Condition(int, Condition.Type, Condition.Operator, double, String[], int[], String, boolean) - Constructor for class hex.rulefit.Condition
 
Condition.Operator - Enum in hex.rulefit
 
Condition.Type - Enum in hex.rulefit
 
ConstrainedGLMUtils - Class in hex.glm
 
ConstrainedGLMUtils() - Constructor for class hex.glm.ConstrainedGLMUtils
 
ConstrainedGLMUtils.CoefIndices - Class in hex.glm
 
ConstrainedGLMUtils.ConstraintGLMStates - Class in hex.glm
 
ConstrainedGLMUtils.ConstraintsDerivatives - Class in hex.glm
 
ConstrainedGLMUtils.ConstraintsGram - Class in hex.glm
 
ConstrainedGLMUtils.LinearConstraintConditions - Class in hex.glm
 
ConstrainedGLMUtils.LinearConstraints - Class in hex.glm
 
constraint2Str(ConstrainedGLMUtils.LinearConstraints, String, ComputationState) - Static method in class hex.glm.ConstrainedGLMUtils
 
constraint_alpha - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
constraint_beta - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
constraint_c0 - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
constraint_eta0 - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
constraint_tau - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
ConstraintGLMStates(String[], double[][], GLMModel.GLMParameters) - Constructor for class hex.glm.ConstrainedGLMUtils.ConstraintGLMStates
 
Constraints - Class in hex.tree
 
Constraints(int[], Distribution, boolean) - Constructor for class hex.tree.Constraints
 
constraints(Frame) - Method in class hex.tree.gbm.GBMModel.GBMParameters
 
ConstraintsDerivatives(boolean) - Constructor for class hex.glm.ConstrainedGLMUtils.ConstraintsDerivatives
 
ConstraintsGram() - Constructor for class hex.glm.ConstrainedGLMUtils.ConstraintsGram
 
constraintsStop(GLM.GLMGradientInfo, ComputationState) - Static method in class hex.glm.ConstrainedGLMUtils
This method will check if the stopping conditions for constraint GLM are met and they are namely: 1.
constructGram(ConstrainedGLMUtils.ConstraintsDerivatives) - Static method in class hex.glm.ComputationState
This method is not called often.
contamination - Variable in class hex.schemas.IsolationForestV3.IsolationForestParametersV3
 
ContributionsMeanAggregator - Class in hex
 
ContributionsMeanAggregator(Job, int, int, int) - Constructor for class hex.ContributionsMeanAggregator
 
ContributionsWithBackgroundFrameTask<T extends ContributionsWithBackgroundFrameTask<T>> - Class in hex
Calls map(Chunk[] frame, Chunk[] background, NewChunk[] ncs) by copying the smaller frame across the nodes.
ContributionsWithBackgroundFrameTask(Key<Frame>, Key<Frame>, boolean) - Constructor for class hex.ContributionsWithBackgroundFrameTask
 
converged() - Method in class hex.glm.ComputationState
 
converged - Variable in class hex.optimization.L_BFGS.Result
 
convertCenterBeta2Beta(double[][][], int, double[], int, String[][], boolean) - Static method in class hex.gam.MatrixFrameUtils.GAMModelUtils
 
convertList2Array(List<Integer[]>, int, int) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
 
convertParameters(ModelParameter[]) - Static method in class hex.generic.GenericModelParameters
 
copy3DArray(double[][][]) - Static method in class hex.hglm.HGLMUtils
 
copyCVGLMtoGAMModel(GAMModel, GLMModel, GAMModel.GAMParameters, String) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
 
copyGInfo(GLM.GLMGradientInfo) - Static method in class hex.glm.GLMUtils
 
copyGLMCoeffNames2GAMCoeffNames(GAMModel, GLMModel) - Static method in class hex.gam.MatrixFrameUtils.GAMModelUtils
 
copyGLMCoeffs(GLMModel, GAMModel, GAMModel.GAMParameters, int) - Static method in class hex.gam.MatrixFrameUtils.GAMModelUtils
 
copyGLMCoeffs2GAMCoeffs(GAMModel, GLMModel, GLMModel.GLMParameters.Family, int, int, boolean) - Static method in class hex.gam.MatrixFrameUtils.GAMModelUtils
 
copyGLMtoGAMModel(GAMModel, GLMModel, GAMModel.GAMParameters, boolean) - Static method in class hex.gam.MatrixFrameUtils.GAMModelUtils
 
copyKnots(double[][][], String[][]) - Method in class hex.gam.GAMModel.GAMModelOutput
The function will copy over the knot locations into _knot_locations and the gam column names corresponding to the knot locations into _gam_knot_column_names.
copyLeftValues(SplitStatistics) - Method in class hex.tree.dt.binning.SplitStatistics
 
copyMetrics(GAMModel, Frame, boolean, ModelMetrics) - Method in class hex.gam.GAMModel.GAMModelOutput
 
CopyQtoQMatrix() - Constructor for class hex.util.LinearAlgebraUtils.CopyQtoQMatrix
 
copyRightValues(SplitStatistics) - Method in class hex.tree.dt.binning.SplitStatistics
 
copyTwoDimTable(TwoDimTable, String) - Static method in class hex.gam.MatrixFrameUtils.GAMModelUtils
 
count - Variable in class hex.schemas.Word2VecSynonymsV3
 
COUNT - Static variable in class hex.tree.dt.mrtasks.CountBinsSamplesCountsMRTask
 
COUNT_0 - Static variable in class hex.tree.dt.mrtasks.CountBinsSamplesCountsMRTask
 
CountBinsSamplesCountsMRTask - Class in hex.tree.dt.mrtasks
MR task for counting samples in bins.
CountBinsSamplesCountsMRTask(int, double[][], double[][]) - Constructor for class hex.tree.dt.mrtasks.CountBinsSamplesCountsMRTask
 
countColNumber(String[][]) - Static method in class hex.anovaglm.GenerateTransformColumns
 
countNumConst(ComputationState) - Static method in class hex.glm.ConstrainedGLMUtils
 
CoxPH - Class in hex.coxph
Cox Proportional Hazards Model
CoxPH(boolean) - Constructor for class hex.coxph.CoxPH
 
CoxPH(CoxPHModel.CoxPHParameters) - Constructor for class hex.coxph.CoxPH
 
CoxPH.CoxPHDriver - Class in hex.coxph
 
CoxPH.CoxPHTask - Class in hex.coxph
 
CoxPHDriver() - Constructor for class hex.coxph.CoxPH.CoxPHDriver
 
CoxPHModel - Class in hex.coxph
 
CoxPHModel(Key, CoxPHModel.CoxPHParameters, CoxPHModel.CoxPHOutput) - Constructor for class hex.coxph.CoxPHModel
 
CoxPHModel.CoxPHOutput - Class in hex.coxph
 
CoxPHModel.CoxPHParameters - Class in hex.coxph
 
CoxPHModel.CoxPHParameters.CoxPHTies - Enum in hex.coxph
 
CoxPHModel.FrameMatrix - Class in hex.coxph
 
CoxPHModelOutputV3() - Constructor for class hex.schemas.CoxPHModelV3.CoxPHModelOutputV3
 
CoxPHModelV3 - Class in hex.schemas
 
CoxPHModelV3() - Constructor for class hex.schemas.CoxPHModelV3
 
CoxPHModelV3.CoxPHModelOutputV3 - Class in hex.schemas
 
CoxPHMojoWriter - Class in hex.coxph
 
CoxPHMojoWriter() - Constructor for class hex.coxph.CoxPHMojoWriter
 
CoxPHMojoWriter(CoxPHModel) - Constructor for class hex.coxph.CoxPHMojoWriter
 
CoxPHOutput(CoxPH, Frame, Frame, IcedHashMap<AstGroup.G, IcedInt>) - Constructor for class hex.coxph.CoxPHModel.CoxPHOutput
 
CoxPHParameters() - Constructor for class hex.coxph.CoxPHModel.CoxPHParameters
 
CoxPHParametersV3() - Constructor for class hex.schemas.CoxPHV3.CoxPHParametersV3
 
CoxPHV3 - Class in hex.schemas
 
CoxPHV3() - Constructor for class hex.schemas.CoxPHV3
 
CoxPHV3.CoxPHParametersV3 - Class in hex.schemas
 
createCenterTable(ClusteringModel.ClusteringOutput, boolean) - Static method in class hex.util.ClusteringUtils
 
createFrameOfExemplars(Frame, Key) - Method in class hex.aggregator.AggregatorModel
 
createGLMTrainFrame(Frame, int, int, String[], String, boolean) - Method in class hex.rulefit.RuleEnsemble
 
createImpl() - Method in class hex.schemas.AdaBoostModelV3
 
createImpl() - Method in class hex.schemas.AggregatorModelV99
 
createImpl() - Method in class hex.schemas.ANOVAGLMModelV3
 
createImpl() - Method in class hex.schemas.DeepLearningModelV3
 
createImpl() - Method in class hex.schemas.DRFModelV3
 
createImpl() - Method in class hex.schemas.DTModelV3
 
createImpl() - Method in class hex.schemas.ExtendedIsolationForestModelV3
 
createImpl() - Method in class hex.schemas.GAMModelV3
 
createImpl() - Method in class hex.schemas.GBMModelV3
 
createImpl() - Method in class hex.schemas.GLMModelV3
 
createImpl() - Method in class hex.schemas.GLRMModelV3
 
createImpl() - Method in class hex.schemas.GrepModelV3
 
createImpl() - Method in class hex.schemas.GrepModelV3.GrepModelOutputV3
 
createImpl() - Method in class hex.schemas.HGLMModelV3
 
createImpl() - Method in class hex.schemas.IsolationForestModelV3
 
createImpl() - Method in class hex.schemas.KMeansModelV3
 
createImpl() - Method in class hex.schemas.ModelSelectionModelV3
 
createImpl() - Method in class hex.schemas.NaiveBayesModelV3
 
createImpl() - Method in class hex.schemas.PCAModelV3
 
createImpl() - Method in class hex.schemas.PSVMModelV3
 
createImpl() - Method in class hex.schemas.RuleFitModelV3
 
createImpl() - Method in class hex.schemas.StackedEnsembleModelV99
 
createImpl() - Method in class hex.schemas.SVDModelV99
 
createImpl() - Method in class hex.schemas.UpliftDRFModelV3
 
createImpl() - Method in class hex.schemas.Word2VecModelV3
 
createInitialModelInfo(Word2VecModel.Word2VecParameters) - Static method in class hex.word2vec.Word2VecModel.Word2VecModelInfo
 
createInputFramesInformationTable(ModelBuilder) - Method in class hex.tree.SharedTreeModel.SharedTreeOutput
 
createMappingOfExemplars(Key) - Method in class hex.aggregator.AggregatorModel
 
createModelSummaryTable() - Method in class hex.adaboost.AdaBoost
 
createModelSummaryTable() - Method in class hex.tree.isoforextended.ExtendedIsolationForest
 
createModelSummaryTable(int, TreeStats) - Static method in class hex.tree.SharedTree
 
createOutputSchema() - Method in class hex.schemas.AdaBoostModelV3
 
createOutputSchema() - Method in class hex.schemas.AggregatorModelV99
 
createOutputSchema() - Method in class hex.schemas.ANOVAGLMModelV3
 
createOutputSchema() - Method in class hex.schemas.CoxPHModelV3
 
createOutputSchema() - Method in class hex.schemas.DeepLearningModelV3
 
createOutputSchema() - Method in class hex.schemas.DRFModelV3
 
createOutputSchema() - Method in class hex.schemas.DTModelV3
 
createOutputSchema() - Method in class hex.schemas.ExtendedIsolationForestModelV3
 
createOutputSchema() - Method in class hex.schemas.GAMModelV3
 
createOutputSchema() - Method in class hex.schemas.GBMModelV3
 
createOutputSchema() - Method in class hex.schemas.GenericModelV3
 
createOutputSchema() - Method in class hex.schemas.GLMModelV3
 
createOutputSchema() - Method in class hex.schemas.GLRMModelV3
 
createOutputSchema() - Method in class hex.schemas.GrepModelV3
 
createOutputSchema() - Method in class hex.schemas.HGLMModelV3
 
createOutputSchema() - Method in class hex.schemas.IsolationForestModelV3
 
createOutputSchema() - Method in class hex.schemas.IsotonicRegressionModelV3
 
createOutputSchema() - Method in class hex.schemas.KMeansModelV3
 
createOutputSchema() - Method in class hex.schemas.ModelSelectionModelV3
 
createOutputSchema() - Method in class hex.schemas.NaiveBayesModelV3
 
createOutputSchema() - Method in class hex.schemas.PCAModelV3
 
createOutputSchema() - Method in class hex.schemas.PSVMModelV3
 
createOutputSchema() - Method in class hex.schemas.RuleFitModelV3
 
createOutputSchema() - Method in class hex.schemas.StackedEnsembleModelV99
 
createOutputSchema() - Method in class hex.schemas.SVDModelV99
 
createOutputSchema() - Method in class hex.schemas.UpliftDRFModelV3
 
createOutputSchema() - Method in class hex.schemas.Word2VecModelV3
 
createParameters(String) - Static method in class hex.ensemble.Metalearners
 
createParametersSchema(String) - Static method in class hex.ensemble.Metalearners
 
createParametersSchema() - Method in class hex.schemas.AdaBoostModelV3
 
createParametersSchema() - Method in class hex.schemas.AggregatorModelV99
 
createParametersSchema() - Method in class hex.schemas.ANOVAGLMModelV3
 
createParametersSchema() - Method in class hex.schemas.CoxPHModelV3
 
createParametersSchema() - Method in class hex.schemas.DeepLearningModelV3
 
createParametersSchema() - Method in class hex.schemas.DRFModelV3
 
createParametersSchema() - Method in class hex.schemas.DTModelV3
 
createParametersSchema() - Method in class hex.schemas.ExtendedIsolationForestModelV3
 
createParametersSchema() - Method in class hex.schemas.GAMModelV3
 
createParametersSchema() - Method in class hex.schemas.GBMModelV3
 
createParametersSchema() - Method in class hex.schemas.GenericModelV3
 
createParametersSchema() - Method in class hex.schemas.GLMModelV3
 
createParametersSchema() - Method in class hex.schemas.GLRMModelV3
 
createParametersSchema() - Method in class hex.schemas.GrepModelV3
 
createParametersSchema() - Method in class hex.schemas.HGLMModelV3
 
createParametersSchema() - Method in class hex.schemas.IsolationForestModelV3
 
createParametersSchema() - Method in class hex.schemas.IsotonicRegressionModelV3
 
createParametersSchema() - Method in class hex.schemas.KMeansModelV3
 
createParametersSchema() - Method in class hex.schemas.ModelSelectionModelV3
 
createParametersSchema() - Method in class hex.schemas.NaiveBayesModelV3
 
createParametersSchema() - Method in class hex.schemas.PCAModelV3
 
createParametersSchema() - Method in class hex.schemas.PSVMModelV3
 
createParametersSchema() - Method in class hex.schemas.RuleFitModelV3
 
createParametersSchema() - Method in class hex.schemas.StackedEnsembleModelV99
 
createParametersSchema() - Method in class hex.schemas.SVDModelV99
 
createParametersSchema() - Method in class hex.schemas.UpliftDRFModelV3
 
createParametersSchema() - Method in class hex.schemas.Word2VecModelV3
 
createReverseSortedEigenpairs(double[], double[][]) - Static method in class hex.util.LinearAlgebraUtils
 
createScoringHistoryTable() - Method in class hex.tree.isofor.IsolationForest
 
createScoringHistoryTable(int) - Method in class hex.tree.isoforextended.ExtendedIsolationForest
 
createScoringHistoryTable() - Method in class hex.tree.SharedTree
 
createScoringHistoryTable(Model.Output, ScoreKeeper[], ScoreKeeper[], Job, long[], boolean, boolean) - Static method in class hex.tree.SharedTree
 
createScoringHistoryTable() - Method in class hex.tree.uplift.UpliftDRF
 
createScoringHistoryTableDR(LinkedHashMap<String, ArrayList>, String, long) - Static method in class hex.util.DimensionReductionUtils
Create the scoring history for dimension reduction algorithms like PCA/SVD.
createSortedEigenpairs(double[], double[][]) - Static method in class hex.util.LinearAlgebraUtils
 
ctree(int, int) - Method in class hex.tree.SharedTreeModel.SharedTreeOutput
 
CubicRegressionSplines - Class in hex.gam.GamSplines
 
CubicRegressionSplines(int, double[]) - Constructor for class hex.gam.GamSplines.CubicRegressionSplines
 
cv_canBuildMainModelInParallel() - Method in class hex.tree.SharedTree
 
cv_computeAndSetOptimalParameters(ModelBuilder[]) - Method in class hex.deeplearning.DeepLearning
 
cv_computeAndSetOptimalParameters(ModelBuilder[]) - Method in class hex.glm.GLM
If run with lambda search, we need to take extra action performed after cross-val models are built.
cv_computeAndSetOptimalParameters(ModelBuilder<M, P, O>[]) - Method in class hex.tree.SharedTree
 
cv_initStoppingParameters() - Method in class hex.tree.SharedTree
 
cv_makeAggregateModelMetrics(ModelMetrics.MetricBuilder[]) - Method in class hex.kmeans.KMeans
 
cv_updateOptimalParameters(ModelBuilder<M, P, O>[]) - Method in class hex.tree.SharedTree
 

D

d - Variable in class hex.schemas.SVDModelV99.SVDModelOutputV99
 
data(Chunk[], int, int) - Method in class hex.kmeans.KMeansModel
 
data_info - Variable in class hex.deeplearning.DeepLearningModelInfo
 
data_info() - Method in class hex.deeplearning.DeepLearningModelInfo
 
data_row(Chunk[], int, double[]) - Method in class hex.tree.SharedTree
 
DataFeaturesLimits - Class in hex.tree.dt
Features limits for the whole dataset.
DataFeaturesLimits(List<AbstractFeatureLimits>) - Constructor for class hex.tree.dt.DataFeaturesLimits
 
DataFeaturesLimits(double[][]) - Constructor for class hex.tree.dt.DataFeaturesLimits
 
DataInfo - Class in hex
Created by tomasnykodym on 1/29/15.
DataInfo(Frame, Frame, boolean, DataInfo.TransformType, boolean, boolean, boolean) - Constructor for class hex.DataInfo
 
DataInfo(Frame, Frame, int, boolean, DataInfo.TransformType, DataInfo.TransformType, boolean, boolean, boolean, boolean, boolean, boolean) - Constructor for class hex.DataInfo
 
DataInfo(Frame, Frame, int, boolean, DataInfo.TransformType, DataInfo.TransformType, boolean, boolean, boolean, boolean, boolean, boolean, Model.InteractionSpec) - Constructor for class hex.DataInfo
 
DataInfo(Frame, Frame, int, boolean, DataInfo.TransformType, DataInfo.TransformType, boolean, boolean, boolean, boolean, boolean, boolean, boolean, Model.InteractionSpec) - Constructor for class hex.DataInfo
 
DataInfo(Frame, Frame, int, boolean, DataInfo.TransformType, DataInfo.TransformType, boolean, boolean, DataInfo.Imputer, boolean, boolean, boolean, boolean, Model.InteractionSpec) - Constructor for class hex.DataInfo
 
DataInfo(Frame, Frame, int, boolean, DataInfo.TransformType, DataInfo.TransformType, boolean, boolean, DataInfo.Imputer, boolean, boolean, boolean, boolean, boolean, Model.InteractionSpec) - Constructor for class hex.DataInfo
The train/valid Frame instances are sorted by categorical (themselves sorted by cardinality greatest to least) with all numerical columns following.
DataInfo(Frame, Frame, int, boolean, DataInfo.TransformType, DataInfo.TransformType, boolean, boolean, boolean, boolean, boolean, boolean, boolean) - Constructor for class hex.DataInfo
 
DataInfo.Imputer - Interface in hex
 
DataInfo.MeanImputer - Class in hex
 
DataInfo.Row - Class in hex
 
DataInfo.Rows - Class in hex
 
DataInfo.TransformType - Enum in hex
 
DataInfoFrameV3 - Class in hex.schemas
 
DataInfoFrameV3() - Constructor for class hex.schemas.DataInfoFrameV3
 
decided(int) - Method in class hex.tree.DTree
 
DECIDED_ROW - Static variable in class hex.tree.ScoreBuildHistogram
Marker for already decided row.
DecidedNode(DTree.DecidedNode, DTree) - Constructor for class hex.tree.DTree.DecidedNode
 
DecidedNode(DTree.UndecidedNode, DHistogram[], Constraints, GlobalInteractionConstraints) - Constructor for class hex.tree.DTree.DecidedNode
 
decision_paths - Variable in class hex.schemas.TreeV3
 
decompose_2(double[][], int, int) - Static method in class hex.gram.Gram.InPlaceCholesky
 
deep_clone() - Method in class hex.gram.Gram
 
deepClone() - Method in class hex.DataInfo.Row
 
deepClone(Key<GLMModel>) - Method in class hex.glm.GLMModel
 
deepClone(Key<M>) - Method in class hex.tree.SharedTreeModel
Performs deep clone of given model.
DeepLearning - Class in hex.deeplearning
Deep Learning Neural Net implementation based on MRTask
DeepLearning(DeepLearningModel.DeepLearningParameters) - Constructor for class hex.deeplearning.DeepLearning
Main constructor from Deep Learning parameters
DeepLearning(DeepLearningModel.DeepLearningParameters, Key<DeepLearningModel>) - Constructor for class hex.deeplearning.DeepLearning
 
DeepLearning(boolean) - Constructor for class hex.deeplearning.DeepLearning
 
DeepLearning.DeepLearningDriver - Class in hex.deeplearning
 
DeepLearningDriver() - Constructor for class hex.deeplearning.DeepLearning.DeepLearningDriver
 
DeepLearningModel - Class in hex.deeplearning
The Deep Learning model It contains a DeepLearningModelInfo with the most up-to-date model, a scoring history, as well as some helpers to indicate the progress
DeepLearningModel(Key, DeepLearningModel.DeepLearningParameters, DeepLearningModel, boolean, DataInfo) - Constructor for class hex.deeplearning.DeepLearningModel
Constructor to restart from a checkpointed model
DeepLearningModel(Key, DeepLearningModel.DeepLearningParameters, DeepLearningModel.DeepLearningModelOutput, Frame, Frame, int) - Constructor for class hex.deeplearning.DeepLearningModel
Regular constructor (from scratch)
DeepLearningModel.DeepLearningModelOutput - Class in hex.deeplearning
The Deep Learning model output contains a few extra fields in addition to the metrics in Model.Output 1) Scoring history (raw data) 2) weights/biases (raw data) 3) variable importances (TwoDimTable)
DeepLearningModel.DeepLearningParameters - Class in hex.deeplearning
Deep Learning Parameters
DeepLearningModel.DeepLearningParameters.Activation - Enum in hex.deeplearning
Activation functions
DeepLearningModel.DeepLearningParameters.ClassSamplingMethod - Enum in hex.deeplearning
 
DeepLearningModel.DeepLearningParameters.InitialWeightDistribution - Enum in hex.deeplearning
 
DeepLearningModel.DeepLearningParameters.Loss - Enum in hex.deeplearning
Loss functions Absolute, Quadratic, Huber, Quantile for regression Quadratic, ModifiedHuber or CrossEntropy for classification
DeepLearningModel.DeepLearningParameters.MissingValuesHandling - Enum in hex.deeplearning
 
DeepLearningModelInfo - Class in hex.deeplearning
This class contains the state of the Deep Learning model This will be shared: one per node
DeepLearningModelInfo(DeepLearningModel.DeepLearningParameters, Key, DataInfo, int, Frame, Frame) - Constructor for class hex.deeplearning.DeepLearningModelInfo
Main constructor
DeepLearningModelInfo.GradientCheck - Class in hex.deeplearning
 
DeepLearningModelOutput(DeepLearning) - Constructor for class hex.deeplearning.DeepLearningModel.DeepLearningModelOutput
 
DeepLearningModelOutputV3() - Constructor for class hex.schemas.DeepLearningModelV3.DeepLearningModelOutputV3
 
DeepLearningModelV3 - Class in hex.schemas
 
DeepLearningModelV3() - Constructor for class hex.schemas.DeepLearningModelV3
 
DeepLearningModelV3.DeepLearningModelOutputV3 - Class in hex.schemas
 
DeepLearningMojoWriter - Class in hex.deeplearning
 
DeepLearningMojoWriter() - Constructor for class hex.deeplearning.DeepLearningMojoWriter
 
DeepLearningMojoWriter(DeepLearningModel) - Constructor for class hex.deeplearning.DeepLearningMojoWriter
 
DeepLearningParameters() - Constructor for class hex.deeplearning.DeepLearningModel.DeepLearningParameters
 
DeepLearningParametersV3() - Constructor for class hex.schemas.DeepLearningV3.DeepLearningParametersV3
 
DeepLearningScoringInfo - Class in hex.deeplearning
Lightweight DeepLearning scoring history.
DeepLearningScoringInfo() - Constructor for class hex.deeplearning.DeepLearningScoringInfo
 
DeepLearningTask - Class in hex.deeplearning
 
DeepLearningTask(Key, DeepLearningModelInfo, float, int) - Constructor for class hex.deeplearning.DeepLearningTask
The only constructor
DeepLearningTask(Key, DeepLearningModelInfo, float, int, H2O.H2OCountedCompleter) - Constructor for class hex.deeplearning.DeepLearningTask
 
DeepLearningTask2 - Class in hex.deeplearning
DRemoteTask-based Deep Learning.
DeepLearningTask2(Key, Frame, DeepLearningModelInfo, float, int) - Constructor for class hex.deeplearning.DeepLearningTask2
Construct a DeepLearningTask2 where every node trains on the entire training dataset
DeepLearningV3 - Class in hex.schemas
 
DeepLearningV3() - Constructor for class hex.schemas.DeepLearningV3
 
DeepLearningV3.DeepLearningParametersV3 - Class in hex.schemas
 
DEFAULT_ABSTOL - Static variable in class hex.optimization.ADMM.L1Solver
 
default_auuc_thresholds - Variable in class hex.schemas.UpliftDRFModelV3.UpliftDRFModelOutputV3
 
DEFAULT_RELTOL - Static variable in class hex.optimization.ADMM.L1Solver
 
defaultLink - Variable in enum hex.glm.GLMModel.GLMParameters.Family
 
defaultStoppingTolerance() - Method in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
 
defaultStoppingTolerance() - Method in class hex.tree.isofor.IsolationForestModel.IsolationForestParameters
 
defaultThreshold() - Method in class hex.generic.GenericModelOutput
 
defaultThreshold() - Method in class hex.tree.isofor.IsolationForestModel.IsolationForestOutput
 
deleteBaseModelPredictions() - Method in class hex.ensemble.StackedEnsembleModel
 
deleteCrossValidationFoldAssignment() - Method in class hex.ensemble.StackedEnsembleModel
 
deleteCrossValidationModels() - Method in class hex.ensemble.StackedEnsembleModel
 
deleteCrossValidationPreds() - Method in class hex.ensemble.StackedEnsembleModel
 
denNA() - Method in class hex.tree.DHistogram
 
denormalizeBeta(double[]) - Method in class hex.DataInfo
 
derivativeCoeffs(double[][]) - Static method in class hex.gam.GamSplines.NBSplinesTypeIDerivative
 
descriptions - Variable in class hex.schemas.TreeV3
 
desiredChunks(Frame, boolean) - Method in class hex.deeplearning.DeepLearning
 
dest - Variable in class hex.schemas.MakeGLMModelV3
 
destination_frame - Variable in class hex.schemas.GramV3
 
dev - Variable in class hex.glm.GLMModel.GLMWeights
 
deviance() - Method in class hex.glm.ComputationState
 
deviance(double, double, double) - Method in class hex.glm.GLMModel
 
deviance(double, double) - Method in class hex.glm.GLMModel.GLMParameters
 
deviance(float, float) - Method in class hex.glm.GLMModel.GLMParameters
 
deviance(double, double) - Method in class hex.glm.GLMModel.GLMWeightsFun
 
deviance(float, float) - Method in class hex.glm.GLMModel.GLMWeightsFun
 
deviance(double, double, double) - Static method in class hex.glm.TweedieEstimator
 
devianceTrain - Variable in class hex.glm.GLMModel.Submodel
 
devianceValid - Variable in class hex.glm.GLMModel.Submodel
 
DHistogram - Class in hex.tree
A Histogram, computed in parallel over a Vec.
DHistogram.NASplitDir - Enum in hex.tree
Split direction for missing values.
DhnasdLeft - Static variable in class hex.tree.TreeVisitor
 
DhnasdNaLeft - Static variable in class hex.tree.TreeVisitor
 
DhnasdNaVsRest - Static variable in class hex.tree.TreeVisitor
 
diagnostics - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
Gather diagnostics for hidden layers, such as mean and RMS values of learning rate, momentum, weights and biases.
diagSum() - Method in class hex.gram.Gram
 
DiffMinusMedianDiff(Vec, double[]) - Constructor for class hex.tree.gbm.GBM.DiffMinusMedianDiff
 
DimensionReductionUtils - Class in hex.util
Created by wendycwong on 2/9/17.
DimensionReductionUtils() - Constructor for class hex.util.DimensionReductionUtils
 
dinfo() - Method in class hex.FrameTask
 
dinfo() - Method in class hex.glm.GLMModel
 
disable_training_metrics - Variable in class hex.schemas.ExtendedIsolationForestV3.ExtendedIsolationForestParametersV3
 
disable_training_metrics - Variable in class hex.schemas.PSVMV3.PSVMParametersV3
 
disableIntercept() - Method in class hex.DataInfo
 
dispersion() - Method in class hex.glm.GLMModel.GLMOutput
 
dispersion_epsilon - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
dispersion_learning_rate - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
dispersion_parameter_method - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
dispersionEstimated() - Method in class hex.glm.ComputationState
 
dispersionEstimated() - Method in class hex.glm.GLMModel.GLMOutput
 
dispersionEstimated - Variable in class hex.glm.GLMModel.Submodel
 
dispersionLS(DispersionTask.ComputeMaxSumSeriesTsk, TweedieMLDispersionOnly, GLMModel.GLMParameters) - Static method in class hex.glm.DispersionUtils
 
DispersionTask - Class in hex.glm
 
DispersionTask() - Constructor for class hex.glm.DispersionTask
 
DispersionTask.ComputeMaxSumSeriesTsk - Class in hex.glm
This class will compute the following for every row of the dataset: 1.
DispersionTask.ComputeMaxSumSeriesTsk.CalWVdWVd2WV - Interface in hex.glm
This interface is used to calculate one item of the series in log.
DispersionTask.ComputeMaxSumSeriesTsk.EvalLogD2WVEnv - Class in hex.glm
 
DispersionTask.ComputeMaxSumSeriesTsk.EvalLogDWVEnv - Class in hex.glm
 
DispersionTask.ComputeMaxSumSeriesTsk.EvalLogWVEnv - Class in hex.glm
 
DispersionTask.ComputeTweedieConstTsk - Class in hex.glm
Class to pre-calculate constants assocated with the following processes: 1.
DispersionTask.ConstColNames - Enum in hex.glm
 
DispersionTask.GenPrediction - Class in hex.glm
 
DispersionTask.InfoColNames - Enum in hex.glm
 
DispersionUtils - Class in hex.glm
 
DispersionUtils() - Constructor for class hex.glm.DispersionUtils
 
distributionToFamily(DistributionFamily) - Static method in class hex.util.DistributionUtils
 
DistributionUtils - Class in hex.util
 
DistributionUtils() - Constructor for class hex.util.DistributionUtils
 
div(double) - Method in class hex.deeplearning.DeepLearningModelInfo
Divide all weights/biases by a real-valued number
Divergence - Class in hex.tree.uplift
Divergence class used to calculate gain to split the node in Uplift trees algorithms.
Divergence() - Constructor for class hex.tree.uplift.Divergence
 
doInTrainingCheckpoint() - Method in class hex.tree.SharedTree.Driver
 
doModelSpecificComputation(float[]) - Method in class hex.tree.drf.DRFModel.ScoreContributionsSoringTaskDRF
 
doModelSpecificComputation(double[]) - Method in class hex.tree.drf.DRFModel.ScoreContributionsWithBackgroundTaskDRF
 
doModelSpecificComputation(float[]) - Method in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsTask
 
doModelSpecificComputation(double[]) - Method in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsWithBackgroundTask
 
doNotSplit() - Method in class hex.tree.DTree.UndecidedNode
 
doOOBScoring() - Method in class hex.tree.SharedTree.Driver
 
doScoringAndSaveModel(boolean, boolean, boolean) - Method in class hex.tree.SharedTree
 
dotSame(DataInfo.Row) - Method in class hex.DataInfo.Row
 
DRF - Class in hex.tree.drf
Distributed Random Forest
DRF(DRFModel.DRFParameters) - Constructor for class hex.tree.drf.DRF
 
DRF(DRFModel.DRFParameters, Key<DRFModel>) - Constructor for class hex.tree.drf.DRF
 
DRF(DRFModel.DRFParameters, Job) - Constructor for class hex.tree.drf.DRF
 
DRF(boolean) - Constructor for class hex.tree.drf.DRF
 
DRFModel - Class in hex.tree.drf
 
DRFModel(Key<DRFModel>, DRFModel.DRFParameters, DRFModel.DRFOutput) - Constructor for class hex.tree.drf.DRFModel
 
DRFModel.DRFOutput - Class in hex.tree.drf
 
DRFModel.DRFParameters - Class in hex.tree.drf
 
DRFModel.ScoreContributionsSoringTaskDRF - Class in hex.tree.drf
 
DRFModel.ScoreContributionsTaskDRF - Class in hex.tree.drf
 
DRFModel.ScoreContributionsWithBackgroundTaskDRF - Class in hex.tree.drf
 
DRFModelOutputV3() - Constructor for class hex.schemas.DRFModelV3.DRFModelOutputV3
 
DRFModelV3 - Class in hex.schemas
 
DRFModelV3() - Constructor for class hex.schemas.DRFModelV3
 
DRFModelV3.DRFModelOutputV3 - Class in hex.schemas
 
DrfMojoWriter - Class in hex.tree.drf
Mojo definition for DRF model.
DrfMojoWriter() - Constructor for class hex.tree.drf.DrfMojoWriter
 
DrfMojoWriter(DRFModel) - Constructor for class hex.tree.drf.DrfMojoWriter
 
DRFOutput(DRF) - Constructor for class hex.tree.drf.DRFModel.DRFOutput
 
DRFParameters() - Constructor for class hex.tree.drf.DRFModel.DRFParameters
 
DRFParametersV3() - Constructor for class hex.schemas.DRFV3.DRFParametersV3
 
DRFV3 - Class in hex.schemas
 
DRFV3() - Constructor for class hex.schemas.DRFV3
 
DRFV3.DRFParametersV3 - Class in hex.schemas
 
Driver() - Constructor for class hex.tree.SharedTree.Driver
 
dropActiveData() - Method in class hex.glm.ComputationState
 
dropCols(int[], double[][]) - Static method in class hex.glm.ComputationState.GramGrad
 
dropCols(int[]) - Method in class hex.gram.Gram
 
dropIgnoredCols(double[][], double[][], List<Integer>) - Static method in class hex.glm.ComputationState.GramGrad
 
dropIgnoredCols(GLMTask.GLMIterationTask, List<Integer>) - Static method in class hex.modelselection.ModelSelectionUtils
 
dropInteractions() - Method in class hex.DataInfo
 
dropIntercept() - Method in class hex.gram.Gram
 
Dropout - Class in hex.deeplearning
Helper class for dropout training of Neural Nets
dropWeights() - Method in class hex.DataInfo
 
DT - Class in hex.tree.dt
Decision Tree
DT(DTModel.DTParameters) - Constructor for class hex.tree.dt.DT
 
DT(boolean) - Constructor for class hex.tree.dt.DT
 
DTModel - Class in hex.tree.dt
 
DTModel(Key<DTModel>, DTModel.DTParameters, DTModel.DTOutput) - Constructor for class hex.tree.dt.DTModel
 
DTModel.DTOutput - Class in hex.tree.dt
 
DTModel.DTParameters - Class in hex.tree.dt
 
DTModelOutputV3() - Constructor for class hex.schemas.DTModelV3.DTModelOutputV3
 
DTModelV3 - Class in hex.schemas
 
DTModelV3() - Constructor for class hex.schemas.DTModelV3
 
DTModelV3.DTModelOutputV3 - Class in hex.schemas
 
DTOutput(DT) - Constructor for class hex.tree.dt.DTModel.DTOutput
 
DTParameters() - Constructor for class hex.tree.dt.DTModel.DTParameters
 
DTParametersV3() - Constructor for class hex.schemas.DTV3.DTParametersV3
 
DTPrediction - Class in hex.tree.dt
 
DTPrediction(int, double, String) - Constructor for class hex.tree.dt.DTPrediction
 
DTree - Class in hex.tree
A Decision Tree, laid over a Frame of Vecs, and built distributed.
DTree(Frame, int, int, int, long, SharedTreeModel.SharedTreeParameters) - Constructor for class hex.tree.DTree
 
DTree(DTree) - Constructor for class hex.tree.DTree
Copy constructor
DTree.DecidedNode - Class in hex.tree
 
DTree.DecidedNode.FindSplits - Class in hex.tree
 
DTree.LeafNode - Class in hex.tree
 
DTree.Node - Class in hex.tree
 
DTree.Split - Class in hex.tree
 
DTree.UndecidedNode - Class in hex.tree
 
DTreeScorer<T extends DTreeScorer<T>> - Class in hex.tree
 
DTreeScorer(int, int, SharedTree, CompressedForest) - Constructor for class hex.tree.DTreeScorer
 
DTV3 - Class in hex.schemas
 
DTV3() - Constructor for class hex.schemas.DTV3
 
DTV3.DTParametersV3 - Class in hex.schemas
 

E

early_stopping - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
 
early_stopping - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
early_stopping - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
early_stopping - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
EffectiveParametersUtils - Class in hex.util
 
EffectiveParametersUtils() - Constructor for class hex.util.EffectiveParametersUtils
 
EigenPair - Class in hex.util
 
EigenPair(double, double[]) - Constructor for class hex.util.EigenPair
 
eigenvalue - Variable in class hex.util.EigenPair
 
eigenvector - Variable in class hex.util.EigenPair
 
eigenvectors - Variable in class hex.schemas.GLRMModelV3.GLRMModelOutputV3
 
eigenvectors - Variable in class hex.schemas.PCAModelV3.PCAModelOutputV3
 
elastic_averaging - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
 
elastic_averaging_moving_rate - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
 
elastic_averaging_regularization - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
 
elasticAverageModelInfoKey() - Method in class hex.deeplearning.DeepLearningModelInfo
 
em_epsilon - Variable in class hex.schemas.HGLMV3.HGLMParametersV3
 
enoughMinMemory(double) - Static method in class hex.ContributionsWithBackgroundFrameTask
 
entropyBinarySplit(double) - Static method in class hex.tree.dt.binning.SplitStatistics
 
epoch_counter - Variable in class hex.deeplearning.DeepLearningModel
 
epoch_counter - Variable in class hex.deeplearning.DeepLearningScoringInfo
 
epoch_counter() - Method in class hex.deeplearning.DeepLearningScoringInfo
 
epochs - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
The number of passes over the training dataset to be carried out.
epochs - Variable in class hex.schemas.Word2VecModelV3.Word2VecModelOutputV3
 
epochs - Variable in class hex.schemas.Word2VecV3.Word2VecParametersV3
 
EPS - Static variable in class hex.gam.MatrixFrameUtils.GamUtils
 
EPS - Static variable in class hex.glm.ConstrainedGLMUtils
 
EPS2 - Static variable in class hex.glm.ConstrainedGLMUtils
 
EPS_CS - Static variable in class hex.glm.ComputationState
 
EPS_CS_SQUARE - Static variable in class hex.glm.ComputationState
 
eps_prob - Variable in class hex.schemas.NaiveBayesV3.NaiveBayesParametersV3
 
eps_sdev - Variable in class hex.schemas.NaiveBayesV3.NaiveBayesParametersV3
 
epsilon - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
The second of two hyper parameters for adaptive learning rate (ADADELTA).
EPSILON - Static variable in class hex.tree.dt.DT
 
equal2DArrays(double[][], double[][], double) - Static method in class hex.hglm.HGLMUtils
 
equalColNames(String[], String[], String) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
 
equals(Object) - Method in class hex.glm.ConstrainedGLMUtils.CoefIndices
 
equals(Object) - Method in class hex.rulefit.Condition
 
equals(Object) - Method in class hex.rulefit.Rule
 
equals(AbstractFeatureLimits) - Method in class hex.tree.dt.AbstractFeatureLimits
 
equals(AbstractFeatureLimits) - Method in class hex.tree.dt.CategoricalFeatureLimits
 
equals(DataFeaturesLimits) - Method in class hex.tree.dt.DataFeaturesLimits
 
equals(AbstractFeatureLimits) - Method in class hex.tree.dt.NumericFeatureLimits
 
equals(Object) - Method in class hex.tree.SharedTree.SharedTreeDebugParams
 
estimate_k - Variable in class hex.schemas.KMeansV3.KMeansParametersV3
 
estimateFixedCoeff(double[][], double[], double[][][], double[][]) - Static method in class hex.hglm.HGLMUtils
 
estimateGammaMLSE(GLMTask.ComputeGammaMLSETsk, double, double[], GLMModel.GLMParameters, ComputationState, Job, GLMModel) - Static method in class hex.glm.DispersionUtils
Estimate dispersion factor using maximum likelihood.
estimateLowerBound(int, double, double, DispersionTask.ComputeMaxSumSeriesTsk.CalWVdWVd2WV) - Method in class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk
 
estimateNegBinomialDispersionFisherScoring(GLMModel.GLMParameters, GLMModel, double[], DataInfo) - Static method in class hex.glm.DispersionUtils
 
estimateNegBinomialDispersionMomentMethod(GLMModel, double[], DataInfo, Vec, Vec, Vec) - Static method in class hex.glm.DispersionUtils
 
estimateNewRandomEffects(double[][][], double[][], double[][][], double[]) - Static method in class hex.hglm.HGLMUtils
Note that the term ArjTYj and ArjTAfj are fixed and won't change.
estimateNewtMat(double[][], double, double[][][], double) - Static method in class hex.hglm.HGLMUtils
 
estimatePerNodeMinimalMemory(int, Frame, Frame) - Static method in class hex.ContributionsWithBackgroundFrameTask
 
estimateRequiredMemory(int, Frame, Frame) - Static method in class hex.ContributionsWithBackgroundFrameTask
 
estimateRho(double, double, double, double) - Static method in class hex.optimization.ADMM.L1Solver
Estimate optimal rho based on l1 penalty and (estimate of) solution x without the l1penalty
estimateTweedieDispersionOnly(GLMModel.GLMParameters, GLMModel, Job, double[], DataInfo) - Static method in class hex.glm.DispersionUtils
This method estimates the tweedie dispersion parameter.
estimateUpperBound(int, double, double, int, DispersionTask.ComputeMaxSumSeriesTsk.CalWVdWVd2WV) - Method in class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk
 
EuclideanDistance - Class in hex.tree.uplift
 
EuclideanDistance() - Constructor for class hex.tree.uplift.EuclideanDistance
 
evalD2lldPhi2(Chunk[], int, double, double, double, Map<DispersionTask.ConstColNames, Integer>) - Method in class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk
 
evalDlldPhi(Chunk[], int, double, double, Map<DispersionTask.ConstColNames, Integer>) - Method in class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk
 
EvalLogD2WVEnv() - Constructor for class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk.EvalLogD2WVEnv
 
EvalLogDWVEnv() - Constructor for class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk.EvalLogDWVEnv
 
evalLogLikelihood(Chunk[], int, double, Map<DispersionTask.ConstColNames, Integer>) - Method in class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk
 
EvalLogWVEnv() - Constructor for class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk.EvalLogWVEnv
 
evalOneConstraint(ConstrainedGLMUtils.LinearConstraints, double[], List<String>) - Static method in class hex.glm.ConstrainedGLMUtils
This method will evaluate the value of a constraint given the GLM coefficients and the coefficicent name list.
evaluate(double[]) - Method in interface hex.optimization.OptimizationUtils.LineSearchSolver
 
evaluate(double[]) - Method in class hex.optimization.OptimizationUtils.MoreThuente
 
evaluate(double[]) - Method in class hex.optimization.OptimizationUtils.SimpleBacktrackingLS
 
evaluateConstraint(ComputationState, ConstrainedGLMUtils.LinearConstraints[], boolean, double[], List<String>, String, List<String>, List<String>, List<Double>, List<String>, List<String>) - Static method in class hex.glm.ConstrainedGLMUtils
Print constraints without any standardization applied so that people can see the setting in their original form without standardization.
evaluateFirstWolfe(GLM.GLMGradientInfo) - Method in class hex.optimization.OptimizationUtils.ExactLineSearch
Evaluate and make sure that step size alphi is not too big so that objective function is still decreasing.
evaluateSecondWolfe(GLM.GLMGradientInfo) - Method in class hex.optimization.OptimizationUtils.ExactLineSearch
Evaluate and make sure that step size alphi is not too small so that good progress is made in reducing the loss function.
ExactLineSearch(double[], ComputationState, List<String>) - Constructor for class hex.optimization.OptimizationUtils.ExactLineSearch
 
ExactSplitPoints - Class in hex.tree
Finds exact split points for low-cardinality columns.
expand(Frame, Model.InteractionSpec, boolean, boolean, boolean) - Static method in class hex.glm.GLMModel.GLMOutput
 
expand_user_y - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
 
expandBeta(double[]) - Method in class hex.glm.ComputationState
 
expandCats() - Method in class hex.DataInfo.Row
 
expandCats(double[][], DataInfo) - Static method in class hex.glrm.GLRM
 
expandCatsPredsOnly(double[]) - Method in class hex.DataInfo.Row
 
expandCombo(int[], int[], Integer[]) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
Given a combo found by findOnePerm say for d = 5, m = 4, for degree = 1 to m-1 (3 in this case).
expandedCatCS(Frame, GLMModel.GLMParameters) - Static method in class hex.glm.GLMUtils
 
expandLowTrian2Ful(double[][]) - Static method in class hex.util.LinearAlgebraUtils
 
expandRow(double[], DataInfo, double[], boolean) - Static method in class hex.util.LinearAlgebraUtils
 
expandToFullArray(double[], int[], int, int, int) - Static method in class hex.glm.ComputationState
 
explained_deviance_train - Variable in class hex.schemas.GLMRegularizationPathV3
 
explained_deviance_valid - Variable in class hex.schemas.GLMRegularizationPathV3
 
explainedDev() - Method in class hex.glm.GLMMetricBuilder
 
export_weights_and_biases - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
 
ExpRectifier(int) - Constructor for class hex.deeplearning.Neurons.ExpRectifier
 
ExpRectifierDropout(int) - Constructor for class hex.deeplearning.Neurons.ExpRectifierDropout
 
extendCoeffNames(String[], int) - Static method in class hex.schemas.HGLMModelV3
 
ExtendedIsolationForest - Class in hex.tree.isoforextended
Extended isolation forest implementation.
ExtendedIsolationForest(ExtendedIsolationForestModel.ExtendedIsolationForestParameters) - Constructor for class hex.tree.isoforextended.ExtendedIsolationForest
 
ExtendedIsolationForest(ExtendedIsolationForestModel.ExtendedIsolationForestParameters, Key<ExtendedIsolationForestModel>) - Constructor for class hex.tree.isoforextended.ExtendedIsolationForest
 
ExtendedIsolationForest(ExtendedIsolationForestModel.ExtendedIsolationForestParameters, Job) - Constructor for class hex.tree.isoforextended.ExtendedIsolationForest
 
ExtendedIsolationForest(boolean) - Constructor for class hex.tree.isoforextended.ExtendedIsolationForest
 
ExtendedIsolationForestModel - Class in hex.tree.isoforextended
 
ExtendedIsolationForestModel(Key<ExtendedIsolationForestModel>, ExtendedIsolationForestModel.ExtendedIsolationForestParameters, ExtendedIsolationForestModel.ExtendedIsolationForestOutput) - Constructor for class hex.tree.isoforextended.ExtendedIsolationForestModel
 
ExtendedIsolationForestModel.ExtendedIsolationForestOutput - Class in hex.tree.isoforextended
 
ExtendedIsolationForestModel.ExtendedIsolationForestParameters - Class in hex.tree.isoforextended
 
ExtendedIsolationForestModelOutputV3() - Constructor for class hex.schemas.ExtendedIsolationForestModelV3.ExtendedIsolationForestModelOutputV3
 
ExtendedIsolationForestModelV3 - Class in hex.schemas
 
ExtendedIsolationForestModelV3() - Constructor for class hex.schemas.ExtendedIsolationForestModelV3
 
ExtendedIsolationForestModelV3.ExtendedIsolationForestModelOutputV3 - Class in hex.schemas
 
ExtendedIsolationForestMojoWriter - Class in hex.tree.isoforextended
 
ExtendedIsolationForestMojoWriter() - Constructor for class hex.tree.isoforextended.ExtendedIsolationForestMojoWriter
 
ExtendedIsolationForestMojoWriter(ExtendedIsolationForestModel) - Constructor for class hex.tree.isoforextended.ExtendedIsolationForestMojoWriter
 
ExtendedIsolationForestOutput(ExtendedIsolationForest) - Constructor for class hex.tree.isoforextended.ExtendedIsolationForestModel.ExtendedIsolationForestOutput
 
ExtendedIsolationForestParameters() - Constructor for class hex.tree.isoforextended.ExtendedIsolationForestModel.ExtendedIsolationForestParameters
 
ExtendedIsolationForestParametersV3() - Constructor for class hex.schemas.ExtendedIsolationForestV3.ExtendedIsolationForestParametersV3
 
extendedIsolationForestSplit(double[][], double[], double[]) - Static method in class hex.tree.isoforextended.isolationtree.IsolationTree
Compute Extended Isolation Forest split point and filter input data with this split point in the same time.
ExtendedIsolationForestV3 - Class in hex.schemas
 
ExtendedIsolationForestV3() - Constructor for class hex.schemas.ExtendedIsolationForestV3
 
ExtendedIsolationForestV3.ExtendedIsolationForestParametersV3 - Class in hex.schemas
 
extendLevel2Ind(String[], int) - Static method in class hex.schemas.HGLMModelV3
 
extension_level - Variable in class hex.schemas.ExtendedIsolationForestV3.ExtendedIsolationForestParametersV3
 
extractAdaptedFrameIndices(Frame, String[][], int) - Static method in class hex.glm.GLMUtils
From the gamColnames, this method attempts to translate to the column indices in adaptFrame.
extractBetaConstraints(ComputationState, String[]) - Static method in class hex.glm.ConstrainedGLMUtils
This method will extract the constraints specified in beta constraint and combine it with the linear constraints later.
extractCoeffNames(List<String>, ConstrainedGLMUtils.LinearConstraints[]) - Static method in class hex.glm.ConstrainedGLMUtils
 
extractCoefsFromPred(List<String>, boolean, DataInfo, int[]) - Static method in class hex.modelselection.ModelSelectionModel.ModelSelectionModelOutput
 
extractCoefsValues(double[][], int, boolean, int, ModelSelectionUtils.CoeffNormalization, int, int[], int[][]) - Method in class hex.modelselection.ModelSelectionModel.ModelSelectionModelOutput
 
extractColNames(String[], int, int, int) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
 
extractCompressedTrees(SharedTreeMojoModel) - Static method in class hex.tree.MojoUtils
 
extractConstraint(Frame, List<Integer>, List<ConstrainedGLMUtils.LinearConstraints>, DataInfo, List<String>, List<String>) - Static method in class hex.glm.ConstrainedGLMUtils
 
extractConstraintCoeffs(ComputationState) - Static method in class hex.glm.ConstrainedGLMUtils
 
extractConstraintValues(ConstrainedGLMUtils.LinearConstraints[], List<String>, double[][], int, int[]) - Static method in class hex.glm.ConstrainedGLMUtils
 
extractCPMIndexFromPred(int, int[][], int[], boolean) - Static method in class hex.modelselection.ModelSelectionUtils
 
extractCPMIndexFromPredOnly(int[][], int[]) - Static method in class hex.modelselection.ModelSelectionUtils
Given the predictor in subset newPredList, this function will find the rows/columns in the cpm matrix that are contributed by the predictors in subset newPredList.
extractDenseRow(Chunk[], int, DataInfo.Row) - Method in class hex.DataInfo
 
ExtractDenseRow(DataInfo, long) - Constructor for class hex.FrameTask.ExtractDenseRow
 
extractDerivativeCoeff(NBSplinesTypeI, NBSplinesTypeI, double[], int, double) - Static method in class hex.gam.GamSplines.NBSplinesTypeIDerivative
This function extracts the coefficients for the derivative of a NBSplineTypeI (Mi,k(t)) as described in Section VI of doc.
extractEigenvaluesFromEigenpairs(EigenPair[]) - Static method in class hex.util.LinearAlgebraUtils
 
extractEigenvectorsFromEigenpairs(EigenPair[]) - Static method in class hex.util.LinearAlgebraUtils
 
extractGLMModels(GLM[]) - Static method in class hex.anovaglm.ANOVAGLMUtils
Simple method to extract GLM Models from GLM ModelBuilders.
extractLinearConstraints(ComputationState, Key<Frame>, DataInfo) - Static method in class hex.glm.ConstrainedGLMUtils
This method will extract the constraints specified in the Frame with key linearConstraintFrameKey.
extractNDemeanOneRowFromChunk(Chunk[], int, double[], int) - Static method in class hex.gam.GamSplines.ThinPlatePolynomialWithKnots
 
extractPredictorNames(Model.Parameters, DataInfo, String) - Static method in class hex.modelselection.ModelSelectionUtils
 
extractPredNames(DataInfo, int) - Static method in class hex.anovaglm.ANOVAGLMUtils
This method will extract the individual predictor names that will be used to build the GLM models.
extractPredsFromPredIndices(String[], int[]) - Static method in class hex.modelselection.ModelSelectionModel.ModelSelectionModelOutput
 
extractPredSubsetsCPM(double[][], int[], int[][], boolean) - Static method in class hex.modelselection.ModelSelectionUtils
Given a predictor subset and the complete CPM, we extract the CPM associated with the predictors specified in the predictor subset (predIndices).
extractPredSubsetsCPMFrame(Frame, int[], int[][], boolean) - Static method in class hex.modelselection.ModelSelectionUtils
Given a predictor subset and the complete CPM, we extract the CPM associated with the predictors specified in the predictor subset (predIndices).
extractRegularizationPath(int, GLMRegularizationPathV3) - Method in class hex.api.MakeGLMModelHandler
 
extractRulesFromTree(SharedTreeSubgraph, int, String) - Static method in class hex.rulefit.Rule
 
extractRulesListFromModel(SharedTreeModel, int, int) - Static method in class hex.rulefit.Rule
 
extractRulesStartingWithNode(int, String, int) - Method in class hex.tree.dt.CompressedDT
 
extractSparseRows(Chunk[]) - Method in class hex.DataInfo
Extract (sparse) rows from given chunks.
extractSubRange(int, int, int[], double[]) - Static method in class hex.glm.ComputationState
This method will return a double array that is extracted from src (which includes active and non-active columns) to only include active columns stated in ids.
extractSweepIndices(List<Integer>, int, int, int[][], boolean) - Static method in class hex.modelselection.ModelSelectionUtils
Given predRemoved (the predictor that is to be removed and replaced in the forward step), this method will calculate the locations of the CPM rows/columns associated with it.
extractVec2List(Frame) - Method in class hex.glm.GLM.BetaConstraint
Extract predictor names in the constraint frame constraintF into a list.
extraModelColumnNames(List<String>, GLMModel) - Static method in class hex.modelselection.ModelSelectionUtils
 
extraMojoFeatures() - Method in class hex.coxph.CoxPHModel
 

F

fact_threshold - Variable in class hex.schemas.PSVMV3.PSVMParametersV3
 
failVerifyKnots(double[], int) - Method in class hex.gam.GAM
 
family - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
 
family - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
family - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
family - Variable in class hex.schemas.HGLMV3.HGLMParametersV3
 
family - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
familyToDistribution(GLMModel.GLMParameters.Family) - Static method in class hex.util.DistributionUtils
 
fast_mode - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
Enable fast mode (minor approximation in back-propagation), should not affect results significantly.
feasible_threshold - Variable in class hex.schemas.PSVMV3.PSVMParametersV3
 
FeatureBins - Class in hex.tree.dt.binning
 
FeatureBins(List<AbstractBin>) - Constructor for class hex.tree.dt.binning.FeatureBins
 
FeatureBins(List<AbstractBin>, int) - Constructor for class hex.tree.dt.binning.FeatureBins
 
featureName - Variable in class hex.rulefit.Condition
 
features - Variable in class hex.schemas.TreeV3
 
featuresCount() - Method in class hex.tree.dt.binning.Histogram
 
featuresCount() - Method in class hex.tree.dt.DataFeaturesLimits
Get count of features.
FeaturesLimitsMRTask - Class in hex.tree.dt.mrtasks
MR task for calculating real features limits based on limits.
FeaturesLimitsMRTask(double[][]) - Constructor for class hex.tree.dt.mrtasks.FeaturesLimitsMRTask
 
fetch() - Method in class hex.tree.CompressedForest
Fetches trees from DKV and converts to a node-local structure.
fields - Static variable in class hex.schemas.AdaBoostV3.AdaBoostParametersV3
 
fields - Static variable in class hex.schemas.AggregatorV99.AggregatorParametersV99
 
fields - Static variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
 
fields - Static variable in class hex.schemas.CoxPHV3.CoxPHParametersV3
 
fields - Static variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
 
fields - Static variable in class hex.schemas.DRFV3.DRFParametersV3
 
fields - Static variable in class hex.schemas.DTV3.DTParametersV3
 
fields - Static variable in class hex.schemas.ExtendedIsolationForestV3.ExtendedIsolationForestParametersV3
 
fields - Static variable in class hex.schemas.GAMV3.GAMParametersV3
 
fields - Static variable in class hex.schemas.GBMV3.GBMParametersV3
 
fields - Static variable in class hex.schemas.GenericV3.GenericParametersV3
 
fields - Static variable in class hex.schemas.GLMV3.GLMParametersV3
 
fields - Static variable in class hex.schemas.GLRMV3.GLRMParametersV3
 
fields - Static variable in class hex.schemas.HGLMV3.HGLMParametersV3
 
fields - Static variable in class hex.schemas.IsolationForestV3.IsolationForestParametersV3
 
fields - Static variable in class hex.schemas.IsotonicRegressionV3.IsotonicRegressionParametersV3
 
fields - Static variable in class hex.schemas.KMeansV3.KMeansParametersV3
 
fields - Static variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
fields - Static variable in class hex.schemas.NaiveBayesV3.NaiveBayesParametersV3
 
fields - Static variable in class hex.schemas.PCAV3.PCAParametersV3
 
fields - Static variable in class hex.schemas.PSVMV3.PSVMParametersV3
 
fields - Static variable in class hex.schemas.RuleFitV3.RuleFitParametersV3
 
fields - Static variable in class hex.schemas.StackedEnsembleV99.StackedEnsembleParametersV99
 
fields - Static variable in class hex.schemas.SVDV99.SVDParametersV99
 
fields - Static variable in class hex.schemas.UpliftDRFV3.UpliftDRFParametersV3
 
fields - Static variable in class hex.schemas.Word2VecV3.Word2VecParametersV3
 
fillBytes(long) - Method in class hex.deeplearning.Dropout
 
fillConstraintValues(ComputationState, List<String>, double[][], int[]) - Static method in class hex.glm.ConstrainedGLMUtils
 
fillFromImpl(ANOVAGLMModel.ANOVAGLMModelOutput) - Method in class hex.schemas.ANOVAGLMModelV3.ANOVAGLMModelOutputV3
 
fillFromImpl(CoxPHModel.CoxPHOutput) - Method in class hex.schemas.CoxPHModelV3.CoxPHModelOutputV3
 
fillFromImpl(GenericModelParameters, String[]) - Method in class hex.schemas.GenericV3.GenericParametersV3
 
fillFromImpl(GenericModelParameters) - Method in class hex.schemas.GenericV3.GenericParametersV3
 
fillFromImpl(GLMModel.GLMOutput) - Method in class hex.schemas.GLMModelV3.GLMModelOutputV3
 
fillFromImpl(GrepModel) - Method in class hex.schemas.GrepModelV3
 
fillFromImpl(GrepModel.GrepOutput) - Method in class hex.schemas.GrepModelV3.GrepModelOutputV3
 
fillFromImpl(HGLMModel.HGLMModelOutput) - Method in class hex.schemas.HGLMModelV3.HGLMModelOutputV3
 
fillFromImpl(IsolationForestModel.IsolationForestParameters) - Method in class hex.schemas.IsolationForestV3.IsolationForestParametersV3
 
fillFromImpl(IsotonicRegressionModel.IsotonicRegressionOutput) - Method in class hex.schemas.IsotonicRegressionModelV3.IsotonicRegressionModelOutputV3
 
fillFromImpl(KMeansModel.KMeansOutput) - Method in class hex.schemas.KMeansModelV3.KMeansModelOutputV3
 
fillFromImpl(ModelSelectionModel.ModelSelectionModelOutput) - Method in class hex.schemas.ModelSelectionModelV3.ModelSelectionModelOutputV3
 
fillFromImpl(StackedEnsembleModel.StackedEnsembleParameters) - Method in class hex.schemas.StackedEnsembleV99.StackedEnsembleParametersV99
 
fillFromImpl(UpliftDRFModel.UpliftDRFOutput) - Method in class hex.schemas.UpliftDRFModelV3.UpliftDRFModelOutputV3
 
fillFromImpl(ModelMetricsAnomaly) - Method in class water.api.ModelMetricsAnomalyV3
 
fillImpl(IsolationForestModel.IsolationForestParameters) - Method in class hex.schemas.IsolationForestV3.IsolationForestParametersV3
 
fillImpl(StackedEnsembleModel.StackedEnsembleParameters) - Method in class hex.schemas.StackedEnsembleV99.StackedEnsembleParametersV99
 
fillInFixedRowValues(DataInfo.Row, double[], HGLMModel.HGLMParameters, int[], int, int, int, DataInfo) - Static method in class hex.hglm.HGLMTask.ComputationEngineTask
 
fillInput(Chunk[], int, double[], float[], int[]) - Method in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsSortingTask
 
fillInput(Chunk[], int, double[], float[]) - Method in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsTask
 
fillInput(Chunk[], int, double[]) - Method in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsWithBackgroundTask
 
fillModelMetrics(ANOVAGLMModel, GLMModel, Frame) - Static method in class hex.anovaglm.ANOVAGLMUtils
I copied this method from Zuzana Olajcova to add model metrics of the full GLM model as the ANOVAModel model metrics
fillOutput(String[], int[]) - Method in class hex.anovaglm.ANOVAGLMModel
 
fillRowArray(NewChunk[], int, double[]) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
 
fillRowData(double[], Chunk[], int, int) - Static method in class hex.gam.GamSplines.ThinPlateDistanceWithKnots
 
fillRowOneValue(NewChunk[], int, double) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
 
fillTo(ScoreKeeper) - Method in class hex.tree.isofor.ModelMetricsAnomaly
 
fillUpCoeffs(double[], double[], TwoDimTable, int) - Static method in class hex.gam.MatrixFrameUtils.GAMModelUtils
 
fillZTTimesZ(double[][][]) - Static method in class hex.hglm.HGLMUtils
 
FilteredData(double[][], double[][]) - Constructor for class hex.tree.isoforextended.isolationtree.IsolationTree.FilteredData
 
filterExpandedColumns(int[]) - Method in class hex.DataInfo
Filter the _adaptedFrame so that it contains only the Vecs referenced by the cols parameter.
filterExpandedColumns(int[]) - Method in class hex.glm.GLM.BetaConstraint
 
find_maxEx() - Method in class hex.tree.DHistogram
 
find_maxEx(double, int) - Static method in class hex.tree.DHistogram
 
find_maxIn() - Method in class hex.tree.DHistogram
 
find_min() - Method in class hex.tree.DHistogram
 
findAllPolybasis(List<Integer[]>) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
For each list in onePolyBasis, we still need to find all the permutations for that list.
findAlpha(double[], double[], ComputationState, ConstrainedGLMUtils.LinearConstraints[], ConstrainedGLMUtils.LinearConstraints[], GLM.GLMGradientSolver) - Method in class hex.optimization.OptimizationUtils.ExactLineSearch
Implements the Line Search algorithm in the doc, Algorithm 11.5.
findBestModel(GLM[]) - Static method in class hex.modelselection.ModelSelectionUtils
Given GLM run results of a fixed number of predictors, find the model with the best R2 value.
findCatMinOfMaxZScore(GLMModel, List<Double>) - Static method in class hex.modelselection.ModelSelectionUtils
This method extracts the categorical coefficient z-score (abs(z-value)) by using the following method: 1.
findComboMatch(String[][], int) - Static method in class hex.anovaglm.ANOVAGLMUtils
 
findEnumInBetaCS(Frame, GLMModel.GLMParameters) - Static method in class hex.glm.GLMUtils
 
findFullDupPred(DataInfo, List<Integer>, List<String>, List<String>, String[]) - Static method in class hex.modelselection.ModelSelectionUtils
The duplicated columns generated by qr-cholesky is at the level of coefficients.
findGoodCidx(Frame, ArrayList<Integer>, boolean, int, int, int) - Static method in class hex.glrm.GLRM
 
findIterIndexAcrossFolds(List<Integer>[], int) - Static method in class hex.glm.GLM
This method is used to locate common iteration indices across all folds.
FindMaxIndex(int, double) - Constructor for class hex.util.LinearAlgebraUtils.FindMaxIndex
 
findMaxNodeId() - Method in class hex.tree.CompressedTree
 
findMaxTermIndex(Chunk[], int, int) - Method in class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk
 
findMinZValue(GLMModel, List<String>, List<String>, List<String>) - Static method in class hex.modelselection.ModelSelectionUtils
 
findNumMinZVal(List<String>, List<Double>, List<String>) - Static method in class hex.modelselection.ModelSelectionUtils
 
findOnePerm(int, int[], int, ArrayList<int[]>, int[]) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
For a fixed degree specified as totDegree, specified a set of combination of polynomials to achieve the totDegree.
findPermute(int[], List<Integer>, int, List<List<Integer>>) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
 
findPolyBasis(int, int) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
This method, given number of predictors in the smooth d, number of polynomials in the polynomial basis m, will generate a list of integer array specifying for each predictors the degree that predictor will have.
FindSplits(DHistogram[], Constraints, int, DTree.UndecidedNode) - Constructor for class hex.tree.DTree.DecidedNode.FindSplits
 
findSynonyms(int, Word2VecSynonymsV3) - Method in class hex.api.Word2VecHandler
 
findSynonyms(String, int) - Method in class hex.word2vec.Word2VecModel
Find synonyms (i.e.
findtAChunkIndices(Frame, int, int, GLRM.Archetypes) - Static method in class hex.glrm.GLRM
 
findXChunkIndices(Frame, int, int, GLRM.Archetypes) - Static method in class hex.glrm.GLRM
 
findZeroCols(double[][]) - Static method in class hex.glm.ComputationState.GramGrad
 
findZeroCols() - Method in class hex.gram.Gram
 
fix_dispersion_parameter - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
fix_tweedie_variance_power - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
foldChunkId() - Method in class hex.DataInfo
 
force_load_balance - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
Increase training speed on small datasets by splitting it into many chunks to allow utilization of all cores.
forceStrictlyReproducibleHistograms() - Method in class hex.tree.gbm.GBMModel.GBMParameters
 
forceStrictlyReproducibleHistograms() - Method in class hex.tree.SharedTreeModel.SharedTreeParameters
Do we need to enable strictly deterministic way of building histograms? Used eg.
form1stOrderDerivatives(int, int, double[]) - Static method in class hex.gam.GamSplines.NBSplinesTypeIDerivative
Method to generate an array of derivatives of NBSplineTypeI.
form2ndDerivCoeffs(int, int, double[]) - Static method in class hex.gam.GamSplines.NBSplinesTypeIDerivative
 
formConstraintMatrix(ComputationState, List<String>, int[]) - Static method in class hex.glm.ConstrainedGLMUtils
 
formCPM(Gram, double[], double) - Static method in class hex.modelselection.ModelSelectionUtils
 
formDerivateProduct(double[][], double[][]) - Static method in class hex.gam.GamSplines.NBSplinesTypeIDerivative
Form product of derivative basis function for index firstIndex, secondIndex like M'i,k(t)*M'j,k(t).
formInfoFrame(Frame, Frame, GLMModel.GLMParameters) - Static method in class hex.glm.TweedieMLDispersionOnly
 
formXY(double[][], double[], double[]) - Static method in class hex.glm.ComputationState
 
forwardSolve(double[][], double[]) - Static method in class hex.util.LinearAlgebraUtils
 
ForwardSolve(DataInfo, double[][]) - Constructor for class hex.util.LinearAlgebraUtils.ForwardSolve
 
ForwardSolveInPlace(DataInfo, double[][]) - Constructor for class hex.util.LinearAlgebraUtils.ForwardSolveInPlace
 
forwardStep(List<Integer>, List<Integer>, Set<BitSet>, BitSet, int[][], ModelSelection.SweepModel, boolean) - Method in class hex.modelselection.ModelSelection
Given current predictor subset in currSubsetIndices, this method will add one more predictor to the subset and choose the one that will increase the R2 by the most.
forwardStep(List<Integer>, List<String>, int, List<Integer>, ModelSelectionModel.ModelSelectionParameters, String, int, Model.Parameters.FoldAssignmentScheme, Set<BitSet>) - Static method in class hex.modelselection.ModelSelection
Given a predictor subset with indices stored in currSubsetIndices, one more predictor from the coefNames that was not found in currSubsetIndices was added to the subset to form a new Training frame.
forwardStep(List<Integer>, List<String>, int, List<Integer>, ModelSelectionModel.ModelSelectionParameters, String, int, Model.Parameters.FoldAssignmentScheme) - Static method in class hex.modelselection.ModelSelection
 
forwardStepR(List<Integer>, List<Integer>, Set<BitSet>, BitSet, int[][], ModelSelection.SweepModel, double, int) - Method in class hex.modelselection.ModelSelection
Given a currSubsetIndices and a predPos, this function will try to look for new predictor that will decrease the error variance compared to bestErrVar.
foundRedundantConstraints(ComputationState, double[][]) - Static method in class hex.glm.ConstrainedGLMUtils
 
fprop(long, boolean, int) - Method in class hex.deeplearning.Neurons.ExpRectifier
 
fprop(long, boolean, int) - Method in class hex.deeplearning.Neurons.ExpRectifierDropout
 
fprop(long, boolean, int) - Method in class hex.deeplearning.Neurons
Forward propagation
fprop(long, boolean, int) - Method in class hex.deeplearning.Neurons.Input
 
fprop(long, boolean, int) - Method in class hex.deeplearning.Neurons.Linear
 
fprop(long, boolean, int) - Method in class hex.deeplearning.Neurons.Maxout
 
fprop(long, boolean, int) - Method in class hex.deeplearning.Neurons.MaxoutDropout
 
fprop(long, boolean, int) - Method in class hex.deeplearning.Neurons.Rectifier
 
fprop(long, boolean, int) - Method in class hex.deeplearning.Neurons.RectifierDropout
 
fprop(long, boolean, int) - Method in class hex.deeplearning.Neurons.Softmax
 
fprop(long, boolean, int) - Method in class hex.deeplearning.Neurons.Tanh
 
fprop(long, boolean, int) - Method in class hex.deeplearning.Neurons.TanhDropout
 
fpropMiniBatch(long, Neurons[], DeepLearningModelInfo, DeepLearningModelInfo, boolean, double[], double[], int) - Static method in class hex.deeplearning.DeepLearningTask
Forward propagation assumption: layer 0 has _a filled with (horizontalized categoricals) double values
frame - Variable in class hex.schemas.DataInfoFrameV3
 
FrameMap() - Constructor for class hex.tree.SharedTree.FrameMap
 
FrameMap(SharedTree) - Constructor for class hex.tree.SharedTree.FrameMap
 
FrameTask<T extends FrameTask<T>> - Class in hex
 
FrameTask(Key<Job>, DataInfo) - Constructor for class hex.FrameTask
 
FrameTask(Key<Job>, DataInfo, long, int, boolean) - Constructor for class hex.FrameTask
 
FrameTask(Key<Job>, DataInfo, long, int, boolean, H2O.H2OCountedCompleter) - Constructor for class hex.FrameTask
 
FrameTask.ExtractDenseRow - Class in hex
 
FrameTask2<T extends FrameTask2<T>> - Class in hex
Created by tomasnykodym on 6/1/15.
FrameTask2(H2O.H2OCountedCompleter, DataInfo, Key<Job>) - Constructor for class hex.FrameTask2
 
FRESH - Static variable in class hex.tree.ScoreBuildHistogram
 
FriedmanPopescusH - Class in hex.tree
Calculates Friedman and Popescu's H statistics, in order to test for the presence of an interaction between specified variables in h2o gbm and xgb models.
FriedmanPopescusH() - Constructor for class hex.tree.FriedmanPopescusH
 
frobenius2(double[][]) - Static method in class hex.glrm.GLRM
 
fromPretrainedModel(Frame) - Static method in class hex.word2vec.Word2Vec
 
fullCatOffsets() - Method in class hex.DataInfo
 
fullN() - Method in class hex.DataInfo
Get the fully expanded number of predictor columns.
fullN() - Method in class hex.gram.Gram
 
fullName() - Method in class hex.adaboost.AdaBoostModel.AdaBoostParameters
 
fullName() - Method in class hex.aggregator.AggregatorModel.AggregatorParameters
 
fullName() - Method in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
 
fullName() - Method in class hex.coxph.CoxPHModel.CoxPHParameters
 
fullName() - Method in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
 
fullName() - Method in class hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters
 
fullName() - Method in class hex.gam.GAMModel.GAMParameters
 
fullName() - Method in class hex.generic.GenericModelParameters
 
fullName() - Method in class hex.glm.GLMModel.GLMParameters
 
fullName() - Method in class hex.glrm.GLRMModel.GLRMParameters
 
fullName() - Method in class hex.grep.GrepModel.GrepParameters
 
fullName() - Method in class hex.hglm.HGLMModel.HGLMParameters
 
fullName() - Method in class hex.isotonic.IsotonicRegressionModel.IsotonicRegressionParameters
 
fullName() - Method in class hex.kmeans.KMeansModel.KMeansParameters
 
fullName() - Method in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
fullName() - Method in class hex.naivebayes.NaiveBayesModel.NaiveBayesParameters
 
fullName() - Method in class hex.pca.PCAModel.PCAParameters
 
fullName() - Method in class hex.psvm.PSVMModel.PSVMParameters
 
fullName() - Method in class hex.rulefit.RuleFitModel.RuleFitParameters
 
fullName() - Method in class hex.svd.SVDModel.SVDParameters
 
fullName() - Method in class hex.tree.drf.DRFModel.DRFParameters
 
fullName() - Method in class hex.tree.dt.DTModel.DTParameters
 
fullName() - Method in class hex.tree.gbm.GBMModel.GBMParameters
 
fullName() - Method in class hex.tree.isofor.IsolationForestModel.IsolationForestParameters
 
fullName() - Method in class hex.tree.isoforextended.ExtendedIsolationForestModel.ExtendedIsolationForestParameters
 
fullName() - Method in class hex.tree.uplift.UpliftDRFModel.UpliftDRFParameters
 
fullName() - Method in class hex.word2vec.Word2VecModel.Word2VecParameters
 

G

gain(double, double, double, double, double, double, double, double) - Method in class hex.tree.uplift.Divergence
Calculate overall gain as divergence between split gain and node gain.
GAM - Class in hex.gam
 
GAM(boolean) - Constructor for class hex.gam.GAM
 
GAM(GAMModel.GAMParameters) - Constructor for class hex.gam.GAM
 
GAM(GAMModel.GAMParameters, Key<GAMModel>) - Constructor for class hex.gam.GAM
 
gam_columns - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
gamma - Variable in class hex.schemas.PSVMV3.PSVMParametersV3
 
gamma_x - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
 
gamma_y - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
 
GAMModel - Class in hex.gam
 
GAMModel(Key<GAMModel>, GAMModel.GAMParameters, GAMModel.GAMModelOutput) - Constructor for class hex.gam.GAMModel
 
GAMModel.GAMModelOutput - Class in hex.gam
 
GAMModel.GAMParameters - Class in hex.gam
 
GAMModelOutput(GAM, DataInfo) - Constructor for class hex.gam.GAMModel.GAMModelOutput
 
GAMModelOutputV3() - Constructor for class hex.schemas.GAMModelV3.GAMModelOutputV3
 
GAMModelUtils - Class in hex.gam.MatrixFrameUtils
 
GAMModelUtils() - Constructor for class hex.gam.MatrixFrameUtils.GAMModelUtils
 
GAMModelV3 - Class in hex.schemas
 
GAMModelV3() - Constructor for class hex.schemas.GAMModelV3
 
GAMModelV3.GAMModelOutputV3 - Class in hex.schemas
 
GAMMojoWriter - Class in hex.gam
 
GAMMojoWriter() - Constructor for class hex.gam.GAMMojoWriter
 
GAMMojoWriter(GAMModel) - Constructor for class hex.gam.GAMMojoWriter
 
gamNoCenterCoeffLength(GAMModel.GAMParameters) - Static method in class hex.gam.MatrixFrameUtils.GAMModelUtils
Find the number of gamified column coefficients.
GAMParameters() - Constructor for class hex.gam.GAMModel.GAMParameters
 
GAMParametersV3() - Constructor for class hex.schemas.GAMV3.GAMParametersV3
 
GamUtils - Class in hex.gam.MatrixFrameUtils
 
GamUtils() - Constructor for class hex.gam.MatrixFrameUtils.GamUtils
 
GamUtils.AllocateType - Enum in hex.gam.MatrixFrameUtils
 
GAMV3 - Class in hex.schemas
 
GAMV3() - Constructor for class hex.schemas.GAMV3
 
GAMV3.GAMParametersV3 - Class in hex.schemas
 
gaussianVector(int, int, long) - Static method in class hex.tree.isoforextended.isolationtree.IsolationTree
Make a new array initialized to random Gaussian N(0,1) values with the given seed.
GBM - Class in hex.tree.gbm
Gradient Boosted Trees Based on "Elements of Statistical Learning, Second Edition, page 387"
GBM(GBMModel.GBMParameters) - Constructor for class hex.tree.gbm.GBM
 
GBM(GBMModel.GBMParameters, Key<GBMModel>) - Constructor for class hex.tree.gbm.GBM
 
GBM(boolean) - Constructor for class hex.tree.gbm.GBM
 
GBM.DiffMinusMedianDiff - Class in hex.tree.gbm
 
GBMModel - Class in hex.tree.gbm
 
GBMModel(Key<GBMModel>, GBMModel.GBMParameters, GBMModel.GBMOutput) - Constructor for class hex.tree.gbm.GBMModel
 
GBMModel.GBMOutput - Class in hex.tree.gbm
 
GBMModel.GBMParameters - Class in hex.tree.gbm
 
GBMModelOutputV3() - Constructor for class hex.schemas.GBMModelV3.GBMModelOutputV3
 
GBMModelV3 - Class in hex.schemas
 
GBMModelV3() - Constructor for class hex.schemas.GBMModelV3
 
GBMModelV3.GBMModelOutputV3 - Class in hex.schemas
 
GbmMojoWriter - Class in hex.tree.gbm
MOJO support for GBM model.
GbmMojoWriter() - Constructor for class hex.tree.gbm.GbmMojoWriter
 
GbmMojoWriter(GBMModel) - Constructor for class hex.tree.gbm.GbmMojoWriter
 
GBMOutput(GBM) - Constructor for class hex.tree.gbm.GBMModel.GBMOutput
 
GBMParameters() - Constructor for class hex.tree.gbm.GBMModel.GBMParameters
 
GBMParametersV3() - Constructor for class hex.schemas.GBMV3.GBMParametersV3
 
GBMV3 - Class in hex.schemas
 
GBMV3() - Constructor for class hex.schemas.GBMV3
 
GBMV3.GBMParametersV3 - Class in hex.schemas
 
gen1OverMLL(double[], double[], double, double) - Method in class hex.glm.RegressionInfluenceDiagnosticsTasks.RegressionInfluenceDiagBinomial
Generate 1.0/(1.0-hjj) for each data row j.
gen_BIndvD(double[]) - Method in class hex.gam.GamSplines.CubicRegressionSplines
 
gen_penalty_matrix(double[], double[][]) - Method in class hex.gam.GamSplines.CubicRegressionSplines
 
gen_representation_key(Frame) - Method in class hex.glrm.GLRMModel
 
gen_syn_data - Variable in class hex.schemas.HGLMV3.HGLMParametersV3
 
genActiveColsAllClass(int, int, int[], int) - Static method in class hex.glm.ComputationState
 
genActiveColsIndClass(int, int, int[], int, int) - Method in class hex.glm.ComputationState
 
genCoefficientMagTable(String[], double[], String[], String) - Method in class hex.gam.GAMModel
 
genCoefficientMagTableMultinomial(String[], double[][], String[], String) - Method in class hex.gam.GAMModel
 
genCoefficientTable(String[], double[], double[], String[], String) - Static method in class hex.gam.MatrixFrameUtils.GAMModelUtils
 
genCoefficientTableMultinomial(String[], double[][], double[][], String[], String) - Static method in class hex.gam.MatrixFrameUtils.GAMModelUtils
 
genCPMPredNamesIndex(Key, DataInfo, String[], ModelSelectionModel.ModelSelectionParameters) - Static method in class hex.modelselection.ModelSelectionUtils
 
GenCSSplineGamOneColumn - Class in hex.gam.MatrixFrameUtils
 
GenCSSplineGamOneColumn(int, int, double[], Frame) - Constructor for class hex.gam.MatrixFrameUtils.GenCSSplineGamOneColumn
 
genDfBetas(double, double, double[], double[], double) - Method in class hex.glm.RegressionInfluenceDiagnosticsTasks.RegressionInfluenceDiagBinomial
implement operations on and in between equation 5, 6 of the document
genDfbetasNames(GLMModel) - Static method in class hex.glm.GLMUtils
 
generate2DCoeffTable(String, String, double[][], String[], String[]) - Static method in class hex.schemas.HGLMModelV3
 
generate_scoring_history - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
generate_variable_inflation_factors - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
generateAllErrVar(double[][], Frame, int, List<Integer>, List<Integer>, Set<BitSet>, BitSet, int[][], boolean) - Static method in class hex.modelselection.ModelSelectionUtils
Given the original predictor subset, this function will go into a for loop and choose one predictor out of the remaining predictor set validSubsets and put it into the array allPreds.
generateAllErrVarR(double[][], Frame, double[][], int, List<Integer>, List<Integer>, Set<BitSet>, BitSet, int[][], boolean, int[], ModelSelectionUtils.SweepVector[][]) - Static method in class hex.modelselection.ModelSelectionUtils
Given the original predictor subset, this function will go into a for loop and choose one predictor out of the remaining predictor set validSubsets and put it into the array allPreds.
generateCJInverse(double[][][], double, double[][]) - Static method in class hex.hglm.HGLMUtils
 
generateCoeffTable(String, String, double[], String[]) - Static method in class hex.schemas.HGLMModelV3
 
generateGamColNames(int, GAMModel.GAMParameters) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
 
generateGamColNamesThinPlateKnots(int, GAMModel.GAMParameters, int[][], String) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
 
generateGLMParameters(Frame[], ModelSelectionModel.ModelSelectionParameters, int, String, Model.Parameters.FoldAssignmentScheme) - Static method in class hex.modelselection.ModelSelectionUtils
 
generateGLMSS(GLMModel[], GLMModel.GLMParameters.Family) - Static method in class hex.anovaglm.ANOVAGLMUtils
This method is used to generate Model SS for all models built except the full model.
generateIdentityMat(int) - Static method in class hex.util.LinearAlgebraUtils
 
generateIPC(double[], double, double[], double[], double[]) - Static method in class hex.util.DimensionReductionUtils
This method will calculate the importance of principal components for PCA/GLRM methods.
generateKnotsFromKeys() - Method in class hex.gam.GAM
This method will look at the keys of knots stored in _parms._knot_ids and copy them over to double[][][] array.
generateKnotsOneColumn(Frame, int) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
 
generateMaxRTrainingFrames(ModelSelectionModel.ModelSelectionParameters, String[], String, List<Integer>, int, List<Integer>, Set<BitSet>) - Static method in class hex.modelselection.ModelSelectionUtils
double
generateModelNames(String[][]) - Static method in class hex.anovaglm.ANOVAGLMUtils
 
generateNewTmat(double[][]) - Static method in class hex.hglm.HGLMUtils
 
generateOneCombo(String[], int, List<String[]>) - Static method in class hex.anovaglm.ANOVAGLMUtils
 
generateOneFrame(int[], Model.Parameters, String[], String) - Static method in class hex.modelselection.ModelSelectionUtils
Given a predictor indices set, this function will generate a training frame containing the predictors with indices in predIndices.
generateOneGAMcols(int, int, double[], double[], double[][], CubicRegressionSplines, double, NewChunk[]) - Method in class hex.gam.MatrixFrameUtils.AddCSGamColumns
 
generateOneISGAMCols(int, int, double[], ISplines, double, NewChunk[]) - Method in class hex.gam.MatrixFrameUtils.AddISGamColumns
Perform gamification of one column using I-spline basis function described in Section V of doc I.
generateOneMSGAMCols(int, int, double[], double[], MSplines, double, NewChunk[]) - Method in class hex.gam.MatrixFrameUtils.AddMSGamColumns
Perform gamification of one column using I-spline basis function described in Section V of doc I.
generateOrderFreq(Integer[]) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
 
generateOrthogonalComplement(double[][], double[][], int, long) - Static method in class hex.util.LinearAlgebraUtils
Given an matrix, a QR decomposition is carried out to the matrix as starT = QR.
generatePenalty() - Method in class hex.gam.GamSplines.ThinPlateDistanceWithKnots
 
generatePredictorCombos(String[], int) - Static method in class hex.anovaglm.ANOVAGLMUtils
In order to calculate Type III SS, we need the individual predictors and their interactions.
generatePredictorNames(String[][], String[][], int[], int[], DataInfo) - Static method in class hex.anovaglm.ANOVAGLMUtils
This method aims to generate the column names of the final transformed frames.
generateQR(double[][]) - Static method in class hex.util.LinearAlgebraUtils
 
generateRowHeaders(TwoDimTable, TwoDimTable, int, int) - Static method in class hex.glm.GLMUtils
 
generateStarT(double[][], List<Integer[]>, double[], double[], boolean) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
 
generateSummary() - Method in class hex.anovaglm.ANOVAGLMModel
The Type III SS calculation, degree of freedom, F-statistics and p-values will be included in the model summary.
generateSummary(Key, int) - Method in class hex.glm.GLMModel
Re-do the TwoDim table generation with updated model.
generateSummary() - Method in class hex.modelselection.ModelSelectionModel.ModelSelectionModelOutput
 
generateSummary(int) - Method in class hex.modelselection.ModelSelectionModel.ModelSelectionModelOutput
 
generateTInverse(double[][]) - Static method in class hex.hglm.HGLMUtils
 
generateTrainingFrames(ModelSelectionModel.ModelSelectionParameters, int, String[], int, String) - Static method in class hex.modelselection.ModelSelectionUtils
 
GenerateTransformColumns - Class in hex.anovaglm
This class will take two predictors and transform them according to rules specified in Wendy Docs
GenerateTransformColumns(String[][], ANOVAGLMModel.ANOVAGLMParameters, DataInfo, int, String[][]) - Constructor for class hex.anovaglm.GenerateTransformColumns
 
generateTriDiagMatrix(double[]) - Static method in class hex.util.LinearAlgebraUtils
Generate D matrix as a lower diagonal matrix since it is symmetric and contains only 3 diagonals
generateZTransp(Frame, int) - Static method in class hex.gam.MatrixFrameUtils.GenCSSplineGamOneColumn
 
Generic - Class in hex.generic
Generic model able to do scoring with any underlying model deserializable into a format known by the GenericModel.
Generic(GenericModelParameters) - Constructor for class hex.generic.Generic
 
Generic(boolean) - Constructor for class hex.generic.Generic
 
GenericModel - Class in hex.generic
 
GenericModel(Key<GenericModel>, GenericModelParameters, GenericModelOutput, MojoModel, Key<Frame>) - Constructor for class hex.generic.GenericModel
Full constructor
GenericModel(Key<GenericModel>, GenericModelParameters, GenericModelOutput, GenModel, Key<Frame>) - Constructor for class hex.generic.GenericModel
 
GenericModelMojoWriter - Class in hex.generic
 
GenericModelMojoWriter() - Constructor for class hex.generic.GenericModelMojoWriter
 
GenericModelMojoWriter(ByteVec) - Constructor for class hex.generic.GenericModelMojoWriter
 
GenericModelOutput - Class in hex.generic
 
GenericModelOutput(ModelDescriptor) - Constructor for class hex.generic.GenericModelOutput
 
GenericModelOutput(ModelDescriptor, ModelAttributes, Table[]) - Constructor for class hex.generic.GenericModelOutput
 
GenericModelOutputV3() - Constructor for class hex.schemas.GenericModelV3.GenericModelOutputV3
 
GenericModelParameters - Class in hex.generic
 
GenericModelParameters() - Constructor for class hex.generic.GenericModelParameters
 
GenericModelV3 - Class in hex.schemas
 
GenericModelV3() - Constructor for class hex.schemas.GenericModelV3
 
GenericModelV3.GenericModelOutputV3 - Class in hex.schemas
 
GenericParametersV3() - Constructor for class hex.schemas.GenericV3.GenericParametersV3
 
GenericV3 - Class in hex.schemas
 
GenericV3() - Constructor for class hex.schemas.GenericV3
 
GenericV3.GenericParametersV3 - Class in hex.schemas
 
genGamColumnDim(String[][]) - Method in class hex.gam.GAMMojoWriter
 
genGLMParameters(GLMModel.GLMParameters, String[], String[]) - Static method in class hex.glm.GLMUtils
 
genGramCheckDup(Key, DataInfo, ArrayList<Integer>, ModelSelectionModel.ModelSelectionParameters) - Static method in class hex.modelselection.ModelSelectionUtils
 
genInitBeta() - Method in class hex.glm.GLM
 
genInitialLambda(Random, ConstrainedGLMUtils.LinearConstraints[], double[]) - Static method in class hex.glm.ConstrainedGLMUtils
The initial value of lambda values really do not matter that much.
genInnerProduct(double[][], double[], double[]) - Static method in class hex.util.LinearAlgebraUtils
 
genISPenaltyMatrix(double[], int) - Static method in class hex.gam.GamSplines.NBSplinesTypeIDerivative
Generate penalty matrix for I-spline as described in Section VI of doc.
GenISplineGamOneColumn - Class in hex.gam.MatrixFrameUtils
Gamified one gam column at a time using I-spline.
GenISplineGamOneColumn(GAMModel.GAMParameters, double[], int, Frame, int, int) - Constructor for class hex.gam.MatrixFrameUtils.GenISplineGamOneColumn
 
genKnotsMultiplePreds(Frame, GAMModel.GAMParameters, int) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
Generate knots for thin plate (TP) smoothers.
genMSE1stPred(int[][], double[][], Frame, int[], double[], RecursiveAction[], int, boolean) - Static method in class hex.modelselection.ModelSelectionUtils
This method will calculate the variance variance when only one predictor is considered in allPreds.
genMSE4MorePreds(int[][], double[][], Frame, int[], int, double[], RecursiveAction[], int, boolean) - Static method in class hex.modelselection.ModelSelectionUtils
This method will calculate the error variance value for all predictors in the allPreds.
genMSE4MorePredsR(int[][], double[][], Frame, double[][], int[], double[], RecursiveAction[], int, boolean, ModelSelectionUtils.SweepVector[][], int[]) - Static method in class hex.modelselection.ModelSelectionUtils
Generate the error variance for one predictor subset setting in allPreds.
genMSPenaltyMatrix(double[], int) - Static method in class hex.gam.GamSplines.NBSplinesTypeIDerivative
Generate penalty matrix for M-spline as described in Section III of doc 2.
GenMSplineGamOneColumn - Class in hex.gam.MatrixFrameUtils
 
GenMSplineGamOneColumn(GAMModel.GAMParameters, double[], int, Frame, int, int) - Constructor for class hex.gam.MatrixFrameUtils.GenMSplineGamOneColumn
Perform gamification on one predictor.
genNewBeta(int, double[], double[]) - Static method in class hex.glm.GLMUtils
 
genOneDerivative(ConstrainedGLMUtils.LinearConstraints, List<String>) - Static method in class hex.glm.ComputationState
Given a constraint, this method will calculate the first order derivative.
genPolyBasisNames(String[], int[]) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
 
GenPrediction(double[], GLMModel, DataInfo) - Constructor for class hex.glm.DispersionTask.GenPrediction
 
genRedundantConstraint(ComputationState, List<Integer>) - Static method in class hex.glm.ConstrainedGLMUtils
 
genRID() - Method in class hex.glm.GLM.GLMDriver
Generate the regression influence diagnostic for gaussian and binomial families.
genThinPlateNameStart(GAMModel.GAMParameters, int) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
 
genTrainColGamCols(int, int) - Method in class hex.gam.GAMMojoWriter
 
get(int, int) - Method in class hex.coxph.Storage.DenseRowMatrix
 
get(int, int) - Method in interface hex.coxph.Storage.Matrix
 
get(int) - Method in class hex.DataInfo.Row
 
get(int, int) - Method in class hex.deeplearning.Storage.DenseColMatrix
 
get(int, int) - Method in class hex.deeplearning.Storage.DenseRowMatrix
 
get(int) - Method in class hex.deeplearning.Storage.DenseVector
 
get(int, int) - Method in interface hex.deeplearning.Storage.Matrix
 
get(int, int) - Method in class hex.deeplearning.Storage.SparseRowMatrix
 
get(int, int, int) - Method in interface hex.deeplearning.Storage.Tensor
 
get(int) - Method in interface hex.deeplearning.Storage.Vector
 
get(int, int) - Method in class hex.gram.Gram
 
get_ada_dx_g(int) - Method in class hex.deeplearning.DeepLearningModelInfo
 
get_avg_activations(int) - Method in class hex.deeplearning.DeepLearningModelInfo
 
get_biases(int) - Method in class hex.deeplearning.DeepLearningModelInfo
 
get_biases_ada_dx_g(int) - Method in class hex.deeplearning.DeepLearningModelInfo
 
get_biases_momenta(int) - Method in class hex.deeplearning.DeepLearningModelInfo
 
get_global_beta_multinomial() - Method in class hex.glm.GLMModel.GLMOutput
 
get_params() - Method in class hex.deeplearning.DeepLearningModel
Get the parameters actually used for model building, not the user-given ones (_parms) They might differ since some defaults are filled in, and some invalid combinations are auto-disabled in modifyParams
get_params() - Method in class hex.deeplearning.DeepLearningModelInfo
 
get_processed_global() - Method in class hex.deeplearning.DeepLearningModelInfo
 
get_processed_local() - Method in class hex.deeplearning.DeepLearningModelInfo
 
get_processed_total() - Method in class hex.deeplearning.DeepLearningModelInfo
 
get_weights(int) - Method in class hex.deeplearning.DeepLearningModelInfo
 
get_weights_momenta(int) - Method in class hex.deeplearning.DeepLearningModelInfo
 
getAdditionalParameters() - Method in class hex.schemas.GenericV3.GenericParametersV3
 
getAlgo() - Method in class hex.ensemble.Metalearners.SimpleMetalearner
 
getAllAllowedColumnIndices() - Method in class hex.tree.GlobalInteractionConstraints
 
getAllowedInteractionForIndex(int) - Method in class hex.tree.GlobalInteractionConstraints
 
getAndValidateCheckpointModel(ModelBuilder<M, P, O>, String[], Value) - Static method in class hex.util.CheckpointUtils
 
getBeta(double[]) - Method in class hex.glm.GLMModel.Submodel
 
getBeta() - Method in class hex.hglm.ComputationStateHGLM
 
getCalibrationFrame() - Method in interface hex.tree.CalibrationHelper.ModelBuilderWithCalibration
 
getCalibrationFrame() - Method in interface hex.tree.CalibrationHelper.ParamsWithCalibration
 
getCalibrationFrame() - Method in class hex.tree.SharedTree
 
getCalibrationFrame() - Method in class hex.tree.SharedTreeModel.SharedTreeParameters
 
getCalibrationMethod() - Method in interface hex.tree.CalibrationHelper.OutputWithCalibration
 
getCalibrationMethod() - Method in interface hex.tree.CalibrationHelper.ParamsWithCalibration
 
getCalibrationMethod() - Method in class hex.tree.SharedTreeModel.SharedTreeParameters
 
getCat(int, int, int) - Method in class hex.glrm.GLRM.Archetypes
 
getCatBlock(int) - Method in class hex.glrm.GLRM.Archetypes
 
getCatCidx(int, int) - Method in class hex.glrm.GLRM.Archetypes
 
getCategoricalId(int, double) - Method in class hex.DataInfo
 
getCategoricalId(int, int) - Method in class hex.DataInfo
Get the offset into the expanded categorical
getCategoricalIdFromInteraction(int, int) - Method in class hex.DataInfo
 
getCategory() - Method in class hex.tree.dt.binning.CategoricalBin
 
getChildNodeID(Chunk[], int) - Method in class hex.tree.DTree.DecidedNode
 
GetClassCountsMRTask - Class in hex.tree.dt.mrtasks
MR task for counting classes.
GetClassCountsMRTask(double[][], int) - Constructor for class hex.tree.dt.mrtasks.GetClassCountsMRTask
 
getCODGradients() - Method in class hex.glm.ComputationState.GramXY
 
getColumnConstraint(int) - Method in class hex.tree.Constraints
 
getConstraintFromIndex(ComputationState, Integer) - Static method in class hex.glm.ConstrainedGLMUtils
 
getCount0() - Method in class hex.tree.dt.binning.AbstractBin
 
getCriterionValue() - Method in class hex.tree.dt.AbstractSplittingRule
 
getDataInfoFrame(int, DataInfoFrameV3) - Method in class hex.api.MakeGLMModelHandler
Get the expanded (interactions + offsets) dataset.
getDecisionPath(double[], String[][]) - Method in class hex.tree.CompressedTree
Deprecated.
getDecisionPath(double[], String[][], SharedTreeMojoModel.DecisionPathTracker<T>) - Method in class hex.tree.CompressedTree
 
getDecisionValue() - Method in class hex.tree.dt.CompressedLeaf
 
getDepth() - Method in class hex.tree.isoforextended.isolationtree.IsolationTree
 
getDinfo() - Method in class hex.glm.GLMModel.GLMOutput
 
getDistributionFamily() - Method in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
 
getDistributionFamily() - Method in class hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters
 
getDistributionFamily() - Method in class hex.gam.GAMModel.GAMParameters
 
getDistributionFamily() - Method in class hex.glm.GLMModel.GLMParameters
 
getFastestImplementation() - Static method in enum hex.pca.PCAImplementation
 
getFeatureBins(int) - Method in class hex.tree.dt.binning.Histogram
Get list of feature bins (copy) - for testing.
getFeatureIndex() - Method in class hex.rulefit.Condition
 
getFeatureIndex() - Method in class hex.tree.dt.AbstractSplittingRule
 
getFeatureInteractions(int, int, int) - Method in class hex.tree.gbm.GBMModel
 
getFeatureInteractionsTable(int, int, int) - Method in class hex.tree.gbm.GBMModel
 
getFeatureLimits(int) - Method in class hex.tree.dt.DataFeaturesLimits
 
getFeaturesLimitsForConditions(Frame, DataFeaturesLimits) - Static method in class hex.tree.dt.binning.Histogram
Computes features limits considering known condition limits of ancestors.
getFixedCofficientNames() - Method in class hex.hglm.ComputationStateHGLM
 
getFriedmanPopescusH(Frame, String[]) - Method in class hex.tree.gbm.GBMModel
 
getGenModelEncoding() - Method in class hex.deeplearning.DeepLearningModel
 
getGenModelEncoding() - Method in class hex.tree.SharedTreeModel
 
getGlobalSplitPointsKey(int) - Method in class hex.tree.SharedTree.Driver
 
getGlobalSplitPointsKeys() - Method in class hex.tree.SharedTree.Driver
 
getGradient(double[], ComputationState) - Method in class hex.glm.GLM.GLMGradientSolver
This method calculates the gradient for constrained GLM without taking into account the contribution of the constraints in this case.
getGradient(double[]) - Method in class hex.glm.GLM.GLMGradientSolver
 
getGradient(double[]) - Method in class hex.glm.GLM.ProximalGradientSolver
 
getGradient(double[]) - Method in interface hex.optimization.OptimizationUtils.GradientSolver
Evaluate ginfo at solution beta.
getGram() - Method in class hex.glm.GLMTask.GLMIterationTask
 
getGroupColumnNames() - Method in class hex.hglm.ComputationStateHGLM
 
getHeight() - Method in class hex.tree.isoforextended.isolationtree.AbstractCompressedNode
 
getHeight() - Method in class hex.tree.isoforextended.isolationtree.IsolationTree.Node
 
getId() - Method in enum hex.tree.CalibrationHelper.CalibrationMethod
 
getInformationTableNumRows() - Method in class hex.tree.SharedTreeModel.SharedTreeOutput
 
getInitialFeaturesLimits(Frame) - Static method in class hex.tree.dt.DT
Compute initial features limits.
getInitialValue() - Method in class hex.tree.SharedTree
Compute the inital value for a given distribution
getInstance() - Static method in class hex.deeplearning.MurmurHash
 
getInteractionOffset(Chunk[], int, int) - Method in class hex.DataInfo
 
getInv() - Method in class hex.gram.Gram.Cholesky
 
getInvDiag() - Method in class hex.gram.Gram.Cholesky
 
getIsolatedPoints() - Method in class hex.tree.isoforextended.isolationtree.IsolationTree
 
getL() - Method in class hex.gram.Gram.Cholesky
 
getL() - Method in class hex.gram.Gram.InPlaceCholesky
 
getLambdaNull() - Method in class hex.glm.ComputationState
 
getLeaves() - Method in class hex.tree.isoforextended.isolationtree.IsolationTree
 
getLeft() - Method in class hex.tree.isoforextended.isolationtree.IsolationTree.FilteredData
 
getLevel2UnitIndex() - Method in class hex.hglm.ComputationStateHGLM
 
getLinearNames(int, String[]) - Static method in class hex.rulefit.RuleFitUtils
 
getListOfRules() - Method in class hex.tree.dt.CompressedDT
 
getMask() - Method in class hex.tree.dt.CategoricalSplittingRule
 
getMatrixInString(double[][]) - Static method in class hex.util.LinearAlgebraUtils
 
getMetricsBuilder() - Method in class hex.tree.dt.mrtasks.ScoreDTTask
 
getMiniBatchSize() - Method in class hex.deeplearning.DeepLearningTask
 
getMiniBatchSize() - Method in class hex.FrameTask
Note: If this is overridden, then applyMiniBatch must be overridden as well to perform the model/weight mini-batch update
getModelBuilder() - Method in interface hex.tree.CalibrationHelper.ModelBuilderWithCalibration
 
getModelBuilder() - Method in class hex.tree.SharedTree
 
getModelCategory() - Method in class hex.aggregator.AggregatorModel.AggregatorOutput
 
getModelCategory() - Method in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMModelOutput
 
getModelCategory() - Method in class hex.coxph.CoxPHModel.CoxPHOutput
 
getModelCategory() - Method in class hex.deeplearning.DeepLearningModel.DeepLearningModelOutput
 
getModelCategory() - Method in class hex.gam.GAMModel.GAMModelOutput
 
getModelCategory() - Method in class hex.generic.GenericModelOutput
 
getModelCategory() - Method in class hex.glm.GLMModel.GLMOutput
 
getModelCategory() - Method in class hex.glrm.GLRMModel.GLRMOutput
 
getModelCategory() - Method in class hex.grep.GrepModel.GrepOutput
 
getModelCategory() - Method in class hex.hglm.HGLMModel.HGLMModelOutput
 
getModelCategory() - Method in class hex.isotonic.IsotonicRegressionModel.IsotonicRegressionOutput
 
getModelCategory() - Method in class hex.modelselection.ModelSelectionModel.ModelSelectionModelOutput
 
getModelCategory() - Method in class hex.pca.PCAModel.PCAOutput
 
getModelCategory() - Method in class hex.psvm.PSVMModel.PSVMModelOutput
 
getModelCategory() - Method in class hex.svd.SVDModel.SVDOutput
 
getModelCategory() - Method in interface hex.tree.CalibrationHelper.OutputWithCalibration
 
getModelCategory() - Method in class hex.tree.isofor.IsolationForestModel.IsolationForestOutput
 
getModelCategory() - Method in class hex.tree.isoforextended.ExtendedIsolationForestModel.ExtendedIsolationForestOutput
 
getModelCategory() - Method in class hex.tree.uplift.UpliftDRFModel.UpliftDRFOutput
 
getModelCategory() - Method in class hex.word2vec.Word2VecModel.Word2VecOutput
 
getMojo() - Method in class hex.coxph.CoxPHModel
 
getMojo() - Method in class hex.deeplearning.DeepLearningModel
 
getMojo() - Method in class hex.ensemble.StackedEnsembleModel
 
getMojo() - Method in class hex.gam.GAMModel
 
getMojo() - Method in class hex.generic.GenericModel
 
getMojo() - Method in class hex.glm.GLMModel
 
getMojo() - Method in class hex.glrm.GLRMGenX
 
getMojo() - Method in class hex.glrm.GLRMModel
 
getMojo() - Method in class hex.isotonic.IsotonicRegressionModel
 
getMojo() - Method in class hex.kmeans.KMeansModel
 
getMojo() - Method in class hex.pca.PCAModel
 
getMojo() - Method in class hex.rulefit.RuleFitModel
 
getMojo() - Method in class hex.tree.drf.DRFModel
 
getMojo() - Method in class hex.tree.gbm.GBMModel
 
getMojo() - Method in class hex.tree.isofor.IsolationForestModel
 
getMojo() - Method in class hex.tree.isoforextended.ExtendedIsolationForestModel
 
getMojo() - Method in class hex.tree.uplift.UpliftDRFModel
 
getMojo() - Method in class hex.word2vec.Word2VecModel
 
getMostImportantFeatures(int) - Method in class hex.tree.SharedTreeModel
 
getMultinomialLikelihood(double[]) - Method in class hex.glm.GLM.GLMGradientSolver
 
getN() - Method in class hex.tree.isoforextended.isolationtree.CompressedNode
 
getN() - Method in class hex.tree.isoforextended.isolationtree.IsolationTree.Node
 
getName() - Method in class hex.api.RegisterAlgos
 
getName() - Method in interface hex.ensemble.MetalearnerProvider
 
getNodes() - Method in class hex.tree.dt.CompressedDT
 
getNodes() - Method in class hex.tree.isoforextended.isolationtree.CompressedIsolationTree
 
getNonPredictors() - Method in class hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters
 
getNormBeta() - Method in class hex.glm.GLMModel.GLMOutput
 
getNormBeta() - Method in class hex.modelselection.ModelSelectionModel.ModelSelectionModelOutput
 
getNormBetaMultinomial() - Method in class hex.glm.GLMModel.GLMOutput
 
getNormBetaMultinomial(int) - Method in class hex.glm.GLMModel.GLMOutput
 
getNormBetaMultinomial(int, boolean) - Method in class hex.glm.GLMModel.GLMOutput
 
getNotIsolatedPoints() - Method in class hex.tree.isoforextended.isolationtree.IsolationTree
 
getNTrees() - Method in class hex.tree.SharedTreeModel.SharedTreeOutput
 
getNTrees() - Method in class hex.tree.SharedTreeModel.SharedTreeParameters
 
getNum(int, int) - Method in class hex.glrm.GLRM.Archetypes
 
getNumCatTreshold() - Method in class hex.rulefit.Condition
 
getNumCidx(int) - Method in class hex.glrm.GLRM.Archetypes
 
getNumFixedCoeffs() - Method in class hex.hglm.ComputationStateHGLM
 
getNumLevel2Units() - Method in class hex.hglm.ComputationStateHGLM
 
getNumRandomCoeffs() - Method in class hex.hglm.ComputationStateHGLM
 
getNumRows() - Method in class hex.tree.isoforextended.isolationtree.CompressedLeaf
 
getNumRows() - Method in class hex.tree.isoforextended.isolationtree.IsolationTree.Node
 
getNumTreshold() - Method in class hex.rulefit.Condition
 
getObj() - Method in interface hex.optimization.OptimizationUtils.LineSearchSolver
 
getObj() - Method in class hex.optimization.OptimizationUtils.MoreThuente
 
getObj() - Method in class hex.optimization.OptimizationUtils.SimpleBacktrackingLS
 
getObjective(double[]) - Method in class hex.glm.GLM.GLMGradientSolver
 
getObjective(double[]) - Method in class hex.glm.GLM.ProximalGradientSolver
 
getObjective(double[]) - Method in interface hex.optimization.OptimizationUtils.GradientSolver
 
getOffsetVec() - Method in class hex.DataInfo
 
getOperator() - Method in class hex.rulefit.Condition
 
getOutputVec(int) - Method in class hex.DataInfo
 
getP() - Method in class hex.tree.isoforextended.isolationtree.CompressedNode
 
getP() - Method in class hex.tree.isoforextended.isolationtree.IsolationTree.Node
 
getParams() - Method in interface hex.tree.CalibrationHelper.ParamsWithCalibration
 
getParams() - Method in class hex.tree.SharedTreeModel.SharedTreeParameters
 
getParams() - Method in class hex.word2vec.Word2VecModel.Word2VecModelInfo
 
getPathNames(int, int, String[]) - Static method in class hex.rulefit.RuleFitUtils
 
getPojoInterfaces() - Method in class hex.kmeans.KMeansModel
 
getPrediction(double[]) - Method in class hex.tree.Score.ScoreExtension
Get prediction from per class-probabilities or algo-specific data
getPrincipalComponents() - Method in class hex.pca.jama.PCAJama
 
getPrincipalComponents() - Method in class hex.pca.mtj.PCA_MTJ_EVD_DenseMatrix
 
getPrincipalComponents() - Method in class hex.pca.mtj.PCA_MTJ_EVD_SymmMatrix
 
getPrincipalComponents() - Method in class hex.pca.mtj.PCA_MTJ_SVD_DenseMatrix
 
getPrincipalComponents() - Method in interface hex.pca.PCAInterface
 
getProbabilities() - Method in class hex.tree.dt.CompressedLeaf
 
getProblemType() - Method in class hex.tree.isofor.IsolationForest
 
getProblemType() - Method in class hex.tree.SharedTree
 
getRandomCoefficientNames() - Method in class hex.hglm.ComputationStateHGLM
 
getRawVals() - Method in class hex.tree.DHistogram
 
getRegularizationPath() - Method in class hex.glm.GLMModel
 
getResponseComplements(SharedTreeModel<?, ?, ?>) - Method in class hex.tree.Score.ScoreExtension
Return indices of columns that need to be extracted from Frame chunks in addition to response
getResponseLevelIndex(String, SharedTreeModel.SharedTreeOutput) - Static method in class hex.tree.TreeUtils
 
getRIDFrame() - Method in class hex.glm.GLMModel
 
getRight() - Method in class hex.tree.isoforextended.isolationtree.IsolationTree.FilteredData
 
getRuleByVarName(String) - Method in class hex.rulefit.RuleEnsemble
 
getRuleImportanceTable() - Method in class hex.rulefit.RuleFitModel
 
getScoreContributionsSoringTask(SharedTreeModel, Model.Contributions.ContributionsOptions) - Method in class hex.tree.drf.DRFModel
 
getScoreContributionsSoringTask(SharedTreeModel, Model.Contributions.ContributionsOptions) - Method in class hex.tree.gbm.GBMModel
 
getScoreContributionsSoringTask(SharedTreeModel, Model.Contributions.ContributionsOptions) - Method in class hex.tree.SharedTreeModelWithContributions
 
getScoreContributionsTask(SharedTreeModel) - Method in class hex.tree.drf.DRFModel
 
getScoreContributionsTask(SharedTreeModel) - Method in class hex.tree.gbm.GBMModel
 
getScoreContributionsTask(SharedTreeModel) - Method in class hex.tree.SharedTreeModelWithContributions
 
getScoreContributionsWithBackgroundTask(SharedTreeModel, Frame, Frame, boolean, int[], Model.Contributions.ContributionsOptions) - Method in class hex.tree.drf.DRFModel
 
getScoreContributionsWithBackgroundTask(SharedTreeModel, Frame, Frame, boolean, int[], Model.Contributions.ContributionsOptions) - Method in class hex.tree.gbm.GBMModel
 
getScoreContributionsWithBackgroundTask(SharedTreeModel, Frame, Frame, boolean, int[], Model.Contributions.ContributionsOptions) - Method in class hex.tree.SharedTreeModelWithContributions
 
getScoringInfo() - Method in class hex.glm.GLMModel
 
getSearchDirection(double[], double[]) - Method in class hex.optimization.L_BFGS.History
 
getSeed() - Method in class hex.tree.CompressedTree
 
getSharedTreeSubgraph(int, int) - Method in class hex.tree.SharedTreeModel
Converts a given tree of the ensemble to a user-understandable representation.
getSplitPrediction() - Method in class hex.tree.DTree.LeafNode
 
getSplittingRule() - Method in class hex.tree.dt.CompressedNode
 
getSubmodel(double) - Method in class hex.glm.GLMModel.GLMOutput
 
getSubmodel(int) - Method in class hex.glm.GLMModel.GLMOutput
 
getSubModels() - Method in class hex.ensemble.StackedEnsembleMojoWriter
 
getSubModels() - Method in class hex.rulefit.RuleFitMojoWriter
 
getT() - Method in class hex.hglm.ComputationStateHGLM
 
getTauEVarE10() - Method in class hex.hglm.ComputationStateHGLM
 
getTauUVar() - Method in class hex.hglm.ComputationStateHGLM
 
getThreshold() - Method in class hex.tree.dt.NumericSplittingRule
 
getToEigenVec() - Method in class hex.aggregator.Aggregator
 
getToEigenVec() - Method in class hex.aggregator.AggregatorModel
 
getToEigenVec() - Method in class hex.deeplearning.DeepLearning
 
getToEigenVec() - Method in class hex.deeplearning.DeepLearningModel
 
getToEigenVec() - Method in class hex.kmeans.KMeans
 
getToEigenVec() - Method in class hex.kmeans.KMeansModel
 
getToEigenVec() - Method in class hex.rulefit.RuleFitModel
 
getToEigenVec() - Method in class hex.tree.SharedTree
 
getToEigenVec() - Method in class hex.tree.SharedTreeModel
 
getTransformedEigenvectors(DataInfo, double[][]) - Static method in class hex.util.DimensionReductionUtils
This function will tranform the eigenvectors calculated for a matrix T(A) to the ones calculated for matrix A.
getTree(int, TreeV3) - Method in class hex.tree.TreeHandler
 
getType() - Method in class hex.rulefit.Condition
 
getUbeta() - Method in class hex.hglm.ComputationStateHGLM
 
getVariableImportances() - Method in class hex.deeplearning.DeepLearningModel.DeepLearningModelOutput
 
getVariableImportances() - Method in class hex.glm.GLMModel.GLMOutput
 
getVariableImportances() - Method in class hex.tree.SharedTreeModel.SharedTreeOutput
 
getVariableInflationFactors() - Method in class hex.glm.GLMModel.GLMOutput
 
getVariances() - Method in class hex.pca.jama.PCAJama
 
getVariances() - Method in class hex.pca.mtj.PCA_MTJ_EVD_DenseMatrix
 
getVariances() - Method in class hex.pca.mtj.PCA_MTJ_EVD_SymmMatrix
 
getVariances() - Method in class hex.pca.mtj.PCA_MTJ_SVD_DenseMatrix
 
getVariances() - Method in interface hex.pca.PCAInterface
 
getVIFAndNames() - Method in class hex.glm.GLMModel.GLMOutput
 
getVIFPredictorNames() - Method in class hex.glm.GLMModel.GLMOutput
 
getWeightsVec() - Method in class hex.DataInfo
 
getX() - Method in interface hex.optimization.OptimizationUtils.LineSearchSolver
 
getX() - Method in class hex.optimization.OptimizationUtils.MoreThuente
 
getX() - Method in class hex.optimization.OptimizationUtils.SimpleBacktrackingLS
 
getXChunk(Frame, int, Chunk[]) - Static method in class hex.glrm.GLRM
 
getXX() - Method in class hex.gram.Gram
 
getXX(boolean, boolean) - Method in class hex.gram.Gram
 
getXX(double[][]) - Method in class hex.gram.Gram
 
getXX(double[][], boolean, boolean) - Method in class hex.gram.Gram
 
getXXCPM(double[][], boolean, boolean) - Method in class hex.gram.Gram
This method will copy the xx matrix into a matrix xalloc which is of bigger size than the actual xx by 1 in both row and column.
getXY() - Method in class hex.glm.GLMTask.GLMIterationTask
 
getY(boolean) - Method in class hex.glrm.GLRM.Archetypes
 
getYY() - Method in class hex.glm.GLMTask.GLMIterationTask
 
getZeroSplits() - Method in class hex.tree.isoforextended.isolationtree.IsolationTree
 
getZValues() - Method in class hex.glm.GLMModel.GLMOutput
 
getZValues(double[]) - Method in class hex.glm.GLMModel.Submodel
 
ginfo() - Method in class hex.glm.ComputationState
 
ginfo - Variable in class hex.optimization.L_BFGS.Result
 
ginfo() - Method in interface hex.optimization.OptimizationUtils.LineSearchSolver
 
ginfo() - Method in class hex.optimization.OptimizationUtils.MoreThuente
 
ginfo() - Method in class hex.optimization.OptimizationUtils.SimpleBacktrackingLS
 
ginfoMultinomial(int) - Method in class hex.glm.ComputationState
 
ginfoMultinomialRCC(int) - Method in class hex.glm.ComputationState
 
ginfoNull() - Method in class hex.glm.ComputationState
 
GLM - Class in hex.glm
Created by tomasnykodym on 8/27/14.
GLM(boolean) - Constructor for class hex.glm.GLM
 
GLM(GLMModel.GLMParameters) - Constructor for class hex.glm.GLM
 
GLM(GLMModel.GLMParameters, double[][][], String[][]) - Constructor for class hex.glm.GLM
This constructor is only called by GAM when it is trying to build a GAM model using GLM.
GLM(GLMModel.GLMParameters, Key) - Constructor for class hex.glm.GLM
 
GLM.BetaConstraint - Class in hex.glm
 
GLM.BetaInfo - Class in hex.glm
 
GLM.GLMDriver - Class in hex.glm
Main loop of the glm algo.
GLM.GLMGradientInfo - Class in hex.glm
 
GLM.GLMGradientSolver - Class in hex.glm
Gradient and line search computation for L_BFGS and also L_BFGS solver wrapper (for ADMM)
GLM.GramSolver - Class in hex.glm
Created by tomasnykodym on 3/30/15.
GLM.PlugValuesImputer - Class in hex.glm
 
GLM.ProximalGradientInfo - Class in hex.glm
 
GLM.ProximalGradientSolver - Class in hex.glm
Simple wrapper around ginfo computation, adding proximal penalty
GLMCoordinateDescentTaskSeqIntercept(double[], DataInfo) - Constructor for class hex.glm.GLMTask.GLMCoordinateDescentTaskSeqIntercept
 
GLMCoordinateDescentTaskSeqNaive(boolean, boolean, int, double[], double[], int[], int[], double[], double[], double[], double[], boolean) - Constructor for class hex.glm.GLMTask.GLMCoordinateDescentTaskSeqNaive
 
GLMDriver() - Constructor for class hex.glm.GLM.GLMDriver
 
GLMGaussianGradientTask(Key, DataInfo, GLMModel.GLMParameters, double, double[]) - Constructor for class hex.glm.GLMTask.GLMGaussianGradientTask
 
GLMGaussianGradientTask(Key, DataInfo, GLMModel.GLMParameters, double, double[], double[][][], int[][]) - Constructor for class hex.glm.GLMTask.GLMGaussianGradientTask
 
GLMGenerateWeightsTask(Key, DataInfo, GLMModel.GLMParameters, double[]) - Constructor for class hex.glm.GLMTask.GLMGenerateWeightsTask
 
GLMGradientInfo(double, double, double[]) - Constructor for class hex.glm.GLM.GLMGradientInfo
 
GLMGradientSolver(Job, GLMModel.GLMParameters, DataInfo, double, GLM.BetaConstraint, GLM.BetaInfo) - Constructor for class hex.glm.GLM.GLMGradientSolver
 
GLMGradientSolver(Job, GLMModel.GLMParameters, DataInfo, double, GLM.BetaConstraint, GLM.BetaInfo, double[][][], int[][]) - Constructor for class hex.glm.GLM.GLMGradientSolver
 
GLMIterationTask(Key, DataInfo, GLMModel.GLMWeightsFun, double[]) - Constructor for class hex.glm.GLMTask.GLMIterationTask
 
GLMIterationTask(Key, DataInfo, GLMModel.GLMWeightsFun, double[], int) - Constructor for class hex.glm.GLMTask.GLMIterationTask
 
GLMIterationTaskMultinomial(DataInfo, Key, double[], int) - Constructor for class hex.glm.GLMTask.GLMIterationTaskMultinomial
 
GLMMetricBuilder - Class in hex.glm
Class for GLMValidation.
GLMMetricBuilder(String[], double[], GLMModel.GLMWeightsFun, int, boolean, boolean, MultinomialAucType) - Constructor for class hex.glm.GLMMetricBuilder
 
GLMModel - Class in hex.glm
Created by tomasnykodym on 8/27/14.
GLMModel(Key, GLMModel.GLMParameters, GLM, double[], double, double, long) - Constructor for class hex.glm.GLMModel
 
GLMModel.GLMOutput - Class in hex.glm
 
GLMModel.GLMParameters - Class in hex.glm
 
GLMModel.GLMParameters.Constraints - Enum in hex.glm
 
GLMModel.GLMParameters.DispersionMethod - Enum in hex.glm
 
GLMModel.GLMParameters.Family - Enum in hex.glm
 
GLMModel.GLMParameters.GLMType - Enum in hex.glm
 
GLMModel.GLMParameters.Influence - Enum in hex.glm
 
GLMModel.GLMParameters.Link - Enum in hex.glm
 
GLMModel.GLMParameters.MissingValuesHandling - Enum in hex.glm
 
GLMModel.GLMParameters.Solver - Enum in hex.glm
 
GLMModel.GLMWeights - Class in hex.glm
 
GLMModel.GLMWeightsFun - Class in hex.glm
 
GLMModel.RegularizationPath - Class in hex.glm
 
GLMModel.Submodel - Class in hex.glm
 
GLMModelOutputV3() - Constructor for class hex.schemas.GLMModelV3.GLMModelOutputV3
 
GLMModelV3 - Class in hex.schemas
 
GLMModelV3() - Constructor for class hex.schemas.GLMModelV3
 
GLMModelV3.GLMModelOutputV3 - Class in hex.schemas
 
GLMMojoWriter - Class in hex.glm
 
GLMMojoWriter() - Constructor for class hex.glm.GLMMojoWriter
 
GLMMojoWriter(GLMModel) - Constructor for class hex.glm.GLMMojoWriter
 
GLMMultinomialGradientBaseTask(Job, DataInfo, double, double[][], double) - Constructor for class hex.glm.GLMTask.GLMMultinomialGradientBaseTask
 
GLMMultinomialGradientBaseTask(Job, DataInfo, double, double[][], GLMModel.GLMParameters) - Constructor for class hex.glm.GLMTask.GLMMultinomialGradientBaseTask
 
GLMMultinomialGradientBaseTask(Job, DataInfo, double, double[][], GLMModel.GLMParameters, double[][][], int[][]) - Constructor for class hex.glm.GLMTask.GLMMultinomialGradientBaseTask
 
GLMMultinomialGradientTask(Job, DataInfo, double, double[][], double) - Constructor for class hex.glm.GLMTask.GLMMultinomialGradientTask
 
GLMMultinomialGradientTask(Job, DataInfo, double, double[][], GLMModel.GLMParameters) - Constructor for class hex.glm.GLMTask.GLMMultinomialGradientTask
 
GLMMultinomialGradientTask(Job, DataInfo, double, double[][], GLMModel.GLMParameters, double[][][], int[][]) - Constructor for class hex.glm.GLMTask.GLMMultinomialGradientTask
 
GLMMultinomialUpdate(DataInfo, Key, double[], int) - Constructor for class hex.glm.GLMTask.GLMMultinomialUpdate
 
GLMMultinomialWLSTask(H2O.H2OCountedCompleter, DataInfo, Key, GLMModel.GLMWeightsFun, double[]) - Constructor for class hex.glm.GLMTask.GLMMultinomialWLSTask
 
GLMOutput(DataInfo, String[], String[], String[][], String[], double[], boolean, boolean, boolean) - Constructor for class hex.glm.GLMModel.GLMOutput
 
GLMOutput() - Constructor for class hex.glm.GLMModel.GLMOutput
 
GLMOutput(GLM) - Constructor for class hex.glm.GLMModel.GLMOutput
 
GLMParameters() - Constructor for class hex.glm.GLMModel.GLMParameters
 
GLMParameters(GLMModel.GLMParameters.Family) - Constructor for class hex.glm.GLMModel.GLMParameters
 
GLMParameters(GLMModel.GLMParameters.Family, GLMModel.GLMParameters.Link) - Constructor for class hex.glm.GLMModel.GLMParameters
 
GLMParameters(GLMModel.GLMParameters.Family, GLMModel.GLMParameters.Link, double[], double[], double, double) - Constructor for class hex.glm.GLMModel.GLMParameters
 
GLMParameters(GLMModel.GLMParameters.Family, GLMModel.GLMParameters.Link, double[], double[], double, double, String[]) - Constructor for class hex.glm.GLMModel.GLMParameters
 
GLMParameters(GLMModel.GLMParameters.Family, GLMModel.GLMParameters.Link, double[], double[], double, double, String[], double) - Constructor for class hex.glm.GLMModel.GLMParameters
 
GLMParameters(GLMModel.GLMParameters.Family, GLMModel.GLMParameters.Link, double[], double[], double, double, String[], double, double) - Constructor for class hex.glm.GLMModel.GLMParameters
 
GLMParametersV3() - Constructor for class hex.schemas.GLMV3.GLMParametersV3
 
GLMRegularizationPathV3 - Class in hex.schemas
 
GLMRegularizationPathV3() - Constructor for class hex.schemas.GLMRegularizationPathV3
 
GLMScore - Class in hex.glm
Created by tomas on 3/15/16.
GLMScore(Job, GLMModel, DataInfo, String[], boolean, boolean, CFuncRef) - Constructor for class hex.glm.GLMScore
 
GLMScoringInfo - Class in hex.glm
 
GLMScoringInfo() - Constructor for class hex.glm.GLMScoringInfo
 
GLMSubsetGinfo(GLM.GLMGradientInfo, int, int, int[]) - Constructor for class hex.glm.ComputationState.GLMSubsetGinfo
 
GLMTask - Class in hex.glm
All GLM related distributed tasks: YMUTask - computes response means on actual datasets (if some rows are ignored - e.g ignoring rows with NA and/or doing cross-validation) GLMGradientTask - computes gradient at given Beta, used by L-BFGS, for KKT condition check GLMLineSearchTask - computes residual deviance(s) at given beta(s), used by line search (both L-BFGS and IRLSM) GLMIterationTask - used by IRLSM to compute Gram matrix and response t(X) W X, t(X)Wz
GLMTask() - Constructor for class hex.glm.GLMTask
 
GLMTask.ComputeDiTriGammaTsk - Class in hex.glm
This function will assist in the estimation of dispersion factors using maximum likelihood
GLMTask.ComputeGammaMLSETsk - Class in hex.glm
This function will assist in the estimation of dispersion factors using maximum likelihood
GLMTask.ComputeSEorDEVIANCETsk - Class in hex.glm
 
GLMTask.GLMCoordinateDescentTaskSeqIntercept - Class in hex.glm
 
GLMTask.GLMCoordinateDescentTaskSeqNaive - Class in hex.glm
 
GLMTask.GLMGaussianGradientTask - Class in hex.glm
 
GLMTask.GLMGenerateWeightsTask - Class in hex.glm
 
GLMTask.GLMIterationTask - Class in hex.glm
One iteration of glm, computes weighted gram matrix and t(x)*y vector and t(y)*y scalar.
GLMTask.GLMIterationTaskMultinomial - Class in hex.glm
 
GLMTask.GLMMultinomialGradientBaseTask - Class in hex.glm
 
GLMTask.GLMMultinomialGradientTask - Class in hex.glm
 
GLMTask.GLMMultinomialUpdate - Class in hex.glm
 
GLMTask.GLMMultinomialWLSTask - Class in hex.glm
 
GLMTask.GLMWLSTask - Class in hex.glm
 
GLMTask.LSTask - Class in hex.glm
Task to compute t(X) %*% W %*% X and t(X) %*% W %*% y
GLMTask.YMUTask - Class in hex.glm
 
GLMUtils - Class in hex.glm
 
GLMUtils() - Constructor for class hex.glm.GLMUtils
 
GLMV3 - Class in hex.schemas
Created by tomasnykodym on 8/29/14.
GLMV3() - Constructor for class hex.schemas.GLMV3
 
GLMV3.GLMParametersV3 - Class in hex.schemas
 
GLMWeights() - Constructor for class hex.glm.GLMModel.GLMWeights
 
GLMWeightsFun(GLMModel.GLMParameters) - Constructor for class hex.glm.GLMModel.GLMWeightsFun
 
GLMWeightsFun(GLMModel.GLMParameters.Family, GLMModel.GLMParameters.Link, double, double, double, double, boolean) - Constructor for class hex.glm.GLMModel.GLMWeightsFun
 
GLMWLSTask(H2O.H2OCountedCompleter, DataInfo, Key, GLMModel.GLMWeightsFun, double[]) - Constructor for class hex.glm.GLMTask.GLMWLSTask
 
GlobalInteractionConstraints - Class in hex.tree
Class to process global interaction constraints information and use this information for make a split decision in a tree.
GlobalInteractionConstraints(String[][], String[]) - Constructor for class hex.tree.GlobalInteractionConstraints
 
GLRM - Class in hex.glrm
Generalized Low Rank Models This is an algorithm for dimensionality reduction of a dataset.
GLRM(GLRMModel.GLRMParameters) - Constructor for class hex.glrm.GLRM
 
GLRM(GLRMModel.GLRMParameters, Job<GLRMModel>) - Constructor for class hex.glrm.GLRM
 
GLRM(boolean) - Constructor for class hex.glrm.GLRM
 
GLRM.Archetypes - Class in hex.glrm
 
GLRM.updateXVecs - Class in hex.glrm
 
GLRMGenX - Class in hex.glrm
GLRMGenX will generate the coefficients (X matrix) of a GLRM model given the archetype for a dataframe.
GLRMGenX(GLRMModel, int) - Constructor for class hex.glrm.GLRMGenX
 
GLRMModel - Class in hex.glrm
GLRMModel(Key<GLRMModel>, GLRMModel.GLRMParameters, GLRMModel.GLRMOutput) - Constructor for class hex.glrm.GLRMModel
 
GLRMModel.GLRMOutput - Class in hex.glrm
 
GLRMModel.GLRMParameters - Class in hex.glrm
 
GlrmModelMetricsBuilder(int, int[]) - Constructor for class hex.glrm.ModelMetricsGLRM.GlrmModelMetricsBuilder
 
GlrmModelMetricsBuilder(int, int[], boolean) - Constructor for class hex.glrm.ModelMetricsGLRM.GlrmModelMetricsBuilder
 
GLRMModelOutputV3() - Constructor for class hex.schemas.GLRMModelV3.GLRMModelOutputV3
 
GLRMModelV3 - Class in hex.schemas
 
GLRMModelV3() - Constructor for class hex.schemas.GLRMModelV3
 
GLRMModelV3.GLRMModelOutputV3 - Class in hex.schemas
 
GlrmMojoWriter - Class in hex.glrm
MOJO serializer for GLRM model.
GlrmMojoWriter() - Constructor for class hex.glrm.GlrmMojoWriter
 
GlrmMojoWriter(GLRMModel) - Constructor for class hex.glrm.GlrmMojoWriter
 
GLRMOutput(GLRM) - Constructor for class hex.glrm.GLRMModel.GLRMOutput
 
GLRMParameters() - Constructor for class hex.glrm.GLRMModel.GLRMParameters
 
GLRMParametersV3() - Constructor for class hex.schemas.GLRMV3.GLRMParametersV3
 
GLRMV3 - Class in hex.schemas
 
GLRMV3() - Constructor for class hex.schemas.GLRMV3
 
GLRMV3.GLRMParametersV3 - Class in hex.schemas
 
go(int, boolean) - Method in class hex.tree.SharedTreeModel.BufStringDecisionPathTracker
 
grabCatIndexVal(DataInfo.Row, int, int, DataInfo) - Static method in class hex.hglm.HGLMTask.ComputationEngineTask
 
grabInitValuesFromFrame(Key, double[][]) - Static method in class hex.hglm.HGLMUtils
 
grabRedundantConstraintMessage(ComputationState, Integer) - Static method in class hex.glm.ConstrainedGLMUtils
 
gradient(double[]) - Method in class hex.glm.GLM.GramSolver
 
gradient(double[]) - Method in class hex.glm.GLM.ProximalGradientSolver
 
gradient() - Method in class hex.glm.GLMTask.GLMMultinomialGradientBaseTask
This method changes the _gradient that is coeffPerClss by number of classes back to number of classes by coeffPerClass.
gradient(double[]) - Method in interface hex.optimization.ADMM.ProximalSolver
 
gradient_epsilon - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
gradient_epsilon - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
gradient_epsilon - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
gradientCheck - Static variable in class hex.deeplearning.DeepLearningModelInfo
 
gradientCheckBias - Static variable in class hex.deeplearning.DeepLearningModelInfo
 
GradientInfo(double, double[]) - Constructor for class hex.optimization.OptimizationUtils.GradientInfo
 
gram - Variable in class hex.glm.ComputationState.GramXY
 
Gram - Class in hex.gram
 
Gram(DataInfo) - Constructor for class hex.gram.Gram
 
Gram(int, int, int, int, boolean) - Constructor for class hex.gram.Gram
 
Gram(double[][]) - Constructor for class hex.gram.Gram
 
Gram.Cholesky - Class in hex.gram
 
Gram.CollinearColumnsException - Exception in hex.gram
 
Gram.GramTask - Class in hex.gram
Task to compute gram matrix normalized by the number of observations (not counting rows with NAs).
Gram.InPlaceCholesky - Class in hex.gram
 
Gram.NonSPDMatrixException - Exception in hex.gram
 
Gram.OuterGramTask - Class in hex.gram
Task to compute outer product of a matrix normalized by the number of observations (not counting rows with NAs).
GramGrad(double[][], double[], double[], double, double, double[]) - Constructor for class hex.glm.ComputationState.GramGrad
 
GramSolver(Gram, double[], double, double, boolean) - Constructor for class hex.glm.GLM.GramSolver
 
GramSolver(Gram, double[], boolean, double, double, double[], double[], double[], double[]) - Constructor for class hex.glm.GLM.GramSolver
 
GramTask(Key<Job>, DataInfo) - Constructor for class hex.gram.Gram.GramTask
 
GramTask(Key<Job>, DataInfo, boolean, boolean) - Constructor for class hex.gram.Gram.GramTask
 
GramV3 - Class in hex.schemas
Created by tomas on 10/26/16.
GramV3() - Constructor for class hex.schemas.GramV3
 
GramXY(Gram, double[], double[], double[], int[], int[], double, double) - Constructor for class hex.glm.ComputationState.GramXY
 
Grep - Class in hex.grep
Grep model builder...
Grep(GrepModel.GrepParameters) - Constructor for class hex.grep.Grep
 
GrepModel - Class in hex.grep
 
GrepModel.GrepOutput - Class in hex.grep
 
GrepModel.GrepParameters - Class in hex.grep
 
GrepModelOutputV3() - Constructor for class hex.schemas.GrepModelV3.GrepModelOutputV3
 
GrepModelV3 - Class in hex.schemas
 
GrepModelV3() - Constructor for class hex.schemas.GrepModelV3
 
GrepModelV3.GrepModelOutputV3 - Class in hex.schemas
 
GrepOutput(Grep) - Constructor for class hex.grep.GrepModel.GrepOutput
 
GrepParameters() - Constructor for class hex.grep.GrepModel.GrepParameters
 
GrepParametersV3() - Constructor for class hex.schemas.GrepV3.GrepParametersV3
 
GrepV3 - Class in hex.schemas
 
GrepV3() - Constructor for class hex.schemas.GrepV3
 
GrepV3.GrepParametersV3 - Class in hex.schemas
 
group_column - Variable in class hex.schemas.HGLMV3.HGLMParametersV3
 
group_column_names - Variable in class hex.schemas.HGLMModelV3.HGLMModelOutputV3
 
gslvr() - Method in class hex.glm.ComputationState
 
gslvrMultinomial(int) - Method in class hex.glm.ComputationState
 
GuidedSplitPoints - Class in hex.tree
Implements a method for finding new histogram bins split-points based on a result of previous binning.
GuidedSplitPoints() - Constructor for class hex.tree.GuidedSplitPoints
 

H

h(Frame, String[], double, SharedTreeSubgraph[][]) - Static method in class hex.tree.FriedmanPopescusH
 
handlesSparseData() - Method in class hex.FrameTask2
 
handlesSparseData() - Method in class hex.glm.GLMTask.GLMIterationTask
 
hasBounds() - Method in class hex.glm.GLM.BetaConstraint
 
hasClosedForm(long) - Method in class hex.glrm.GLRM
 
hasGradient() - Method in class hex.glm.GLM.GramSolver
 
hasGradient() - Method in class hex.glm.GLM.ProximalGradientSolver
 
hasGradient() - Method in interface hex.optimization.ADMM.ProximalSolver
 
hash(byte[], int, int) - Method in class hex.deeplearning.MurmurHash
 
hashCode() - Method in class hex.rulefit.Condition
 
hashCode() - Method in class hex.rulefit.Rule
 
hashCode() - Method in class hex.tree.SharedTree.SharedTreeDebugParams
 
hasNABin() - Method in class hex.tree.DHistogram
 
hasNaNsOrInf() - Method in class hex.glm.GLMTask.GLMIterationTask
 
hasNaNsOrInfs() - Method in class hex.gram.Gram
 
hasProximalPenalty() - Method in class hex.glm.GLM.BetaConstraint
 
hasPValues() - Method in class hex.glm.GLMModel.GLMOutput
 
hasResponse() - Method in class hex.tree.isofor.IsolationForestModel.IsolationForestOutput
 
hasStartColumn() - Method in class hex.coxph.CoxPH
 
hasTreatment() - Method in class hex.generic.GenericModelOutput
 
hasVIF() - Method in class hex.glm.GLMModel.GLMOutput
 
hasZeroWeight() - Method in class hex.tree.CompressedTree
 
haveMojo() - Method in class hex.adaboost.AdaBoost
 
haveMojo() - Method in class hex.anovaglm.ANOVAGLM
 
haveMojo() - Method in class hex.coxph.CoxPH
 
haveMojo() - Method in class hex.deeplearning.DeepLearning
 
haveMojo() - Method in class hex.ensemble.StackedEnsemble
 
haveMojo() - Method in class hex.ensemble.StackedEnsembleModel
 
haveMojo() - Method in class hex.gam.GAM
 
haveMojo() - Method in class hex.generic.Generic
 
haveMojo() - Method in class hex.glm.GLM
 
haveMojo() - Method in class hex.glm.GLMModel
 
haveMojo() - Method in class hex.glrm.GLRM
 
haveMojo() - Method in class hex.hglm.HGLM
 
haveMojo() - Method in class hex.isotonic.IsotonicRegression
 
haveMojo() - Method in class hex.isotonic.IsotonicRegressionModel
 
haveMojo() - Method in class hex.kmeans.KMeans
 
haveMojo() - Method in class hex.modelselection.ModelSelection
 
haveMojo() - Method in class hex.naivebayes.NaiveBayes
 
haveMojo() - Method in class hex.pca.PCA
 
haveMojo() - Method in class hex.rulefit.RuleFit
 
haveMojo() - Method in class hex.rulefit.RuleFitModel
 
haveMojo() - Method in class hex.svd.SVD
 
haveMojo() - Method in class hex.tree.isofor.IsolationForest
 
haveMojo() - Method in class hex.tree.isoforextended.ExtendedIsolationForest
 
haveMojo() - Method in class hex.tree.SharedTree
 
haveMojo() - Method in class hex.tree.uplift.UpliftDRF
 
haveMojo() - Method in class hex.word2vec.Word2Vec
 
havePojo() - Method in class hex.adaboost.AdaBoost
 
havePojo() - Method in class hex.anovaglm.ANOVAGLM
 
havePojo() - Method in class hex.deeplearning.DeepLearning
 
havePojo() - Method in class hex.gam.GAM
 
havePojo() - Method in class hex.generic.GenericModel
 
havePojo() - Method in class hex.glm.GLM
 
havePojo() - Method in class hex.glm.GLMModel
 
havePojo() - Method in class hex.glrm.GLRM
 
havePojo() - Method in class hex.hglm.HGLM
 
havePojo() - Method in class hex.kmeans.KMeans
 
havePojo() - Method in class hex.modelselection.ModelSelection
 
havePojo() - Method in class hex.naivebayes.NaiveBayes
 
havePojo() - Method in class hex.pca.PCA
 
havePojo() - Method in class hex.svd.SVD
 
havePojo() - Method in class hex.tree.isofor.IsolationForest
 
havePojo() - Method in class hex.tree.isoforextended.ExtendedIsolationForest
 
havePojo() - Method in class hex.tree.SharedTree
 
havePojo() - Method in class hex.tree.uplift.UpliftDRF
 
hex - package hex
 
hex.adaboost - package hex.adaboost
 
hex.aggregator - package hex.aggregator
 
hex.anovaglm - package hex.anovaglm
 
hex.api - package hex.api
 
hex.coxph - package hex.coxph
 
hex.deeplearning - package hex.deeplearning
 
hex.ensemble - package hex.ensemble
 
hex.gam - package hex.gam
 
hex.gam.GamSplines - package hex.gam.GamSplines
 
hex.gam.MatrixFrameUtils - package hex.gam.MatrixFrameUtils
 
hex.generic - package hex.generic
 
hex.glm - package hex.glm
 
hex.glrm - package hex.glrm
 
hex.gram - package hex.gram
 
hex.grep - package hex.grep
 
hex.hglm - package hex.hglm
 
hex.isotonic - package hex.isotonic
 
hex.kmeans - package hex.kmeans
 
hex.modelselection - package hex.modelselection
 
hex.naivebayes - package hex.naivebayes
 
hex.optimization - package hex.optimization
 
hex.pca - package hex.pca
 
hex.pca.jama - package hex.pca.jama
 
hex.pca.mtj - package hex.pca.mtj
 
hex.psvm - package hex.psvm
 
hex.psvm.psvm - package hex.psvm.psvm
 
hex.rulefit - package hex.rulefit
 
hex.schemas - package hex.schemas
 
hex.splitframe - package hex.splitframe
 
hex.svd - package hex.svd
 
hex.tree - package hex.tree
 
hex.tree.drf - package hex.tree.drf
 
hex.tree.dt - package hex.tree.dt
 
hex.tree.dt.binning - package hex.tree.dt.binning
 
hex.tree.dt.mrtasks - package hex.tree.dt.mrtasks
 
hex.tree.gbm - package hex.tree.gbm
 
hex.tree.isofor - package hex.tree.isofor
 
hex.tree.isoforextended - package hex.tree.isoforextended
 
hex.tree.isoforextended.isolationtree - package hex.tree.isoforextended.isolationtree
 
hex.tree.uplift - package hex.tree.uplift
 
hex.util - package hex.util
 
hex.word2vec - package hex.word2vec
 
HGLM - Class in hex.hglm
 
HGLM(boolean) - Constructor for class hex.hglm.HGLM
 
HGLM(HGLMModel.HGLMParameters) - Constructor for class hex.hglm.HGLM
 
HGLM(HGLMModel.HGLMParameters, Key<HGLMModel>) - Constructor for class hex.hglm.HGLM
 
HGLMModel - Class in hex.hglm
 
HGLMModel(Key<HGLMModel>, HGLMModel.HGLMParameters, HGLMModel.HGLMModelOutput) - Constructor for class hex.hglm.HGLMModel
the doc = document attached to https://github.com/h2oai/h2o-3/issues/8487, title HGLM_H2O_Implementation.pdf I will be referring to the doc and different parts of it to explain my implementation.
HGLMModel.HGLMModelOutput - Class in hex.hglm
 
HGLMModel.HGLMParameters - Class in hex.hglm
 
HGLMModel.HGLMParameters.Method - Enum in hex.hglm
 
HGLMModelOutput(HGLM, DataInfo) - Constructor for class hex.hglm.HGLMModel.HGLMModelOutput
 
HGLMModelOutputV3() - Constructor for class hex.schemas.HGLMModelV3.HGLMModelOutputV3
 
HGLMModelV3 - Class in hex.schemas
 
HGLMModelV3() - Constructor for class hex.schemas.HGLMModelV3
 
HGLMModelV3.HGLMModelOutputV3 - Class in hex.schemas
 
HGLMParameters() - Constructor for class hex.hglm.HGLMModel.HGLMParameters
 
HGLMParametersV3() - Constructor for class hex.schemas.HGLMV3.HGLMParametersV3
 
HGLMScore - Class in hex.hglm
 
HGLMScore(Job, HGLMModel, DataInfo, String[], boolean, boolean) - Constructor for class hex.hglm.HGLMScore
 
HGLMTask - Class in hex.hglm
 
HGLMTask() - Constructor for class hex.hglm.HGLMTask
 
HGLMTask.ComputationEngineTask - Class in hex.hglm
This class will pre-calculate arrays (double[]) or matrices (double[][]) that will be used in later calculations that are part of the CDSS described in equation 11 of the doc.
HGLMTask.ResidualLLHTask - Class in hex.hglm
This class will calculate the residual Yj-Afj*beta-Arj*ubetaj for level 2 unit j.
HGLMUtils - Class in hex.hglm
 
HGLMUtils() - Constructor for class hex.hglm.HGLMUtils
 
HGLMV3 - Class in hex.schemas
 
HGLMV3() - Constructor for class hex.schemas.HGLMV3
 
HGLMV3.HGLMParametersV3 - Class in hex.schemas
 
hidden - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
The number and size of each hidden layer in the model.
hidden_dropout_ratios - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
A fraction of the inputs for each hidden layer to be omitted from training in order to improve generalization.
highest_interaction_term - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
 
Histogram - Class in hex.tree.dt.binning
 
Histogram(Frame, DataFeaturesLimits, BinningStrategy) - Constructor for class hex.tree.dt.binning.Histogram
 
histogram_type - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
 
History(int, int) - Constructor for class hex.optimization.L_BFGS.History
 
hyper_param - Variable in class hex.schemas.PSVMV3.PSVMParametersV3
 

I

icf(DataInfo, Kernel, int, double) - Static method in class hex.psvm.psvm.IncompleteCholeskyFactorization
 
idx_nids(int) - Method in class hex.tree.SharedTree
 
idx_offset() - Method in class hex.tree.SharedTree
 
idx_oobt() - Method in class hex.tree.SharedTree
 
idx_resp() - Method in class hex.tree.SharedTree
 
idx_treatment() - Method in class hex.tree.SharedTree
 
idx_tree(int) - Method in class hex.tree.SharedTree
 
idx_weight() - Method in class hex.tree.SharedTree
 
idx_work(int) - Method in class hex.tree.SharedTree
 
idx_xnew(int, int, int) - Static method in class hex.glrm.GLRM
 
idx_xold(int, int) - Static method in class hex.glrm.GLRM
 
idxs - Variable in class hex.glm.GLMModel.Submodel
 
ignoreBadColumns(int, boolean) - Method in class hex.ensemble.StackedEnsemble
 
ignoreBadColumns(int, boolean) - Method in class hex.word2vec.Word2Vec
 
ignoreInvalidColumns(int, boolean) - Method in class hex.tree.SharedTree
 
imp(T) - Method in class hex.tree.drf.TreeMeasuresCollector.TreeMeasures
Compute variable importance with respect to given votes.
imp(TreeMeasuresCollector.TreeSSE) - Method in class hex.tree.drf.TreeMeasuresCollector.TreeSSE
 
imp(TreeMeasuresCollector.TreeVotes) - Method in class hex.tree.drf.TreeMeasuresCollector.TreeVotes
Compute variable importance with respect to given votes.
importance - Variable in class hex.schemas.GLRMModelV3.GLRMModelOutputV3
 
importance - Variable in class hex.schemas.PCAModelV3.PCAModelOutputV3
 
importMojoModel(String, boolean) - Static method in class hex.generic.Generic
Convenience method for importing MOJO into H2O.
importMojoModel(URI) - Static method in class hex.generic.Generic
 
impute_missing - Variable in class hex.schemas.PCAV3.PCAParametersV3
 
impute_original - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
 
imputeCat(Vec) - Static method in class hex.DataInfo
 
imputeCat(Vec, boolean) - Static method in class hex.DataInfo
 
imputeCat(String, Vec, boolean) - Method in interface hex.DataInfo.Imputer
 
imputeCat(String, Vec, boolean) - Method in class hex.DataInfo.MeanImputer
 
imputeCat(String, Vec, boolean) - Method in class hex.glm.GLM.PlugValuesImputer
 
imputeInteraction(String, InteractionWrappedVec, double[]) - Method in interface hex.DataInfo.Imputer
 
imputeInteraction(String, InteractionWrappedVec, double[]) - Method in class hex.DataInfo.MeanImputer
 
imputeInteraction(String, InteractionWrappedVec, double[]) - Method in class hex.glm.GLM.PlugValuesImputer
 
imputeMissing() - Method in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
 
imputeMissing() - Method in class hex.glm.GLMModel.GLMParameters
 
imputeMissing() - Method in class hex.hglm.HGLMModel.HGLMParameters
 
imputeMissing() - Method in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
imputeNA(int) - Method in class hex.anovaglm.GenerateTransformColumns
 
imputeNum(String, Vec) - Method in interface hex.DataInfo.Imputer
 
imputeNum(String, Vec) - Method in class hex.DataInfo.MeanImputer
 
imputeNum(String, Vec) - Method in class hex.glm.GLM.PlugValuesImputer
 
in_training_checkpoints_dir - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
 
in_training_checkpoints_tree_interval - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
 
IncompleteCholeskyFactorization - Class in hex.psvm.psvm
Implementation of ICF based on https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/34638.pdf This implementation is based on and takes clues from the reference PSVM implementation in C++: https://code.google.com/archive/p/psvm/source/default/source original code: Copyright 2007 Google Inc., Apache License, Version 2.0
IncompleteCholeskyFactorization() - Constructor for class hex.psvm.psvm.IncompleteCholeskyFactorization
 
influence - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
influence - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
init(boolean) - Method in class hex.adaboost.AdaBoost
 
init(boolean) - Method in class hex.aggregator.Aggregator
 
init(boolean) - Method in class hex.anovaglm.ANOVAGLM
 
init(boolean) - Method in class hex.coxph.CoxPH
Initialize the ModelBuilder, validating all arguments and preparing the training frame.
init(boolean) - Method in class hex.deeplearning.DeepLearning
Initialize the ModelBuilder, validating all arguments and preparing the training frame.
init(Neurons[], int, DeepLearningModel.DeepLearningParameters, DeepLearningModelInfo, boolean) - Method in class hex.deeplearning.Neurons
Initialization of the parameters and connectivity of a Neuron layer
init(boolean) - Method in class hex.ensemble.StackedEnsemble
 
init(boolean) - Method in class hex.gam.GAM
 
init(boolean) - Method in class hex.generic.Generic
 
init(boolean) - Method in class hex.glm.GLM
 
init(boolean) - Method in class hex.glrm.GLRM
Validate all parameters, and prepare the model for training.
init(boolean) - Method in class hex.grep.Grep
Initialize the ModelBuilder, validating all arguments and preparing the training frame.
init(boolean) - Method in class hex.hglm.HGLM
 
init(boolean) - Method in class hex.isotonic.IsotonicRegression
 
init(boolean) - Method in class hex.kmeans.KMeans
Initialize the ModelBuilder, validating all arguments and preparing the training frame.
init(boolean) - Method in class hex.modelselection.ModelSelection
 
init(boolean) - Method in class hex.naivebayes.NaiveBayes
 
init(boolean) - Method in class hex.pca.PCA
 
init(boolean) - Method in class hex.psvm.PSVM
 
init(boolean) - Method in class hex.rulefit.RuleFit
 
init - Variable in class hex.schemas.CoxPHV3.CoxPHParametersV3
 
init - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
 
init - Variable in class hex.schemas.KMeansV3.KMeansParametersV3
 
init(boolean) - Method in class hex.svd.SVD
 
init() - Method in class hex.tree.DHistogram
 
init(double[]) - Method in class hex.tree.DHistogram
 
init(double[], double[]) - Method in class hex.tree.DHistogram
 
init(boolean) - Method in class hex.tree.drf.DRF
Initialize the ModelBuilder, validating all arguments and preparing the training frame.
init(boolean) - Method in class hex.tree.gbm.GBM
Initialize the ModelBuilder, validating all arguments and preparing the training frame.
init(boolean) - Method in class hex.tree.isofor.IsolationForest
 
init(boolean) - Method in class hex.tree.isoforextended.ExtendedIsolationForest
 
init(boolean) - Method in class hex.tree.SharedTree
Initialize the ModelBuilder, validating all arguments and preparing the training frame.
init(boolean) - Method in class hex.tree.uplift.UpliftDRF
Initialize the ModelBuilder, validating all arguments and preparing the training frame.
init(boolean) - Method in class hex.word2vec.Word2Vec
Initialize the ModelBuilder, validating all arguments and preparing the training frame.
init_dispersion_parameter - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
init_getNClass() - Method in class hex.coxph.CoxPH
 
init_getNClass() - Method in class hex.psvm.PSVM
 
init_learning_rate - Variable in class hex.schemas.Word2VecV3.Word2VecParametersV3
 
init_optimal_glm - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
init_step_size - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
 
initActualParamValues() - Method in class hex.deeplearning.DeepLearning.DeepLearningDriver
 
initActualParamValues() - Method in class hex.deeplearning.DeepLearningModel
 
initActualParamValues() - Method in class hex.ensemble.StackedEnsembleModel
 
initActualParamValues() - Method in class hex.glm.GLMModel
 
initActualParamValues() - Method in class hex.kmeans.KMeansModel
 
initActualParamValues() - Method in class hex.naivebayes.NaiveBayesModel
 
initActualParamValues() - Method in class hex.tree.drf.DRFModel
 
initActualParamValues() - Method in class hex.tree.gbm.GBMModel
 
initActualParamValues() - Method in class hex.tree.isofor.IsolationForestModel
 
initActualParamValues() - Method in class hex.tree.uplift.UpliftDRFModel
 
initActualParamValuesAfterGlmCreation() - Method in class hex.gam.GAMModel
 
initActualParamValuesAfterOutputSetup(boolean) - Method in class hex.tree.drf.DRFModel
 
initActualParamValuesAfterOutputSetup(int, boolean) - Method in class hex.tree.gbm.GBMModel
 
initCalibration(CalibrationHelper.ModelBuilderWithCalibration, CalibrationHelper.ParamsWithCalibration, boolean) - Static method in class hex.tree.CalibrationHelper
 
initCalibrationMethod(CalibrationHelper.ParamsWithCalibration) - Static method in class hex.util.EffectiveParametersUtils
 
initCategoricalEncoding(Model.Parameters, Model.Parameters.CategoricalEncodingScheme) - Static method in class hex.util.EffectiveParametersUtils
 
initConstraintDerivatives(ConstrainedGLMUtils.LinearConstraints[], ConstrainedGLMUtils.LinearConstraints[], List<String>) - Method in class hex.glm.ComputationState
This method calculates 1.
initDistribution(Model.Parameters, int) - Static method in class hex.util.EffectiveParametersUtils
 
initFoldAssignment(Model.Parameters) - Static method in class hex.util.EffectiveParametersUtils
 
initHistogramType(SharedTreeModel.SharedTreeParameters) - Static method in class hex.util.EffectiveParametersUtils
 
initial_biases - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
 
initial_fixed_effects - Variable in class hex.schemas.HGLMV3.HGLMParametersV3
 
initial_random_effects - Variable in class hex.schemas.HGLMV3.HGLMParametersV3
 
initial_t_matrix - Variable in class hex.schemas.HGLMV3.HGLMParametersV3
 
initial_weight_distribution - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
The distribution from which initial weights are to be drawn.
initial_weight_scale - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
The scale of the distribution function for Uniform or Normal distributions.
initial_weights - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
 
initialHist(Frame, int, int, DHistogram[], long, SharedTreeModel.SharedTreeParameters, Key<DHistogram.HistoSplitPoints>[], Constraints, boolean, GlobalInteractionConstraints) - Static method in class hex.tree.DHistogram
The initial histogram bins are setup from the Vec rollups.
initialInteractionConstraints(GlobalInteractionConstraints) - Method in class hex.tree.gbm.GBMModel.GBMParameters
 
initializeModelSpecifics() - Method in class hex.tree.SharedTree.Driver
 
initMetalearnerParams() - Method in class hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters
initMetalearnerParams(Metalearner.Algorithm) - Method in class hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters
initialize StackedEnsembleModel.StackedEnsembleParameters._metalearner_parameters with default parameters for the given algorithm
initStats(CoxPHModel, DataInfo, double[]) - Method in class hex.coxph.CoxPH.CoxPHDriver
 
initStoppingMetric(Model.Parameters, boolean) - Static method in class hex.util.EffectiveParametersUtils
 
initUpliftMetric(UpliftDRFModel.UpliftDRFParameters) - Static method in class hex.util.EffectiveParametersUtils
 
innerProduct(double[]) - Method in class hex.DataInfo.Row
 
innerProduct(double[], boolean) - Method in class hex.DataInfo.Row
 
innerProduct(DataInfo.Row) - Method in class hex.DataInfo.Row
 
innerProductChunk(DataInfo.Row, DataInfo.Row, Chunk[], Chunk[]) - Method in class hex.gram.Gram.OuterGramTask
 
input_dropout_ratio - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
A fraction of the features for each training row to be omitted from training in order to improve generalization (dimension sampling).
INT_NA - Static variable in class hex.tree.DHistogram
 
integratePolynomial(double[], double[][]) - Static method in class hex.gam.GamSplines.NBSplinesUtils
Perform integration of polynomials as described in Section VI.IV, equation 17 of doc I.
interaction_constraints - Variable in class hex.schemas.GBMV3.GBMParametersV3
 
interaction_pairs - Variable in class hex.schemas.CoxPHV3.CoxPHParametersV3
 
interaction_pairs - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
interaction_pairs - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
interactionBuilder() - Method in class hex.coxph.CoxPHModel.CoxPHOutput
 
interactionBuilder() - Method in class hex.glm.GLMModel.GLMOutput
 
interactionConstraints(Frame) - Method in class hex.tree.gbm.GBMModel.GBMParameters
 
interactions - Variable in class hex.schemas.CoxPHV3.CoxPHParametersV3
 
interactions - Variable in class hex.schemas.DataInfoFrameV3
 
interactions - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
interactions - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
interactions_only - Variable in class hex.schemas.CoxPHV3.CoxPHParametersV3
 
interactions_only - Variable in class hex.schemas.DataInfoFrameV3
 
interactionSpec() - Method in class hex.gam.GAMModel.GAMParameters
 
interactionSpec() - Method in class hex.glm.GLMModel.GLMParameters
 
intercept - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
intercept - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
intercept - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
intercept - Variable in class hex.schemas.RuleFitModelV3.RuleFitModelOutputV3
 
intersection(IcedHashSet<IcedInt>) - Method in class hex.tree.BranchInteractionConstraints
Important method to decide which indices are allowed for the next level of constraints.
invalidPath() - Method in class hex.tree.SharedTreeModel.BufStringDecisionPathTracker
 
isAllowedIndex(int) - Method in class hex.tree.BranchInteractionConstraints
 
isAutoencoder() - Method in class hex.deeplearning.DeepLearningModel.DeepLearningModelOutput
 
isBad() - Method in class hex.DataInfo.Row
 
isBinomialClassifier() - Method in class hex.tree.uplift.UpliftDRFModel.UpliftDRFOutput
 
isCalibrated() - Method in interface hex.tree.CalibrationHelper.OutputWithCalibration
 
isConstant() - Method in class hex.tree.dt.binning.FeatureBins
 
isConstant(int) - Method in class hex.tree.dt.binning.Histogram
 
isDecidedRow(int) - Static method in class hex.tree.ScoreBuildHistogram
 
isDistributionHuber() - Method in class hex.deeplearning.DeepLearningModel
 
isFeatureUsedInPredict(String) - Method in class hex.deeplearning.DeepLearningModel
 
isFeatureUsedInPredict(int) - Method in class hex.glm.GLMModel
 
isFeatureUsedInPredict(int) - Method in class hex.naivebayes.NaiveBayesModel
 
isFeatureUsedInPredict(String) - Method in class hex.tree.SharedTreeModel
 
isGeneric() - Method in class hex.generic.GenericModel
 
isInteractionVec(int) - Method in class hex.DataInfo
 
isMeanAdjusted() - Method in enum hex.DataInfo.TransformType
 
isNAsIncluded() - Method in class hex.rulefit.Condition
 
IsolationForest - Class in hex.tree.isofor
Isolation Forest
IsolationForest(IsolationForestModel.IsolationForestParameters) - Constructor for class hex.tree.isofor.IsolationForest
 
IsolationForest(IsolationForestModel.IsolationForestParameters, Key<IsolationForestModel>) - Constructor for class hex.tree.isofor.IsolationForest
 
IsolationForest(IsolationForestModel.IsolationForestParameters, Job) - Constructor for class hex.tree.isofor.IsolationForest
 
IsolationForest(boolean) - Constructor for class hex.tree.isofor.IsolationForest
 
IsolationForest.VarSplits - Class in hex.tree.isofor
 
IsolationForestModel - Class in hex.tree.isofor
 
IsolationForestModel(Key<IsolationForestModel>, IsolationForestModel.IsolationForestParameters, IsolationForestModel.IsolationForestOutput) - Constructor for class hex.tree.isofor.IsolationForestModel
 
IsolationForestModel.IsolationForestOutput - Class in hex.tree.isofor
 
IsolationForestModel.IsolationForestParameters - Class in hex.tree.isofor
 
IsolationForestModelOutputV3() - Constructor for class hex.schemas.IsolationForestModelV3.IsolationForestModelOutputV3
 
IsolationForestModelV3 - Class in hex.schemas
 
IsolationForestModelV3() - Constructor for class hex.schemas.IsolationForestModelV3
 
IsolationForestModelV3.IsolationForestModelOutputV3 - Class in hex.schemas
 
IsolationForestMojoWriter - Class in hex.tree.isofor
Mojo definition for Isolation Forest model.
IsolationForestMojoWriter() - Constructor for class hex.tree.isofor.IsolationForestMojoWriter
 
IsolationForestMojoWriter(IsolationForestModel) - Constructor for class hex.tree.isofor.IsolationForestMojoWriter
 
IsolationForestOutput(IsolationForest) - Constructor for class hex.tree.isofor.IsolationForestModel.IsolationForestOutput
 
IsolationForestParameters() - Constructor for class hex.tree.isofor.IsolationForestModel.IsolationForestParameters
 
IsolationForestParametersV3() - Constructor for class hex.schemas.IsolationForestV3.IsolationForestParametersV3
 
IsolationForestV3 - Class in hex.schemas
 
IsolationForestV3() - Constructor for class hex.schemas.IsolationForestV3
 
IsolationForestV3.IsolationForestParametersV3 - Class in hex.schemas
 
IsolationTree - Class in hex.tree.isoforextended.isolationtree
IsolationTree class implements Algorithm 2 (iTree) Naming convention comes from the Extended Isolation Forest paper.
IsolationTree(int, int) - Constructor for class hex.tree.isoforextended.isolationtree.IsolationTree
 
IsolationTree.FilteredData - Class in hex.tree.isoforextended.isolationtree
 
IsolationTree.Node - Class in hex.tree.isoforextended.isolationtree
IsolationTree Node.
IsolationTreeStats - Class in hex.tree.isoforextended.isolationtree
Inspired by TreeStats
IsolationTreeStats() - Constructor for class hex.tree.isoforextended.isolationtree.IsolationTreeStats
 
isOOBRow(int) - Static method in class hex.tree.ScoreBuildHistogram
 
IsotonicRegression - Class in hex.isotonic
 
IsotonicRegression(boolean) - Constructor for class hex.isotonic.IsotonicRegression
 
IsotonicRegression(IsotonicRegressionModel.IsotonicRegressionParameters) - Constructor for class hex.isotonic.IsotonicRegression
 
IsotonicRegressionModel - Class in hex.isotonic
 
IsotonicRegressionModel(Key<IsotonicRegressionModel>, IsotonicRegressionModel.IsotonicRegressionParameters, IsotonicRegressionModel.IsotonicRegressionOutput) - Constructor for class hex.isotonic.IsotonicRegressionModel
 
IsotonicRegressionModel.IsotonicRegressionOutput - Class in hex.isotonic
 
IsotonicRegressionModel.IsotonicRegressionParameters - Class in hex.isotonic
 
IsotonicRegressionModel.OutOfBoundsHandling - Enum in hex.isotonic
 
IsotonicRegressionModelOutputV3() - Constructor for class hex.schemas.IsotonicRegressionModelV3.IsotonicRegressionModelOutputV3
 
IsotonicRegressionModelV3 - Class in hex.schemas
 
IsotonicRegressionModelV3() - Constructor for class hex.schemas.IsotonicRegressionModelV3
 
IsotonicRegressionModelV3.IsotonicRegressionModelOutputV3 - Class in hex.schemas
 
IsotonicRegressionMojoWriter - Class in hex.isotonic
 
IsotonicRegressionMojoWriter() - Constructor for class hex.isotonic.IsotonicRegressionMojoWriter
 
IsotonicRegressionMojoWriter(IsotonicRegressionModel) - Constructor for class hex.isotonic.IsotonicRegressionMojoWriter
 
IsotonicRegressionOutput(IsotonicRegression) - Constructor for class hex.isotonic.IsotonicRegressionModel.IsotonicRegressionOutput
 
IsotonicRegressionParameters() - Constructor for class hex.isotonic.IsotonicRegressionModel.IsotonicRegressionParameters
 
IsotonicRegressionParametersV3() - Constructor for class hex.schemas.IsotonicRegressionV3.IsotonicRegressionParametersV3
 
IsotonicRegressionV3 - Class in hex.schemas
 
IsotonicRegressionV3() - Constructor for class hex.schemas.IsotonicRegressionV3
 
IsotonicRegressionV3.IsotonicRegressionParametersV3 - Class in hex.schemas
 
isResponseOptional() - Method in class hex.tree.isofor.IsolationForest
 
isRootNode(DTree.Node) - Static method in class hex.tree.DTree
 
isSigmaScaled() - Method in enum hex.DataInfo.TransformType
 
isSparse() - Method in class hex.DataInfo.Row
 
isSPD() - Method in class hex.gram.Gram.Cholesky
 
isSPD() - Method in class hex.gram.Gram.InPlaceCholesky
 
isStandardized() - Method in class hex.glm.GLMModel.GLMOutput
 
isStochastic() - Method in class hex.tree.SharedTreeModel.SharedTreeParameters
 
isSupervised() - Method in class hex.adaboost.AdaBoost
 
isSupervised() - Method in class hex.aggregator.Aggregator
 
isSupervised() - Method in class hex.anovaglm.ANOVAGLM
 
isSupervised() - Method in class hex.coxph.CoxPH
 
isSupervised() - Method in class hex.deeplearning.DeepLearning
 
isSupervised() - Method in class hex.deeplearning.DeepLearningModel.DeepLearningModelOutput
 
isSupervised() - Method in class hex.ensemble.StackedEnsemble
 
isSupervised() - Method in class hex.gam.GAM
 
isSupervised() - Method in class hex.generic.Generic
 
isSupervised() - Method in class hex.glm.GLM
 
isSupervised() - Method in class hex.glm.GLMModel.GLMOutput
 
isSupervised() - Method in class hex.glrm.GLRM
 
isSupervised() - Method in class hex.grep.Grep
 
isSupervised() - Method in class hex.hglm.HGLM
 
isSupervised() - Method in class hex.isotonic.IsotonicRegression
 
isSupervised() - Method in class hex.modelselection.ModelSelection
 
isSupervised() - Method in class hex.naivebayes.NaiveBayes
 
isSupervised() - Method in class hex.pca.PCA
 
isSupervised() - Method in class hex.psvm.PSVM
 
isSupervised() - Method in class hex.rulefit.RuleFit
 
isSupervised() - Method in class hex.svd.SVD
 
isSupervised() - Method in class hex.tree.dt.DT
 
isSupervised() - Method in class hex.tree.isofor.IsolationForest
 
isSupervised() - Method in class hex.tree.isoforextended.ExtendedIsolationForest
 
isSupervised() - Method in class hex.tree.SharedTree
 
isSupervised() - Method in class hex.word2vec.Word2Vec
 
isUnstable() - Method in class hex.deeplearning.DeepLearningModelInfo
 
isUplift() - Method in class hex.tree.SharedTree
 
isUplift() - Method in class hex.tree.uplift.UpliftDRF
 
isUsingBinomialOpt(SharedTreeMojoModel, CompressedTree[][]) - Static method in class hex.tree.MojoUtils
 
isValid() - Method in class hex.optimization.OptimizationUtils.GradientInfo
 
isValid() - Method in class hex.tree.TreeStats
 
iter() - Method in class hex.glm.GLM.GramSolver
 
iter() - Method in class hex.glm.GLM.ProximalGradientSolver
 
iter() - Method in interface hex.optimization.ADMM.ProximalSolver
 
iter - Variable in class hex.optimization.L_BFGS.Result
 
iteration - Variable in class hex.glm.GLMModel.Submodel
 
iterations - Variable in class hex.deeplearning.DeepLearningModel
 
iterations - Variable in class hex.deeplearning.DeepLearningScoringInfo
 
iterations() - Method in class hex.deeplearning.DeepLearningScoringInfo
 
iterations - Variable in class hex.glm.GLMScoringInfo
 
iterations() - Method in class hex.glm.GLMScoringInfo
 
iterations - Variable in class hex.schemas.GLRMModelV3.GLRMModelOutputV3
 

J

javaName() - Method in class hex.adaboost.AdaBoostModel.AdaBoostParameters
 
javaName() - Method in class hex.aggregator.AggregatorModel.AggregatorParameters
 
javaName() - Method in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
 
javaName() - Method in class hex.coxph.CoxPHModel.CoxPHParameters
 
javaName() - Method in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
 
javaName() - Method in class hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters
 
javaName() - Method in class hex.gam.GAMModel.GAMParameters
 
javaName() - Method in class hex.generic.GenericModelParameters
 
javaName() - Method in class hex.glm.GLMModel.GLMParameters
 
javaName() - Method in class hex.glrm.GLRMModel.GLRMParameters
 
javaName() - Method in class hex.grep.GrepModel.GrepParameters
 
javaName() - Method in class hex.hglm.HGLMModel.HGLMParameters
 
javaName() - Method in class hex.isotonic.IsotonicRegressionModel.IsotonicRegressionParameters
 
javaName() - Method in class hex.kmeans.KMeansModel.KMeansParameters
 
javaName() - Method in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
javaName() - Method in class hex.naivebayes.NaiveBayesModel.NaiveBayesParameters
 
javaName() - Method in class hex.pca.PCAModel.PCAParameters
 
javaName() - Method in class hex.psvm.PSVMModel.PSVMParameters
 
javaName() - Method in class hex.rulefit.RuleFitModel.RuleFitParameters
 
javaName() - Method in class hex.svd.SVDModel.SVDParameters
 
javaName() - Method in class hex.tree.drf.DRFModel.DRFParameters
 
javaName() - Method in class hex.tree.dt.DTModel.DTParameters
 
javaName() - Method in class hex.tree.gbm.GBMModel.GBMParameters
 
javaName() - Method in class hex.tree.isofor.IsolationForestModel.IsolationForestParameters
 
javaName() - Method in class hex.tree.isoforextended.ExtendedIsolationForestModel.ExtendedIsolationForestParameters
 
javaName() - Method in class hex.tree.uplift.UpliftDRFModel.UpliftDRFParameters
 
javaName() - Method in class hex.word2vec.Word2VecModel.Word2VecParameters
 
joinDouble(double[]) - Static method in class hex.modelselection.ModelSelectionUtils
 

K

k() - Method in class hex.optimization.L_BFGS
 
k - Variable in class hex.schemas.AggregatorV99.AggregatorParametersV99
 
k - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
 
k - Variable in class hex.schemas.PCAV3.PCAParametersV3
 
keep_gam_cols - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
keep_levelone_frame - Variable in class hex.schemas.StackedEnsembleV99.StackedEnsembleParametersV99
 
keep_u - Variable in class hex.schemas.SVDV99.SVDParametersV99
 
keepFrameKeys(List<Key>, Key<Frame>...) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
 
Kernel - Interface in hex.psvm.psvm
 
kernel() - Method in class hex.psvm.PSVMModel.PSVMParameters
 
kernel_type - Variable in class hex.schemas.PSVMV3.PSVMParametersV3
 
KernelFactory - Class in hex.psvm.psvm
 
KernelFactory() - Constructor for class hex.psvm.psvm.KernelFactory
 
KLDivergence - Class in hex.tree.uplift
 
KLDivergence() - Constructor for class hex.tree.uplift.KLDivergence
 
KMeans - Class in hex.kmeans
Scalable K-Means++ (KMeans||)
http://theory.stanford.edu/~sergei/papers/vldb12-kmpar.pdf
http://www.youtube.com/watch?v=cigXAxV3XcY
KMeans(KMeansModel.KMeansParameters) - Constructor for class hex.kmeans.KMeans
 
KMeans(KMeansModel.KMeansParameters, Job) - Constructor for class hex.kmeans.KMeans
 
KMeans(boolean) - Constructor for class hex.kmeans.KMeans
 
KMeans.Initialization - Enum in hex.kmeans
 
KMeans.IterationTask - Class in hex.kmeans
 
KMeansModel - Class in hex.kmeans
 
KMeansModel(Key, KMeansModel.KMeansParameters, KMeansModel.KMeansOutput) - Constructor for class hex.kmeans.KMeansModel
 
KMeansModel.KMeansOutput - Class in hex.kmeans
 
KMeansModel.KMeansParameters - Class in hex.kmeans
 
KMeansModelOutputV3() - Constructor for class hex.schemas.KMeansModelV3.KMeansModelOutputV3
 
KMeansModelV3 - Class in hex.schemas
 
KMeansModelV3() - Constructor for class hex.schemas.KMeansModelV3
 
KMeansModelV3.KMeansModelOutputV3 - Class in hex.schemas
 
KMeansMojoWriter - Class in hex.kmeans
 
KMeansMojoWriter() - Constructor for class hex.kmeans.KMeansMojoWriter
 
KMeansMojoWriter(KMeansModel) - Constructor for class hex.kmeans.KMeansMojoWriter
 
KMeansOutput(KMeans) - Constructor for class hex.kmeans.KMeansModel.KMeansOutput
 
KMeansParameters() - Constructor for class hex.kmeans.KMeansModel.KMeansParameters
 
KMeansParametersV3() - Constructor for class hex.schemas.KMeansV3.KMeansParametersV3
 
KMeansV3 - Class in hex.schemas
 
KMeansV3() - Constructor for class hex.schemas.KMeansV3
 
KMeansV3.KMeansParametersV3 - Class in hex.schemas
 
knot_ids - Variable in class hex.schemas.GAMV3.GAMParametersV3
 

L

l - Variable in class hex.glm.GLMModel.GLMWeights
 
l1 - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
A regularization method that constrains the absolute value of the weights and has the net effect of dropping some weights (setting them to zero) from a model to reduce complexity and avoid overfitting.
l1pen() - Method in class hex.glm.ComputationState
 
L1Solver(double, int, double[]) - Constructor for class hex.optimization.ADMM.L1Solver
 
L1Solver(double, int, double, double, double[]) - Constructor for class hex.optimization.ADMM.L1Solver
 
l2 - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
A regularization method that constrains the sum of the squared weights.
l2pen() - Method in class hex.glm.ComputationState
 
L_BFGS - Class in hex.optimization
Created by tomasnykodym on 9/15/14.
L_BFGS() - Constructor for class hex.optimization.L_BFGS
 
L_BFGS.History - Class in hex.optimization
Keeps L-BFGS history ie curvature information recorded over the last m steps.
L_BFGS.ProgressMonitor - Interface in hex.optimization
Monitor progress and enable early termination.
L_BFGS.Result - Class in hex.optimization
 
lambda() - Method in class hex.glm.ComputationState
 
lambda - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
 
lambda - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
lambda - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
lambda - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
lambda - Variable in class hex.schemas.RuleFitV3.RuleFitParametersV3
 
lambda_1se() - Method in class hex.glm.GLMModel.GLMOutput
 
lambda_best() - Method in class hex.glm.GLMModel.GLMOutput
 
lambda_min_ratio - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
lambda_min_ratio - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
lambda_min_ratio - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
lambda_search - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
 
lambda_search - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
lambda_search - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
lambda_search - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
lambda_selected() - Method in class hex.glm.GLMModel.GLMOutput
 
lambda_value - Variable in class hex.glm.GLMModel.Submodel
 
lambdas - Variable in class hex.schemas.GLMRegularizationPathV3
 
languageCatTreshold - Variable in class hex.rulefit.Condition
 
languageCondition - Variable in class hex.rulefit.Condition
 
laplace - Variable in class hex.schemas.NaiveBayesV3.NaiveBayesParametersV3
 
largestCat() - Method in class hex.DataInfo
 
last_scored() - Method in class hex.deeplearning.DeepLearningModel
 
lastSpecialColumnIdx() - Method in class hex.coxph.CoxPHModel.CoxPHOutput
 
leaf(float) - Method in class hex.tree.TreeVisitor
 
LeafNode(DTree, int) - Constructor for class hex.tree.DTree.LeafNode
 
LeafNode(DTree, int, int) - Constructor for class hex.tree.DTree.LeafNode
 
LeafNode(DTree.LeafNode, DTree) - Constructor for class hex.tree.DTree.LeafNode
 
learn_rate - Variable in class hex.schemas.AdaBoostV3.AdaBoostParametersV3
 
learn_rate - Variable in class hex.schemas.GBMV3.GBMParametersV3
 
learn_rate_annealing - Variable in class hex.schemas.GBMV3.GBMParametersV3
 
left_children - Variable in class hex.schemas.TreeV3
 
len() - Method in class hex.tree.DTree
 
levels - Variable in class hex.schemas.NaiveBayesModelV3.NaiveBayesModelOutputV3
 
levels - Variable in class hex.schemas.TreeV3
 
levels - Variable in class hex.tree.TreeHandler.TreeProperties
 
likelihood(double, double, double[]) - Method in class hex.generic.GenericModel
 
likelihood - Variable in class hex.glm.ComputationState.GramXY
 
likelihood() - Method in class hex.glm.ComputationState
 
likelihood(double, double) - Method in class hex.glm.GLMModel.GLMParameters
 
likelihood(double, double, double[]) - Method in class hex.glm.GLMModel.GLMParameters
 
likelihood(double, double, double) - Method in class hex.glm.GLMModel.GLMWeightsFun
 
likelihood(double, double) - Method in class hex.glm.GLMModel.GLMWeightsFun
 
likelihood(double, double, double[]) - Method in class hex.glm.GLMModel
 
likelihoodAndDeviance(double, GLMModel.GLMWeights, double) - Method in class hex.glm.GLMModel.GLMWeightsFun
 
LIMIT_MAX - Static variable in class hex.tree.dt.NumericFeatureLimits
 
LIMIT_MIN - Static variable in class hex.tree.dt.NumericFeatureLimits
 
Linear() - Constructor for class hex.deeplearning.Neurons.Linear
 
linear_constraints - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
LinearAlgebraUtils - Class in hex.util
 
LinearAlgebraUtils() - Constructor for class hex.util.LinearAlgebraUtils
 
LinearAlgebraUtils.BMulInPlaceTask - Class in hex.util
Computes B = XY where X is n by k and Y is k by p, saving result in same frame Input: [X,B] (large frame) passed to doAll, where we write to B yt = Y' = transpose of Y (small matrix) ncolX = number of columns in X
LinearAlgebraUtils.BMulTask - Class in hex.util
Computes B = XY where X is n by k and Y is k by p, saving result in new vecs Input: dinfo = X (large frame) with dinfo._adaptedFrame passed to doAll yt = Y' = transpose of Y (small matrix) Output: XY (large frame) is n by p
LinearAlgebraUtils.BMulTaskMatrices - Class in hex.util
Compute B = XY where where X is n by k and Y is k by p and they are both stored as Frames.
LinearAlgebraUtils.CopyQtoQMatrix - Class in hex.util
 
LinearAlgebraUtils.FindMaxIndex - Class in hex.util
 
LinearAlgebraUtils.ForwardSolve - Class in hex.util
Given lower triangular L, solve for Q in QL' = A (LQ' = A') using forward substitution Dimensions: A is n by p, Q is n by p, R = L' is p by p Input: [A,Q] (large frame) passed to doAll, where we write to Q
LinearAlgebraUtils.ForwardSolveInPlace - Class in hex.util
Given lower triangular L, solve for Q in QL' = A (LQ' = A') using forward substitution Dimensions: A is n by p, Q is n by p, R = L' is p by p Input: A (large frame) passed to doAll, where we overwrite each row of A with its row of Q
LinearAlgebraUtils.SMulTask - Class in hex.util
Computes A'Q where A is n by p and Q is n by k Input: [A,Q] (large frame) passed to doAll Output: atq = A'Q (small matrix) is \tilde{p} by k where \tilde{p} = number of cols in A with categoricals expanded
LinearConstraintConditions(String[], String[], double[], String[], String[], boolean) - Constructor for class hex.glm.ConstrainedGLMUtils.LinearConstraintConditions
 
LinearConstraints() - Constructor for class hex.glm.ConstrainedGLMUtils.LinearConstraints
 
link(double) - Method in class hex.glm.GLMModel.GLMWeightsFun
Given the estimated model output x, we want to find the linear part which is transpose(beta)*p+intercept if beta does not contain the intercept.
link - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
 
link - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
link - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
link - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
linkDeriv(double) - Method in class hex.glm.GLMModel.GLMParameters
 
linkDeriv(double) - Method in class hex.glm.GLMModel.GLMWeightsFun
 
linkInv(double) - Method in class hex.gam.GAMModel.GAMParameters
 
linkInv(double) - Method in class hex.glm.GLMModel.GLMParameters
 
linkInv(double) - Method in class hex.glm.GLMModel.GLMWeightsFun
Given the linear combination transpose(beta)*p+intercept (if beta does not contain the intercept), this method will provide the estimated model output.
linkInvDeriv(double) - Method in class hex.glm.GLMModel.GLMWeightsFun
 
linkInvDeriv2(double) - Method in class hex.glm.GLMModel.GLMWeightsFun
 
lmulCatBlock(double[], int) - Method in class hex.glrm.GLRM.Archetypes
 
lmulNumCol(double[], int) - Method in class hex.glrm.GLRM.Archetypes
 
loadFrames() - Method in class hex.ContributionsWithBackgroundFrameTask
 
loading_name - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
 
localModelInfoKey(H2ONode) - Method in class hex.deeplearning.DeepLearningModelInfo
 
LOG_2PI - Static variable in class hex.hglm.MetricBuilderHGLM
 
logLikelihood(double, double) - Method in class hex.glm.TweedieEstimator
 
logLikelihood(double, double, double) - Method in class hex.glm.TweedieEstimator
 
logLikelihood(double, double, double, double) - Static method in class hex.glm.TweedieEstimator
 
logNodesHeight(Level) - Method in class hex.tree.isoforextended.isolationtree.IsolationTree
Helper method.
logNodesNumRows(Level) - Method in class hex.tree.isoforextended.isolationtree.IsolationTree
Helper method.
loss - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
The loss (error) function to be minimized by the model.
loss - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
 
loss_by_col - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
 
loss_by_col_idx - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
 
lre_min - Variable in class hex.schemas.CoxPHV3.CoxPHParametersV3
 
LSTask(H2O.H2OCountedCompleter, DataInfo, Key) - Constructor for class hex.glm.GLMTask.LSTask
 

M

main(String[]) - Static method in class water.tools.MojoConvertTool
 
mainInternal(String[]) - Static method in class water.tools.MojoConvertTool
 
make(KernelType, KernelParameters) - Static method in class hex.psvm.psvm.KernelFactory
 
make(String, int, byte, double, double, boolean, boolean, long, SharedTreeModel.SharedTreeParameters, Key<DHistogram.HistoSplitPoints>, Constraints, boolean, double[]) - Static method in class hex.tree.DHistogram
 
make_model(int, MakeGLMModelV3) - Method in class hex.api.MakeGLMModelHandler
 
makeAdaptFrameParameters() - Method in class hex.generic.GenericModel
 
makeAdaptFrameParameters(Model.Parameters.CategoricalEncodingScheme) - Method in class hex.generic.GenericModel
 
makeAllTreeColumnNames() - Method in class hex.tree.SharedTreeModel
 
makeBigScoreTask(String[][], String[], Frame, boolean, boolean, Job, CFuncRef) - Method in class hex.isotonic.IsotonicRegressionModel
 
makeConstraintSummaryTable(GLMModel, ConstrainedGLMUtils.LinearConstraintConditions) - Static method in class hex.glm.ConstrainedGLMUtils
 
makeDecided(DTree.UndecidedNode, DHistogram[], Constraints) - Method in class hex.tree.isofor.IsolationForest
 
makeDecided(DTree.UndecidedNode, DHistogram[], Constraints) - Method in class hex.tree.SharedTree
 
makeDHistogramMonitor(int, int, int) - Method in class hex.tree.SharedTree.SharedTreeDebugParams
 
makeGAMParameters(GAMModel.GAMParameters) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
 
MakeGLMModelHandler - Class in hex.api
Created by tomasnykodym on 3/25/15.
MakeGLMModelHandler() - Constructor for class hex.api.MakeGLMModelHandler
 
MakeGLMModelV3 - Class in hex.schemas
End point to update a model.
MakeGLMModelV3() - Constructor for class hex.schemas.MakeGLMModelV3
 
makeImputer() - Method in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
 
makeImputer() - Method in class hex.gam.GAMModel.GAMParameters
 
makeImputer() - Method in class hex.glm.GLMModel.GLMParameters
 
makeImputer() - Method in class hex.hglm.HGLMModel.HGLMParameters
 
makeImputer() - Method in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
makeLeafFromNode(int[], int) - Method in class hex.tree.dt.DT
Set decision value to the node.
makeMetricBuilder(String[]) - Method in class hex.adaboost.AdaBoostModel
 
makeMetricBuilder(String[]) - Method in class hex.aggregator.AggregatorModel
 
makeMetricBuilder(String[]) - Method in class hex.anovaglm.ANOVAGLMModel
 
makeMetricBuilder(String[]) - Method in class hex.coxph.CoxPHModel
 
makeMetricBuilder(String[]) - Method in class hex.deeplearning.DeepLearningModel
 
makeMetricBuilder(String[]) - Method in class hex.ensemble.StackedEnsembleModel
 
makeMetricBuilder(String[]) - Method in class hex.gam.GAMModel
 
makeMetricBuilder(String[]) - Method in class hex.generic.GenericModel
 
makeMetricBuilder(String[]) - Method in class hex.glm.GLMModel
 
makeMetricBuilder(String[]) - Method in class hex.glrm.GLRMModel
 
makeMetricBuilder(String[]) - Method in class hex.grep.GrepModel
 
makeMetricBuilder(String[]) - Method in class hex.hglm.HGLMModel
 
makeMetricBuilder(String[]) - Method in class hex.isotonic.IsotonicRegressionModel
 
makeMetricBuilder(String[]) - Method in class hex.kmeans.KMeansModel
 
makeMetricBuilder(String[]) - Method in class hex.modelselection.ModelSelectionModel
 
makeMetricBuilder(String[]) - Method in class hex.naivebayes.NaiveBayesModel
 
makeMetricBuilder(String[]) - Method in class hex.pca.PCAModel
 
makeMetricBuilder(String[]) - Method in class hex.psvm.PSVMModel
 
makeMetricBuilder(String[]) - Method in class hex.rulefit.RuleFitModel
 
makeMetricBuilder(String[]) - Method in class hex.svd.SVDModel
 
makeMetricBuilder(String[]) - Method in class hex.tree.dt.DTModel
 
makeMetricBuilder(String[]) - Method in class hex.tree.isofor.IsolationForestModel
 
makeMetricBuilder(String[]) - Method in class hex.tree.isoforextended.ExtendedIsolationForestModel
 
makeMetricBuilder(String[]) - Method in class hex.tree.SharedTreeModel
 
makeMetricBuilder(String[]) - Method in class hex.tree.uplift.UpliftDRFModel
 
makeMetricBuilder(String[]) - Method in class hex.word2vec.Word2VecModel
 
makeModel(Key<M>, P) - Method in class hex.tree.SharedTree.Driver
 
makeModelMetrics(Model, Frame) - Method in class hex.aggregator.ModelMetricsAggregator.AggregatorModelMetrics
 
makeModelMetrics(Model, Frame, Frame, Frame) - Method in class hex.gam.MetricBuilderGAM
 
makeModelMetrics(Model, Frame, Frame, Frame) - Method in class hex.glm.GLMMetricBuilder
 
makeModelMetrics(Model, Frame) - Method in class hex.glrm.ModelMetricsGLRM.GlrmModelMetricsBuilder
 
makeModelMetrics(Model, Frame, Frame, Frame) - Method in class hex.hglm.MetricBuilderHGLM
 
makeModelMetrics(Model, Frame) - Method in class hex.pca.ModelMetricsPCA.PCAModelMetrics
 
makeModelMetrics(Model, Frame, Frame, Frame) - Method in class hex.psvm.MetricBuilderPSVM
Create a ModelMetrics for a given model and frame
makeModelMetrics(Model, Frame) - Method in class hex.svd.SVDModel.ModelMetricsSVD.SVDModelMetrics
 
makeModelMetrics() - Method in class hex.tree.dt.DT
 
makeModelMetrics(Model, Frame, Frame, Frame) - Method in class hex.tree.isofor.MetricBuilderAnomalySupervised
Create a ModelMetrics for a given model and frame
makeModelMetrics(Model, Frame) - Method in class hex.tree.isofor.ModelMetricsAnomaly.MetricBuilderAnomaly
 
makeNeuronsForTesting(DeepLearningModelInfo) - Static method in class hex.deeplearning.DeepLearningTask
 
makeNeuronsForTraining(DeepLearningModelInfo) - Static method in class hex.deeplearning.DeepLearningTask
 
makePojoWriter() - Method in class hex.generic.GenericModel
 
makePojoWriter(Model<?, ?, ?>, MojoModel) - Method in class hex.tree.drf.DRF
 
makePojoWriter(Model<?, ?, ?>, MojoModel) - Method in class hex.tree.gbm.GBM
 
makePojoWriter() - Method in class hex.tree.SharedTreeModel
 
makeScoreExtension() - Method in class hex.tree.SharedTree
 
makeScoreExtension() - Method in class hex.tree.uplift.UpliftDRF
 
makeScorer(KernelType, KernelParameters, byte[], int, boolean) - Static method in class hex.psvm.BulkScorerFactory
Creates an instance of BulkSupportVectorScorer.
makeScoringDomains(Frame, boolean, String[]) - Method in class hex.isotonic.IsotonicRegressionModel
 
makeScoringDomains(Frame, boolean, String[]) - Method in class hex.tree.isofor.IsolationForestModel
 
makeScoringDomains(Frame, boolean, String[]) - Method in class hex.tree.isoforextended.ExtendedIsolationForestModel
 
makeScoringNames() - Method in class hex.adaboost.AdaBoostModel
 
makeScoringNames() - Method in class hex.gam.GAMModel
 
makeScoringNames() - Method in class hex.generic.GenericModel
 
makeScoringNames() - Method in class hex.glm.GLMModel
 
makeScoringNames() - Method in class hex.hglm.HGLMModel
 
makeScoringNames() - Method in class hex.isotonic.IsotonicRegressionModel
 
makeScoringNames() - Method in class hex.tree.isofor.IsolationForestModel
 
makeScoringNames() - Method in class hex.tree.isoforextended.ExtendedIsolationForestModel
 
makeTreeKey(int, int) - Static method in class hex.tree.CompressedTree
 
makeTreePojoWriter() - Method in class hex.tree.drf.DRFModel
 
makeTreePojoWriter() - Method in class hex.tree.gbm.GBMModel
 
makeTreePojoWriter() - Method in class hex.tree.SharedTreeModel
 
makeUndecidedNode(DHistogram[], Constraints, BranchInteractionConstraints) - Method in class hex.tree.DTree.DecidedNode
 
makeValidWorkspace() - Method in class hex.tree.SharedTree.Driver
 
makeZeros(double[], double[]) - Static method in class hex.glm.DispersionUtils
 
map(Chunk[], NewChunk[]) - Method in class hex.anovaglm.GenerateTransformColumns
 
map(Chunk[], NewChunk[]) - Method in class hex.ContributionsMeanAggregator
 
map(Chunk[], NewChunk[]) - Method in class hex.ContributionsWithBackgroundFrameTask
 
map(Chunk[], Chunk[], NewChunk[]) - Method in class hex.ContributionsWithBackgroundFrameTask
 
map(Chunk[]) - Method in class hex.FrameTask.ExtractDenseRow
 
map(Chunk[], NewChunk[]) - Method in class hex.FrameTask
Extracts the values, applies regularization to numerics, adds appropriate offsets to categoricals, and adapts response according to the CaseMode/CaseValue if set.
map(Chunk[]) - Method in class hex.FrameTask2
 
map(Chunk[], NewChunk[]) - Method in class hex.gam.GamSplines.ThinPlateDistanceWithKnots
 
map(Chunk[], NewChunk[]) - Method in class hex.gam.GamSplines.ThinPlatePolynomialWithKnots
 
map(Chunk[], NewChunk[]) - Method in class hex.gam.GamSplines.ThinPlateRegressionUtils.ScaleTPPenalty
 
map(Chunk[], NewChunk[]) - Method in class hex.gam.MatrixFrameUtils.AddCSGamColumns
 
map(Chunk[], NewChunk[]) - Method in class hex.gam.MatrixFrameUtils.AddISGamColumns
 
map(Chunk[], NewChunk[]) - Method in class hex.gam.MatrixFrameUtils.AddMSGamColumns
 
map(Chunk[], NewChunk[]) - Method in class hex.gam.MatrixFrameUtils.GenCSSplineGamOneColumn
 
map(Chunk[], NewChunk[]) - Method in class hex.gam.MatrixFrameUtils.GenISplineGamOneColumn
 
map(Chunk[], NewChunk[]) - Method in class hex.gam.MatrixFrameUtils.GenMSplineGamOneColumn
 
map(Chunk[]) - Method in class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk
 
map(Chunk[], NewChunk[]) - Method in class hex.glm.DispersionTask.ComputeTweedieConstTsk
 
map(Chunk[], NewChunk[]) - Method in class hex.glm.DispersionTask.GenPrediction
 
map(Chunk[], NewChunk[]) - Method in class hex.glm.GLMScore
 
map(Chunk[]) - Method in class hex.glm.GLMTask.GLMCoordinateDescentTaskSeqIntercept
 
map(Chunk[]) - Method in class hex.glm.GLMTask.GLMCoordinateDescentTaskSeqNaive
 
map(Chunk[]) - Method in class hex.glm.GLMTask.GLMGenerateWeightsTask
 
map(Chunk[]) - Method in class hex.glm.GLMTask.GLMMultinomialGradientBaseTask
 
map(Chunk[]) - Method in class hex.glm.GLMTask.GLMMultinomialUpdate
 
map(Chunk[]) - Method in class hex.glm.GLMTask.YMUTask
 
map(Chunk[], NewChunk[]) - Method in class hex.glm.RegressionInfluenceDiagnosticsTasks.ComputeNewBetaVarEstimatedGaussian
 
map(Chunk[], NewChunk[]) - Method in class hex.glm.RegressionInfluenceDiagnosticsTasks.RegressionInfluenceDiagBinomial
 
map(Chunk[], NewChunk[]) - Method in class hex.glm.RegressionInfluenceDiagnosticsTasks.RegressionInfluenceDiagGaussian
 
map(Chunk[]) - Method in class hex.glm.TweedieEstimator
 
map(Chunk[]) - Method in class hex.glrm.GLRM.updateXVecs
 
map(Chunk[], NewChunk[]) - Method in class hex.glrm.GLRMGenX
 
map(Chunk[]) - Method in class hex.gram.Gram.OuterGramTask
 
map(Chunk[], NewChunk[]) - Method in class hex.hglm.HGLMScore
 
map(Chunk[]) - Method in class hex.hglm.HGLMTask.ComputationEngineTask
 
map(Chunk[]) - Method in class hex.hglm.HGLMTask.ResidualLLHTask
 
map(Chunk[]) - Method in class hex.modelselection.ModelSelectionTasks.SweepFrameParallel
 
map(Chunk[], byte[]) - Method in class hex.rulefit.Condition
 
map(Chunk[], byte[]) - Method in class hex.rulefit.Rule
 
map(Chunk[]) - Method in class hex.tree.drf.TreeMeasuresCollector
 
map(Chunk, Chunk) - Method in class hex.tree.drf.TreeMeasuresCollector.ShuffleTask
 
map(Chunk[]) - Method in class hex.tree.dt.mrtasks.CountBinsSamplesCountsMRTask
 
map(Chunk[], NewChunk[]) - Method in class hex.tree.dt.mrtasks.FeaturesLimitsMRTask
 
map(Chunk[]) - Method in class hex.tree.dt.mrtasks.GetClassCountsMRTask
 
map(Chunk[]) - Method in class hex.tree.dt.mrtasks.ScoreDTTask
 
map(Chunk[]) - Method in class hex.tree.ExactSplitPoints
 
map(Chunk[]) - Method in class hex.tree.gbm.GBM.DiffMinusMedianDiff
 
map(Chunk[]) - Method in class hex.tree.ReconstructTreeState
 
map(Chunk, Chunk) - Method in class hex.tree.Sample
 
map(Chunk[]) - Method in class hex.tree.Score
 
map(Chunk[]) - Method in class hex.tree.ScoreBuildHistogram2
 
map(Chunk[], NewChunk[]) - Method in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsSortingTask
 
map(Chunk[], NewChunk[]) - Method in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsTask
 
map(Chunk[], Chunk[], NewChunk[]) - Method in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsWithBackgroundTask
 
map(Chunk[]) - Method in class hex.util.LinearAlgebraUtils.BMulInPlaceTask
 
map(Chunk[]) - Method in class hex.util.LinearAlgebraUtils.BMulTaskMatrices
 
map(Chunk[]) - Method in class hex.util.LinearAlgebraUtils.CopyQtoQMatrix
 
map(Chunk[]) - Method in class hex.util.LinearAlgebraUtils.FindMaxIndex
 
map(Chunk[]) - Method in class hex.util.LinearAlgebraUtils.ForwardSolve
 
map(Chunk[]) - Method in class hex.util.LinearAlgebraUtils.ForwardSolveInPlace
 
map(Chunk[]) - Method in class hex.util.LinearAlgebraUtils.SMulTask
 
map(Chunk) - Method in class hex.word2vec.WordCountTask
 
map(Chunk[]) - Method in class hex.word2vec.WordVectorConverter
 
map(Chunk) - Method in class hex.word2vec.WordVectorTrainer
 
mapBasicVector2Multiple(ModelSelectionUtils.SweepVector[][], int) - Static method in class hex.modelselection.ModelSelectionUtils
When multiple rows/columns are added to the CPM due to the new predictor being categorical, we need to map the old sweep vector arrays to new bigger sweep vector arrays.
mapNames(String[]) - Method in class hex.DataInfo
 
mapping_frame - Variable in class hex.schemas.AggregatorModelV99.AggregatorModelOutputV99
 
mapPredIndex2CPMIndices(DataInfo, int, List<Integer>) - Static method in class hex.modelselection.ModelSelectionUtils
This method attempts to map all predictors into the corresponding cpm indices that refer to that predictor.
match(double[], int[]) - Method in class hex.glm.ComputationState.GramXY
 
matches - Variable in class hex.schemas.GrepModelV3.GrepModelOutputV3
 
matrixMultiply(double[][], double[][]) - Static method in class hex.util.LinearAlgebraUtils
 
matrixMultiplyTriagonal(double[][], TriDiagonalMatrix, boolean) - Static method in class hex.util.LinearAlgebraUtils
 
MatrixUtils - Class in hex.psvm.psvm
Utils class for matrix operations.
MatrixUtils() - Constructor for class hex.psvm.psvm.MatrixUtils
 
max_abs_leafnode_pred - Variable in class hex.schemas.GBMV3.GBMParametersV3
 
max_active_predictors - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
max_active_predictors - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
max_active_predictors - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
max_after_balance_size - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
When classes are balanced, limit the resulting dataset size to the specified multiple of the original dataset size.
max_after_balance_size - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
When classes are balanced, limit the resulting dataset size to the specified multiple of the original dataset size.
max_after_balance_size - Variable in class hex.schemas.GAMV3.GAMParametersV3
When classes are balanced, limit the resulting dataset size to the specified multiple of the original dataset size.
max_after_balance_size - Variable in class hex.schemas.GLMV3.GLMParametersV3
When classes are balanced, limit the resulting dataset size to the specified multiple of the original dataset size.
max_after_balance_size - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
When classes are balanced, limit the resulting dataset size to the specified multiple of the original dataset size.
max_after_balance_size - Variable in class hex.schemas.NaiveBayesV3.NaiveBayesParametersV3
When classes are balanced, limit the resulting dataset size to the specified multiple of the original dataset size.
max_after_balance_size - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
When classes are balanced, limit the resulting dataset size to the specified multiple of the original dataset size.
max_categorical_features - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
 
max_confusion_matrix_size - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
For classification models, the maximum size (in terms of classes) of the confusion matrix for it to be printed.
max_confusion_matrix_size - Variable in class hex.schemas.GAMV3.GAMParametersV3
For classification models, the maximum size (in terms of classes) of the confusion matrix for it to be printed.
max_confusion_matrix_size - Variable in class hex.schemas.GLMV3.GLMParametersV3
For classification models, the maximum size (in terms of classes) of the confusion matrix for it to be printed.
max_confusion_matrix_size - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
For classification models, the maximum size (in terms of classes) of the confusion matrix for it to be printed.
max_confusion_matrix_size - Variable in class hex.schemas.NaiveBayesV3.NaiveBayesParametersV3
For classification models, the maximum size (in terms of classes) of the confusion matrix for it to be printed.
max_confusion_matrix_size - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
For classification models, the maximum size (in terms of classes) of the confusion matrix for it to be printed.
max_depth - Variable in class hex.schemas.DTV3.DTParametersV3
 
max_depth - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
 
max_depth - Variable in class hex.schemas.TreeStatsV3
 
MAX_INDEX - Static variable in class hex.tree.dt.binning.NumericBin
 
max_iterations - Variable in class hex.schemas.AggregatorV99.AggregatorParametersV99
 
max_iterations - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
 
max_iterations - Variable in class hex.schemas.CoxPHV3.CoxPHParametersV3
 
max_iterations - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
max_iterations - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
max_iterations - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
 
max_iterations - Variable in class hex.schemas.HGLMV3.HGLMParametersV3
 
max_iterations - Variable in class hex.schemas.KMeansV3.KMeansParametersV3
 
max_iterations - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
max_iterations - Variable in class hex.schemas.PCAV3.PCAParametersV3
 
max_iterations - Variable in class hex.schemas.PSVMV3.PSVMParametersV3
 
max_iterations - Variable in class hex.schemas.SVDV99.SVDParametersV99
 
max_iterations_dispersion - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
max_leaves - Variable in class hex.schemas.TreeStatsV3
 
MAX_NTREES - Static variable in class hex.tree.isoforextended.ExtendedIsolationForest
 
MAX_NTREES - Static variable in class hex.tree.SharedTree
 
max_num_rules - Variable in class hex.schemas.RuleFitV3.RuleFitParametersV3
 
max_predictor_number - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
max_rule_length - Variable in class hex.schemas.RuleFitV3.RuleFitParametersV3
 
MAX_SAMPLE_SIZE - Static variable in class hex.tree.isoforextended.ExtendedIsolationForest
 
max_updates - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
 
max_w2 - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
A maximum on the sum of the squared incoming weights into any one neuron.
max_x - Variable in class hex.schemas.IsotonicRegressionModelV3.IsotonicRegressionModelOutputV3
 
maxIter() - Method in class hex.optimization.L_BFGS
 
Maxout(DeepLearningModel.DeepLearningParameters, short, int) - Constructor for class hex.deeplearning.Neurons.Maxout
 
MaxoutDropout(DeepLearningModel.DeepLearningParameters, short, int) - Constructor for class hex.deeplearning.Neurons.MaxoutDropout
 
mean_a - Variable in class hex.deeplearning.DeepLearningModelInfo
 
mean_depth - Variable in class hex.schemas.TreeStatsV3
 
mean_leaves - Variable in class hex.schemas.TreeStatsV3
 
mean_normalized_score - Variable in class water.api.ModelMetricsAnomalyV3
 
mean_score - Variable in class water.api.ModelMetricsAnomalyV3
 
MeanImputer() - Constructor for class hex.DataInfo.MeanImputer
 
meanLoss(DataInfo.Row[]) - Method in class hex.deeplearning.DeepLearningModel
Compute the loss function
mergeCombos(ArrayList<int[]>, Integer[], int[], List<Integer[]>) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
 
mergeWith(TreeStats) - Method in class hex.tree.TreeStats
 
messages - Variable in class hex.optimization.OptimizationUtils.MoreThuente
 
Metalearner<B extends hex.ModelBuilder<M,P,?>,M extends hex.Model<M,P,?>,P extends hex.Model.Parameters> - Class in hex.ensemble
 
Metalearner() - Constructor for class hex.ensemble.Metalearner
 
Metalearner.Algorithm - Enum in hex.ensemble
Using an enum to list possible algos is not the greatest idea here as it forces us to hardcode supported algos and creates a dependency to metalearners provided in extensions (XGBoost).
metalearner_algorithm - Variable in class hex.schemas.StackedEnsembleV99.StackedEnsembleParametersV99
 
metalearner_fold_assignment - Variable in class hex.schemas.StackedEnsembleV99.StackedEnsembleParametersV99
 
metalearner_fold_column - Variable in class hex.schemas.StackedEnsembleV99.StackedEnsembleParametersV99
 
metalearner_nfolds - Variable in class hex.schemas.StackedEnsembleV99.StackedEnsembleParametersV99
 
metalearner_params - Variable in class hex.schemas.StackedEnsembleV99.StackedEnsembleParametersV99
 
metalearner_transform - Variable in class hex.schemas.StackedEnsembleV99.StackedEnsembleParametersV99
 
MetalearnerProvider<M extends Metalearner> - Interface in hex.ensemble
 
Metalearners - Class in hex.ensemble
Entry point class to load and access the supported metalearners.
Metalearners() - Constructor for class hex.ensemble.Metalearners
 
Metalearners.SimpleMetalearner - Class in hex.ensemble
A simple implementation of Metalearner suitable for any algo; it is just using the algo with its default parameters.
method - Variable in class hex.schemas.HGLMV3.HGLMParametersV3
 
metric(double, double) - Method in class hex.tree.uplift.ChiSquaredDivergence
 
metric(double, double) - Method in class hex.tree.uplift.Divergence
Calculate distance divergence metric between two probabilities.
metric(double, double) - Method in class hex.tree.uplift.EuclideanDistance
 
metric(double, double) - Method in class hex.tree.uplift.KLDivergence
 
MetricBuilderAnomaly() - Constructor for class hex.tree.isofor.ModelMetricsAnomaly.MetricBuilderAnomaly
 
MetricBuilderAnomaly(String, boolean) - Constructor for class hex.tree.isofor.ModelMetricsAnomaly.MetricBuilderAnomaly
 
MetricBuilderAnomalySupervised - Class in hex.tree.isofor
 
MetricBuilderAnomalySupervised(String[]) - Constructor for class hex.tree.isofor.MetricBuilderAnomalySupervised
 
MetricBuilderGAM - Class in hex.gam
 
MetricBuilderGAM(String[], double[], GLMModel.GLMWeightsFun, int, boolean, boolean, int, MultinomialAucType) - Constructor for class hex.gam.MetricBuilderGAM
 
MetricBuilderHGLM - Class in hex.hglm
 
MetricBuilderHGLM(String[], boolean, boolean, boolean, HGLMModel.HGLMModelOutput) - Constructor for class hex.hglm.MetricBuilderHGLM
 
MetricBuilderPSVM<T extends MetricBuilderPSVM<T>> - Class in hex.psvm
Binomial Metric builder tailored to SVM SVM doesn't predict probabilities, only probabilities 0-1 are returned, this renders some binomial metric misleading (eg.
MetricBuilderPSVM(String[]) - Constructor for class hex.psvm.MetricBuilderPSVM
 
mid(int, float, int) - Method in class hex.tree.TreeVisitor
 
min_depth - Variable in class hex.schemas.TreeStatsV3
 
MIN_IMPROVEMENT - Static variable in class hex.tree.dt.DT
 
MIN_INDEX - Static variable in class hex.tree.dt.binning.NumericBin
 
min_leaves - Variable in class hex.schemas.TreeStatsV3
 
min_predictor_number - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
min_prob - Variable in class hex.schemas.NaiveBayesV3.NaiveBayesParametersV3
 
min_rows - Variable in class hex.schemas.DTV3.DTParametersV3
 
min_rows - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
 
min_rule_length - Variable in class hex.schemas.RuleFitV3.RuleFitParametersV3
 
min_sdev - Variable in class hex.schemas.NaiveBayesV3.NaiveBayesParametersV3
 
min_split_improvement - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
 
min_step_size - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
 
min_word_freq - Variable in class hex.schemas.Word2VecV3.Word2VecParametersV3
 
min_x - Variable in class hex.schemas.IsotonicRegressionModelV3.IsotonicRegressionModelOutputV3
 
mini_batch_size - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
 
minMemoryPerNode() - Static method in class hex.ContributionsWithBackgroundFrameTask
 
missing_values_handling - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
 
missing_values_handling - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
 
missing_values_handling - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
missing_values_handling - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
missing_values_handling - Variable in class hex.schemas.HGLMV3.HGLMParametersV3
 
missing_values_handling - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
missingColumnsType() - Method in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
 
missingValuesHandling() - Method in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
 
missingValuesHandling() - Method in class hex.gam.GAMModel.GAMParameters
 
missingValuesHandling() - Method in class hex.glm.GLMModel.GLMParameters
 
missingValuesHandling() - Method in class hex.hglm.HGLMModel.HGLMParameters
 
missingValuesHandling() - Method in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
mode - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
model - Variable in class hex.schemas.GLMRegularizationPathV3
 
model - Variable in class hex.schemas.MakeGLMModelV3
 
model - Variable in class hex.schemas.TreeV3
 
model - Variable in class hex.schemas.Word2VecSynonymsV3
 
model - Variable in class hex.schemas.Word2VecTransformV3
 
model_info() - Method in class hex.deeplearning.DeepLearningModel
 
model_info() - Method in class hex.deeplearning.DeepLearningTask
Accessor to the object containing the (final) state of the Deep Learning model Should only be queried after calling this.doAll(Frame training)
model_info() - Method in class hex.deeplearning.DeepLearningTask2
Returns the aggregated DeepLearning model that was trained by all nodes (over all the training data)
model_info_key - Variable in class hex.deeplearning.DeepLearningModel
 
model_key - Variable in class hex.schemas.GenericV3.GenericParametersV3
 
model_type - Variable in class hex.schemas.RuleFitV3.RuleFitParametersV3
 
modelCategory - Variable in class hex.ensemble.StackedEnsembleModel
 
modelDescriptor() - Method in class hex.coxph.CoxPHModel
 
ModelMetricsAggregator - Class in hex.aggregator
 
ModelMetricsAggregator(Model, Frame, CustomMetric) - Constructor for class hex.aggregator.ModelMetricsAggregator
 
ModelMetricsAggregator.AggregatorModelMetrics - Class in hex.aggregator
 
ModelMetricsAnomaly - Class in hex.tree.isofor
 
ModelMetricsAnomaly(Model, Frame, CustomMetric, long, double, double, String) - Constructor for class hex.tree.isofor.ModelMetricsAnomaly
 
ModelMetricsAnomaly.MetricBuilderAnomaly - Class in hex.tree.isofor
 
ModelMetricsAnomalyV3 - Class in water.api
 
ModelMetricsAnomalyV3() - Constructor for class water.api.ModelMetricsAnomalyV3
 
ModelMetricsGLRM - Class in hex.glrm
 
ModelMetricsGLRM(Model, Frame, double, double, CustomMetric) - Constructor for class hex.glrm.ModelMetricsGLRM
 
ModelMetricsGLRM(Model, Frame, double, double, long, long, CustomMetric) - Constructor for class hex.glrm.ModelMetricsGLRM
 
ModelMetricsGLRM.GlrmModelMetricsBuilder - Class in hex.glrm
 
ModelMetricsGLRMV99 - Class in water.api
 
ModelMetricsGLRMV99() - Constructor for class water.api.ModelMetricsGLRMV99
 
ModelMetricsPCA - Class in hex.pca
 
ModelMetricsPCA(Model, Frame, CustomMetric) - Constructor for class hex.pca.ModelMetricsPCA
 
ModelMetricsPCA.PCAModelMetrics - Class in hex.pca
 
ModelMetricsPCAV3 - Class in water.api
 
ModelMetricsPCAV3() - Constructor for class water.api.ModelMetricsPCAV3
 
ModelMetricsSVD(Model, Frame, CustomMetric) - Constructor for class hex.svd.SVDModel.ModelMetricsSVD
 
ModelMetricsSVDV99 - Class in water.api
 
ModelMetricsSVDV99() - Constructor for class water.api.ModelMetricsSVDV99
 
models - Variable in class hex.adaboost.AdaBoostModel.AdaBoostOutput
 
ModelSelection - Class in hex.modelselection
 
ModelSelection(boolean) - Constructor for class hex.modelselection.ModelSelection
 
ModelSelection(ModelSelectionModel.ModelSelectionParameters) - Constructor for class hex.modelselection.ModelSelection
 
ModelSelection(ModelSelectionModel.ModelSelectionParameters, Key<ModelSelectionModel>) - Constructor for class hex.modelselection.ModelSelection
 
ModelSelection.ModelSelectionDriver - Class in hex.modelselection
 
ModelSelection.SweepModel - Class in hex.modelselection
Contains information of a predictor subsets like predictor indices of the subset (with the newest predictor as the last element of the array), CPM associated with predictor subset minus the latest element and the error variance of the CPM.
ModelSelectionDriver() - Constructor for class hex.modelselection.ModelSelection.ModelSelectionDriver
 
ModelSelectionModel - Class in hex.modelselection
 
ModelSelectionModel(Key<ModelSelectionModel>, ModelSelectionModel.ModelSelectionParameters, ModelSelectionModel.ModelSelectionModelOutput) - Constructor for class hex.modelselection.ModelSelectionModel
 
ModelSelectionModel.ModelSelectionModelOutput - Class in hex.modelselection
 
ModelSelectionModel.ModelSelectionParameters - Class in hex.modelselection
 
ModelSelectionModel.ModelSelectionParameters.Mode - Enum in hex.modelselection
 
ModelSelectionModelOutput(ModelSelection, DataInfo) - Constructor for class hex.modelselection.ModelSelectionModel.ModelSelectionModelOutput
 
ModelSelectionModelOutputV3() - Constructor for class hex.schemas.ModelSelectionModelV3.ModelSelectionModelOutputV3
 
ModelSelectionModelV3 - Class in hex.schemas
 
ModelSelectionModelV3() - Constructor for class hex.schemas.ModelSelectionModelV3
 
ModelSelectionModelV3.ModelSelectionModelOutputV3 - Class in hex.schemas
 
ModelSelectionModeProvider() - Constructor for class hex.schemas.ModelSelectionV3.ModelSelectionModeProvider
 
ModelSelectionParameters() - Constructor for class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
ModelSelectionParametersV3() - Constructor for class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
ModelSelectionTasks - Class in hex.modelselection
 
ModelSelectionTasks() - Constructor for class hex.modelselection.ModelSelectionTasks
 
ModelSelectionTasks.SweepFrameParallel - Class in hex.modelselection
 
ModelSelectionUtils - Class in hex.modelselection
 
ModelSelectionUtils() - Constructor for class hex.modelselection.ModelSelectionUtils
 
ModelSelectionUtils.SweepVector - Class in hex.modelselection
store information on sweeping actions that are to be performed to new rows/columns added to CPM due to the addition of new predcitors.
ModelSelectionV3 - Class in hex.schemas
 
ModelSelectionV3() - Constructor for class hex.schemas.ModelSelectionV3
 
ModelSelectionV3.ModelSelectionModeProvider - Class in hex.schemas
 
ModelSelectionV3.ModelSelectionParametersV3 - Class in hex.schemas
 
modifiesVolatileVecs() - Method in class hex.tree.Score
 
MojoConvertTool - Class in water.tools
Convenience command line tool for converting H2O MOJO to POJO
MojoConvertTool(File, File) - Constructor for class water.tools.MojoConvertTool
 
MojoUtils - Class in hex.tree
 
MojoUtils() - Constructor for class hex.tree.MojoUtils
 
mojoVersion() - Method in class hex.coxph.CoxPHMojoWriter
 
mojoVersion() - Method in class hex.deeplearning.DeepLearningMojoWriter
 
mojoVersion() - Method in class hex.ensemble.StackedEnsembleMojoWriter
 
mojoVersion() - Method in class hex.gam.GAMMojoWriter
 
mojoVersion() - Method in class hex.generic.GenericModelMojoWriter
 
mojoVersion() - Method in class hex.glm.GLMMojoWriter
 
mojoVersion() - Method in class hex.glrm.GlrmMojoWriter
 
mojoVersion() - Method in class hex.isotonic.IsotonicRegressionMojoWriter
 
mojoVersion() - Method in class hex.kmeans.KMeansMojoWriter
 
mojoVersion() - Method in class hex.pca.PCAMojoWriter
 
mojoVersion() - Method in class hex.rulefit.RuleFitMojoWriter
 
mojoVersion() - Method in class hex.tree.drf.DrfMojoWriter
 
mojoVersion() - Method in class hex.tree.gbm.GbmMojoWriter
 
mojoVersion() - Method in class hex.tree.isofor.IsolationForestMojoWriter
 
mojoVersion() - Method in class hex.tree.isoforextended.ExtendedIsolationForestMojoWriter
 
mojoVersion() - Method in class hex.tree.uplift.UpliftDrfMojoWriter
 
mojoVersion() - Method in class hex.word2vec.Word2VecMojoWriter
 
momentum() - Method in class hex.deeplearning.Neurons
 
momentum(double) - Method in class hex.deeplearning.Neurons
The momentum - real number in [0, 1) Can be a linear ramp from momentum_start to momentum_stable, over momentum_ramp training samples
momentum_ramp - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
The momentum_ramp parameter controls the amount of learning for which momentum increases (assuming momentum_stable is larger than momentum_start).
momentum_stable - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
The momentum_stable parameter controls the final momentum value reached after momentum_ramp training samples.
momentum_start - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
The momentum_start parameter controls the amount of momentum at the beginning of training.
monotone_constraints - Variable in class hex.schemas.GBMV3.GBMParametersV3
 
MoreThuente(OptimizationUtils.GradientSolver, double[]) - Constructor for class hex.optimization.OptimizationUtils.MoreThuente
 
MoreThuente(OptimizationUtils.GradientSolver, double[], OptimizationUtils.GradientInfo) - Constructor for class hex.optimization.OptimizationUtils.MoreThuente
 
MoreThuente(OptimizationUtils.GradientSolver, double[], OptimizationUtils.GradientInfo, double, double, double) - Constructor for class hex.optimization.OptimizationUtils.MoreThuente
 
mtries - Variable in class hex.schemas.DRFV3.DRFParametersV3
 
mtries - Variable in class hex.schemas.IsolationForestV3.IsolationForestParametersV3
 
mtries - Variable in class hex.schemas.UpliftDRFV3.UpliftDRFParametersV3
 
mtrxMul(double[][], double[]) - Method in class hex.DataInfo.Row
 
mu - Variable in class hex.glm.GLMModel.GLMWeights
 
mu_factor - Variable in class hex.schemas.PSVMV3.PSVMParametersV3
 
MUIND - Static variable in class hex.glm.DispersionTask
 
mul(double) - Method in class hex.gram.Gram
 
mul(double[]) - Method in class hex.gram.Gram
 
mul(double[], double[]) - Method in class hex.gram.Gram
 
mult(double) - Method in class hex.deeplearning.DeepLearningModelInfo
Multiply all weights/biases by a real-valued number
multi_loss - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
 
multiClassCoeffNames() - Method in class hex.glm.GLMModel.GLMOutput
 
multinode_mode - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
MurmurHash - Class in hex.deeplearning
This is a very fast, non-cryptographic hash suitable for general hash-based lookup.
MurmurHash() - Constructor for class hex.deeplearning.MurmurHash
 

N

n0() - Method in class hex.tree.DTree.Split
 
n1() - Method in class hex.tree.DTree.Split
 
NaiveBayes - Class in hex.naivebayes
Naive Bayes This is an algorithm for computing the conditional a-posterior probabilities of a categorical response from independent predictors using Bayes rule.
NaiveBayes(NaiveBayesModel.NaiveBayesParameters) - Constructor for class hex.naivebayes.NaiveBayes
 
NaiveBayes(boolean) - Constructor for class hex.naivebayes.NaiveBayes
 
NaiveBayesModel - Class in hex.naivebayes
 
NaiveBayesModel(Key, NaiveBayesModel.NaiveBayesParameters, NaiveBayesModel.NaiveBayesOutput) - Constructor for class hex.naivebayes.NaiveBayesModel
 
NaiveBayesModel.NaiveBayesOutput - Class in hex.naivebayes
 
NaiveBayesModel.NaiveBayesParameters - Class in hex.naivebayes
 
NaiveBayesModelOutputV3() - Constructor for class hex.schemas.NaiveBayesModelV3.NaiveBayesModelOutputV3
 
NaiveBayesModelV3 - Class in hex.schemas
 
NaiveBayesModelV3() - Constructor for class hex.schemas.NaiveBayesModelV3
 
NaiveBayesModelV3.NaiveBayesModelOutputV3 - Class in hex.schemas
 
NaiveBayesOutput(NaiveBayes) - Constructor for class hex.naivebayes.NaiveBayesModel.NaiveBayesOutput
 
NaiveBayesParameters() - Constructor for class hex.naivebayes.NaiveBayesModel.NaiveBayesParameters
 
NaiveBayesParametersV3() - Constructor for class hex.schemas.NaiveBayesV3.NaiveBayesParametersV3
 
NaiveBayesV3 - Class in hex.schemas
 
NaiveBayesV3() - Constructor for class hex.schemas.NaiveBayesV3
 
NaiveBayesV3.NaiveBayesParametersV3 - Class in hex.schemas
 
names() - Method in class hex.glm.GLMModel
 
names - Variable in class hex.schemas.MakeGLMModelV3
 
nargs() - Method in class water.rapids.prims.AstPredictedVsActualByVar
 
nargs() - Method in class water.rapids.prims.AstSetCalibrationModel
 
nargs() - Method in class water.rapids.prims.isotonic.AstPoolAdjacentViolators
 
nargs() - Method in class water.rapids.prims.rulefit.AstPredictRule
 
nargs() - Method in class water.rapids.prims.tree.AstTreeUpdateWeights
 
nargs() - Method in class water.rapids.prims.word2vec.AstWord2VecToFrame
 
nas - Variable in class hex.schemas.TreeV3
 
NAsIncluded - Variable in class hex.rulefit.Condition
 
naSplitDir() - Method in class hex.tree.DTree.Split
 
nBins - Variable in class hex.DataInfo.Row
 
nbins - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
 
nbins() - Method in class hex.tree.DHistogram
 
nbins_cats - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
 
nbins_top_level - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
 
NBSplinesTypeIDerivative - Class in hex.gam.GamSplines
 
NBSplinesTypeIDerivative(int, int, double[]) - Constructor for class hex.gam.GamSplines.NBSplinesTypeIDerivative
 
NBSplinesUtils - Class in hex.gam.GamSplines
 
NBSplinesUtils() - Constructor for class hex.gam.GamSplines.NBSplinesUtils
 
nclasses() - Method in class hex.coxph.CoxPHModel.CoxPHOutput
 
nclasses() - Method in class hex.ensemble.StackedEnsemble
 
nclasses() - Method in class hex.gam.GAMModel.GAMModelOutput
 
nclasses() - Method in class hex.glm.GLM
 
nclasses() - Method in class hex.glm.GLMModel.GLMOutput
 
nclasses() - Method in class hex.hglm.HGLMModel.HGLMModelOutput
 
nclasses() - Method in class hex.tree.gbm.GBMModel.GBMOutput
 
needsPostProcess() - Method in class hex.adaboost.AdaBoostModel
 
needsPostProcess() - Method in class hex.generic.GenericModel
 
needsPostProcess() - Method in class hex.glm.GLMModel
 
negative_weight - Variable in class hex.schemas.PSVMV3.PSVMParametersV3
 
nesterov_accelerated_gradient - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
The Nesterov accelerated gradient descent method is a modification to traditional gradient descent for convex functions.
Neurons - Class in hex.deeplearning
This class implements the concept of a Neuron layer in a Neural Network During training, every MRTask F/J thread is expected to create these neurons for every map call (Cheap to make).
Neurons.ExpRectifier - Class in hex.deeplearning
 
Neurons.ExpRectifierDropout - Class in hex.deeplearning
Exponential Rectifier with dropout
Neurons.Input - Class in hex.deeplearning
Input layer of the Neural Network This layer is different from other layers as it has no incoming weights, but instead gets its activation values from the training points.
Neurons.Linear - Class in hex.deeplearning
Output neurons for regression - Linear units
Neurons.Maxout - Class in hex.deeplearning
Maxout neurons (picks the max out of the k activation_j = sum(A_ij*x_i) + b_j) Requires k times the model parameters (weights/biases) as a "normal" neuron
Neurons.MaxoutDropout - Class in hex.deeplearning
Maxout neurons with dropout
Neurons.Output - Class in hex.deeplearning
Abstract class for Output neurons
Neurons.Rectifier - Class in hex.deeplearning
Rectifier linear unit (ReLU) neurons
Neurons.RectifierDropout - Class in hex.deeplearning
Rectifier linear unit (ReLU) neurons with dropout
Neurons.Softmax - Class in hex.deeplearning
Output neurons for classification - Softmax
Neurons.Tanh - Class in hex.deeplearning
Tanh neurons - most common, most stable
Neurons.TanhDropout - Class in hex.deeplearning
Tanh neurons with dropout
newDenseRow() - Method in class hex.DataInfo
 
newDenseRow(double[], long) - Method in class hex.DataInfo
 
newInstance() - Method in interface hex.ensemble.MetalearnerProvider
 
newParametersSchemaInstance() - Method in interface hex.ensemble.MetalearnerProvider
 
nextLevelConstraints(Constraints, int, double, SharedTreeModel.SharedTreeParameters) - Method in class hex.tree.DTree.Split
 
nextLevelHistos(DHistogram[], int, double, SharedTreeModel.SharedTreeParameters, Constraints, BranchInteractionConstraints) - Method in class hex.tree.DTree.Split
Prepare children histograms, one per column.
nextLevelInteractionConstraints(GlobalInteractionConstraints, int) - Method in class hex.tree.BranchInteractionConstraints
Decide which column indices is allowed to be used for the next split in the next level of a tree.
nextNumericIdx(int) - Method in class hex.DataInfo
Get the next expanded number-column index.
nfeatures() - Method in class hex.aggregator.AggregatorModel.AggregatorOutput
 
nfeatures() - Method in class hex.ensemble.StackedEnsembleModel.StackedEnsembleOutput
 
nfeatures() - Method in class hex.generic.GenericModelOutput
 
nfeatures() - Method in class hex.glrm.GLRM.Archetypes
 
nfeatures() - Method in class hex.glrm.GLRMModel.GLRMOutput
Override because base class implements ncols-1 for features with the last column as a response variable; for GLRM all the columns are features.
nfeatures() - Method in class hex.pca.PCAModel.PCAOutput
Override because base class implements ncols-1 for features with the last column as a response variable; for PCA all the columns are features.
nfeval() - Method in interface hex.optimization.OptimizationUtils.LineSearchSolver
 
nfeval() - Method in class hex.optimization.OptimizationUtils.MoreThuente
 
nfeval() - Method in class hex.optimization.OptimizationUtils.SimpleBacktrackingLS
 
nid() - Method in class hex.tree.DTree.Node
 
nid2Oob(int) - Static method in class hex.tree.ScoreBuildHistogram
 
nids0Index - Variable in class hex.tree.SharedTree.FrameMap
 
nlambdas - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
nlambdas - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
nlambdas - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
nlearners - Variable in class hex.schemas.AdaBoostV3.AdaBoostParametersV3
 
nModelsInParallel(int) - Method in class hex.anovaglm.ANOVAGLM
 
nModelsInParallel(int) - Method in class hex.gam.GAM
 
nModelsInParallel(int) - Method in class hex.modelselection.ModelSelection
 
nModelsInParallel(int) - Method in class hex.tree.gbm.GBM
 
nNums - Variable in class hex.DataInfo.Row
 
NO_PARENT - Static variable in class hex.tree.DTree
 
nobs() - Method in class hex.glm.GLMTask.YMUTask
 
node(int) - Method in class hex.tree.DTree
 
Node(double[][], int, int) - Constructor for class hex.tree.isoforextended.isolationtree.IsolationTree.Node
 
node(double, double) - Method in class hex.tree.uplift.Divergence
Calculate distance metric between two probabilities in the node.
nomNA() - Method in class hex.tree.DHistogram
 
non_negative - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
 
non_negative - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
non_negative - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
non_negative - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
nonEmptyBins() - Method in class hex.tree.DHistogram
 
NonSPDMatrixException() - Constructor for exception hex.gram.Gram.NonSPDMatrixException
 
NonSPDMatrixException(String) - Constructor for exception hex.gram.Gram.NonSPDMatrixException
 
norm(double, double, double, double) - Method in class hex.tree.uplift.Divergence
Calculate normalization factor to normalize gain.
norm(double, double, double, double) - Method in class hex.tree.uplift.EuclideanDistance
 
norm(double, double, double, double) - Method in class hex.tree.uplift.KLDivergence
 
norm_model - Variable in class hex.schemas.Word2VecV3.Word2VecParametersV3
 
normalizeBeta(double[], boolean) - Method in class hex.DataInfo
 
normMul(int) - Method in class hex.DataInfo
 
normSub(int) - Method in class hex.DataInfo
 
notZeroLambdas(double[]) - Static method in class hex.glm.GLMUtils
 
nparallelism - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
 
nparallelism - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
npredictors() - Method in class hex.tree.drf.TreeMeasuresCollector.TreeMeasures
Returns number of voting predictors
nrows() - Method in class hex.tree.drf.TreeMeasuresCollector.TreeMeasures
Returns number of rows which were used during voting per individual tree.
nTreeEnsemblesInParallel(int) - Method in class hex.rulefit.RuleFit
 
ntrees - Variable in class hex.schemas.ExtendedIsolationForestV3.ExtendedIsolationForestParametersV3
 
ntrees - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
 
ntrees() - Method in class hex.tree.CompressedForest
 
ntrees() - Method in class hex.tree.DTreeScorer
 
nullDOF() - Method in class hex.gam.MetricBuilderGAM
 
nullDOF() - Method in class hex.glm.GLMMetricBuilder
 
num_iteration_without_new_exemplar - Variable in class hex.schemas.AggregatorV99.AggregatorParametersV99
 
num_knots - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
numCats() - Method in class hex.DataInfo
 
numcnt - Variable in class water.api.ModelMetricsGLRMV99
 
numColsExp(Frame, boolean) - Static method in class hex.util.LinearAlgebraUtils
Number of columns with categoricals expanded.
numControlNA() - Method in class hex.tree.DHistogram
 
NUMERICAL_FLAG - Static variable in class hex.tree.dt.mrtasks.CountBinsSamplesCountsMRTask
 
NUMERICAL_FLAG - Static variable in class hex.tree.dt.NumericFeatureLimits
 
NumericBin - Class in hex.tree.dt.binning
Single bin holding limits (min excluded), count of samples and count of class 0.
NumericBin(double, double, int, int) - Constructor for class hex.tree.dt.binning.NumericBin
 
NumericBin(double, double) - Constructor for class hex.tree.dt.binning.NumericBin
 
NumericBin(Pair<Double, Double>) - Constructor for class hex.tree.dt.binning.NumericBin
 
NumericFeatureLimits - Class in hex.tree.dt
Limits for one feature.
NumericFeatureLimits(double, double) - Constructor for class hex.tree.dt.NumericFeatureLimits
 
NumericSplittingRule - Class in hex.tree.dt
 
NumericSplittingRule(int, double, double) - Constructor for class hex.tree.dt.NumericSplittingRule
 
NumericSplittingRule(double) - Constructor for class hex.tree.dt.NumericSplittingRule
 
numerr - Variable in class water.api.ModelMetricsGLRMV99
 
numIds - Variable in class hex.DataInfo.Row
 
numNAFill() - Method in class hex.DataInfo
 
numNAFill(int) - Method in class hex.DataInfo
 
numNodes() - Method in class hex.tree.DTree.DecidedNode
 
numNodes() - Method in class hex.tree.DTree.LeafNode
 
numNodes() - Method in class hex.tree.DTree.Node
 
numNodes() - Method in class hex.tree.DTree.UndecidedNode
 
numNums() - Method in class hex.DataInfo
 
numStart() - Method in class hex.DataInfo
 
numTreatmentNA() - Method in class hex.tree.DHistogram
 
numTreshold - Variable in class hex.rulefit.Condition
 
numVals - Variable in class hex.DataInfo.Row
 
nv - Variable in class hex.schemas.SVDV99.SVDParametersV99
 

O

obj_reg - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
obj_reg - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
obj_reg - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
objective - Variable in class hex.glm.ComputationState.GramGrad
 
objective() - Method in class hex.glm.ComputationState
 
objective(double[], double) - Method in class hex.glm.ComputationState
 
objective - Variable in class hex.schemas.GLRMModelV3.GLRMModelOutputV3
 
objective - Variable in class hex.schemas.PCAModelV3.PCAModelOutputV3
 
objective_epsilon - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
objective_epsilon - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
objective_epsilon - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
offset - Variable in class hex.DataInfo.Row
 
offsetChunkId() - Method in class hex.DataInfo
 
offsetIdx() - Method in class hex.coxph.CoxPHModel.CoxPHOutput
 
offsetIndex - Variable in class hex.tree.SharedTree.FrameMap
 
offsets - Variable in class hex.schemas.GrepModelV3.GrepModelOutputV3
 
onCompletion(CountedCompleter) - Method in class hex.glm.GLM.GLMDriver
 
onCompletion(CountedCompleter) - Method in class hex.tree.SharedTree.ScoreBuildOneTree
 
oneHot(Frame, Model.InteractionSpec, boolean, boolean, boolean, boolean) - Static method in class hex.api.MakeGLMModelHandler
 
oneIndexOut(int, int) - Static method in class hex.anovaglm.ANOVAGLMUtils
 
oneSweepWSweepVector(ModelSelectionUtils.SweepVector[], double[][], int, int) - Static method in class hex.modelselection.ModelSelectionUtils
This method perform just one sweep of the sweeping action described in Step 3 of section V.II.IV of doc.
onExceptionalCompletion(Throwable, CountedCompleter) - Method in class hex.glm.GLM.GLMDriver
 
oob2Nid(int) - Static method in class hex.tree.ScoreBuildHistogram
 
oobtIndex - Variable in class hex.tree.SharedTree.FrameMap
 
operator - Variable in class hex.rulefit.Condition
 
OptimizationUtils - Class in hex.optimization
Created by tomasnykodym on 9/29/15.
OptimizationUtils() - Constructor for class hex.optimization.OptimizationUtils
 
OptimizationUtils.ExactLineSearch - Class in hex.optimization
This class implements the exact line search described in the doc, Algorithm 11.5
OptimizationUtils.GradientInfo - Class in hex.optimization
 
OptimizationUtils.GradientSolver - Interface in hex.optimization
Provides ginfo computation and line search evaluation specific to given problem.
OptimizationUtils.LineSearchSolver - Interface in hex.optimization
 
OptimizationUtils.MoreThuente - Class in hex.optimization
 
OptimizationUtils.SimpleBacktrackingLS - Class in hex.optimization
 
OUT_OF_BAG - Static variable in class hex.tree.ScoreBuildHistogram
Marker for sampled out rows
out_of_bounds - Variable in class hex.schemas.IsotonicRegressionV3.IsotonicRegressionParametersV3
 
OuterGramTask(Key<Job>, DataInfo) - Constructor for class hex.gram.Gram.OuterGramTask
 
output_frame - Variable in class hex.schemas.AggregatorModelV99.AggregatorModelOutputV99
 
outputChunkId() - Method in class hex.DataInfo
 
outputChunkId(int) - Method in class hex.DataInfo
 
overwrite_with_best_model - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
If enabled, store the best model under the destination key of this model at the end of training.
own_fields - Static variable in class hex.schemas.GrepV3.GrepParametersV3
 

P

p_values - Variable in class hex.schemas.GLMRegularizationPathV3
 
p_values_threshold - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
parameters - Variable in class hex.deeplearning.DeepLearningModelInfo
 
params - Variable in class hex.deeplearning.Neurons
Parameters (deep-cloned() from the user input, can be modified here, e.g.
parentPred() - Method in class hex.tree.DTree.DecidedNode
 
Parms() - Constructor for class hex.psvm.psvm.PrimalDualIPM.Parms
 
Parms(double, double) - Constructor for class hex.psvm.psvm.PrimalDualIPM.Parms
 
path - Variable in class hex.schemas.GenericV3.GenericParametersV3
 
PCA - Class in hex.pca
Principal Components Analysis It computes the principal components from the singular value decomposition using the power method.
PCA(PCAModel.PCAParameters) - Constructor for class hex.pca.PCA
 
PCA(boolean) - Constructor for class hex.pca.PCA
 
pca_impl - Variable in class hex.schemas.PCAV3.PCAParametersV3
 
pca_method - Variable in class hex.schemas.AggregatorV99.AggregatorParametersV99
 
pca_method - Variable in class hex.schemas.PCAV3.PCAParametersV3
 
PCA_MTJ_EVD_DenseMatrix - Class in hex.pca.mtj
 
PCA_MTJ_EVD_DenseMatrix(double[][]) - Constructor for class hex.pca.mtj.PCA_MTJ_EVD_DenseMatrix
 
PCA_MTJ_EVD_SymmMatrix - Class in hex.pca.mtj
 
PCA_MTJ_EVD_SymmMatrix(double[][]) - Constructor for class hex.pca.mtj.PCA_MTJ_EVD_SymmMatrix
 
PCA_MTJ_SVD_DenseMatrix - Class in hex.pca.mtj
 
PCA_MTJ_SVD_DenseMatrix(double[][]) - Constructor for class hex.pca.mtj.PCA_MTJ_SVD_DenseMatrix
 
PCAImplementation - Enum in hex.pca
 
PCAInterface - Interface in hex.pca
 
PCAJama - Class in hex.pca.jama
 
PCAJama(double[][]) - Constructor for class hex.pca.jama.PCAJama
 
PCAModel - Class in hex.pca
 
PCAModel(Key, PCAModel.PCAParameters, PCAModel.PCAOutput) - Constructor for class hex.pca.PCAModel
 
PCAModel.PCAOutput - Class in hex.pca
 
PCAModel.PCAParameters - Class in hex.pca
 
PCAModel.PCAParameters.Method - Enum in hex.pca
 
PCAModelMetrics(int) - Constructor for class hex.pca.ModelMetricsPCA.PCAModelMetrics
 
PCAModelOutputV3() - Constructor for class hex.schemas.PCAModelV3.PCAModelOutputV3
 
PCAModelV3 - Class in hex.schemas
 
PCAModelV3() - Constructor for class hex.schemas.PCAModelV3
 
PCAModelV3.PCAModelOutputV3 - Class in hex.schemas
 
PCAMojoWriter - Class in hex.pca
 
PCAMojoWriter() - Constructor for class hex.pca.PCAMojoWriter
 
PCAMojoWriter(PCAModel) - Constructor for class hex.pca.PCAMojoWriter
 
PCAOutput(PCA) - Constructor for class hex.pca.PCAModel.PCAOutput
 
PCAParameters() - Constructor for class hex.pca.PCAModel.PCAParameters
 
PCAParametersV3() - Constructor for class hex.schemas.PCAV3.PCAParametersV3
 
PCAV3 - Class in hex.schemas
 
PCAV3() - Constructor for class hex.schemas.PCAV3
 
PCAV3.PCAParametersV3 - Class in hex.schemas
 
pcond - Variable in class hex.schemas.NaiveBayesModelV3.NaiveBayesModelOutputV3
 
performOneSweep(double[][], ModelSelectionUtils.SweepVector[], int, boolean) - Static method in class hex.modelselection.ModelSelectionUtils
Perform one sweep according to section II of doc and generate sweep vector according to section V.II of doc.
period - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
 
perRow(double[], float[], Model) - Method in class hex.aggregator.ModelMetricsAggregator.AggregatorModelMetrics
 
perRow(double[], float[], double, double, Model) - Method in class hex.gam.MetricBuilderGAM
 
perRow(double[], float[], Model) - Method in class hex.gam.MetricBuilderGAM
 
perRow(double[], float[], Model) - Method in class hex.glm.GLMMetricBuilder
 
perRow(double[], float[], double, double, Model) - Method in class hex.glm.GLMMetricBuilder
 
perRow(double[], float[], Model) - Method in class hex.glrm.ModelMetricsGLRM.GlrmModelMetricsBuilder
 
perRow(double[], float[], double, double, double[], double[], double[][], int, Model) - Method in class hex.hglm.MetricBuilderHGLM
 
perRow(double[], float[], Model) - Method in class hex.hglm.MetricBuilderHGLM
 
perRow(double[], float[], Model) - Method in class hex.pca.ModelMetricsPCA.PCAModelMetrics
 
perRow(double[], float[], Model) - Method in class hex.psvm.MetricBuilderPSVM
 
perRow(double[], float[], double, double, Model) - Method in class hex.psvm.MetricBuilderPSVM
 
perRow(double[], float[], Model) - Method in class hex.svd.SVDModel.ModelMetricsSVD.SVDModelMetrics
 
perRow(double[], float[], double, double, Model) - Method in class hex.tree.isofor.MetricBuilderAnomalySupervised
 
perRow(double[], float[], Model) - Method in class hex.tree.isofor.ModelMetricsAnomaly.MetricBuilderAnomaly
 
pickBestModel(GLMModel.GLMParameters) - Method in class hex.glm.GLMModel.GLMOutput
 
pid() - Method in class hex.tree.DTree.Node
 
plain_language_rules - Variable in class hex.schemas.TreeV3
 
plug_values - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
 
plug_values - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
plug_values - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
plug_values - Variable in class hex.schemas.HGLMV3.HGLMParametersV3
 
plug_values - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
PlugValuesImputer(Frame) - Constructor for class hex.glm.GLM.PlugValuesImputer
 
PoolAdjacentViolatorsDriver - Class in hex.isotonic
Distributed implementation of Pool Adjacent Violators algorithm for H2O Frames
PoolAdjacentViolatorsDriver() - Constructor for class hex.isotonic.PoolAdjacentViolatorsDriver
 
positive_weight - Variable in class hex.schemas.PSVMV3.PSVMParametersV3
 
post(int, float, int) - Method in class hex.tree.TreeVisitor
 
postGlobal() - Method in class hex.ContributionsMeanAggregator
 
postGlobal() - Method in class hex.coxph.CoxPH.CoxPHTask
 
postGlobal() - Method in class hex.deeplearning.DeepLearningTask
After all reduces are done, the driver node calls this method to clean up This is only needed if we're not inside a DeepLearningTask2 (which will do the reduction between replicated data workers).
postGlobal() - Method in class hex.deeplearning.DeepLearningTask2
Finish up the work after all nodes have reduced their models via the above reduce() method.
postGlobal() - Method in class hex.gam.GamSplines.ThinPlateRegressionUtils.ScaleTPPenalty
 
postGlobal() - Method in class hex.gam.MatrixFrameUtils.GenCSSplineGamOneColumn
 
postGlobal() - Method in class hex.gam.MatrixFrameUtils.GenISplineGamOneColumn
 
postGlobal() - Method in class hex.gam.MatrixFrameUtils.GenMSplineGamOneColumn
 
postGlobal() - Method in class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk
 
postGlobal() - Method in class hex.glm.GLMScore
 
postGlobal() - Method in class hex.glm.GLMTask.GLMMultinomialGradientBaseTask
 
postGlobal() - Method in class hex.glm.GLMTask.LSTask
 
postGlobal() - Method in class hex.glm.GLMTask.YMUTask
 
postGlobal() - Method in class hex.hglm.HGLMTask.ComputationEngineTask
 
postGlobal() - Method in class hex.tree.ExactSplitPoints
 
postGlobal() - Method in class hex.tree.Score
 
postGlobal() - Method in class hex.tree.ScoreBuildHistogram2
 
postProcessPredictions(Frame, Job, CalibrationHelper.OutputWithCalibration) - Static method in class hex.tree.CalibrationHelper
 
postProcessPredictions(Frame, Frame, Job) - Method in class hex.tree.SharedTreeModel
 
pre(int, float, IcedBitSet, int, int) - Method in class hex.tree.TreeVisitor
 
pre_split_se() - Method in class hex.tree.DTree.Split
 
pre_trained - Variable in class hex.schemas.Word2VecV3.Word2VecParametersV3
 
pred(int) - Method in class hex.tree.DTree.DecidedNode
 
pred() - Method in class hex.tree.DTree.LeafNode
 
pred_noise_bandwidth - Variable in class hex.schemas.GBMV3.GBMParametersV3
 
predCombo(String[], int[]) - Static method in class hex.anovaglm.ANOVAGLMUtils
 
predControl(int) - Method in class hex.tree.DTree.DecidedNode
 
predictions - Variable in class hex.schemas.TreeV3
 
predictorMeans() - Method in class hex.glm.GLMTask.YMUTask
 
predictors_bad - Variable in class hex.DataInfo.Row
 
predictorSDs() - Method in class hex.glm.GLMTask.YMUTask
 
predictRowStartingFromNode(double[], int, String) - Method in class hex.tree.dt.CompressedDT
Makes prediction by recursively evaluating the data through the tree.
predictRules(Frame, String[]) - Method in class hex.rulefit.RuleFitModel
 
predictScoreImpl(Frame, Frame, String, Job, boolean, CFuncRef) - Method in class hex.aggregator.AggregatorModel
 
predictScoreImpl(Frame, Frame, String, Job, boolean, CFuncRef) - Method in class hex.coxph.CoxPHModel
 
predictScoreImpl(Frame, Frame, String, Job, boolean, CFuncRef) - Method in class hex.deeplearning.DeepLearningModel
Make either a prediction or a reconstruction.
predictScoreImpl(Frame, Frame, String, Job, boolean, CFuncRef) - Method in class hex.ensemble.StackedEnsembleModel
For StackedEnsemble we call score on all the base_models and then combine the results with the metalearner to create the final predictions frame.
predictScoreImpl(Frame, Frame, String, Job, boolean, CFuncRef) - Method in class hex.gam.GAMModel
 
predictScoreImpl(Frame, Frame, String, Job, boolean, CFuncRef) - Method in class hex.generic.GenericModel
 
predictScoreImpl(Frame, Frame, String, Job, boolean, CFuncRef) - Method in class hex.glm.GLMModel
Score an already adapted frame.
predictScoreImpl(Frame, Frame, String, Job, boolean, CFuncRef) - Method in class hex.glrm.GLRMModel
 
predictScoreImpl(Frame, Frame, String, Job, boolean, CFuncRef) - Method in class hex.hglm.HGLMModel
 
predictScoreImpl(Frame, Frame, String, Job, boolean, CFuncRef) - Method in class hex.kmeans.KMeansModel
 
predictScoreImpl(Frame, Frame, String, Job, boolean, CFuncRef) - Method in class hex.pca.PCAModel
 
predictScoreImpl(Frame, Frame, String, Job, boolean, CFuncRef) - Method in class hex.svd.SVDModel
 
predTreatment(int) - Method in class hex.tree.DTree.DecidedNode
 
prepareGamVec(int, GAMModel.GAMParameters, Frame) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
 
preSplitUpliftGain() - Method in class hex.tree.DTree.Split
 
pretrained_autoencoder - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
 
PrimalDualIPM - Class in hex.psvm.psvm
Implementation of Primal-Dual Interior Point Method based on https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/34638.pdf This implementation is based on and takes clues from the reference PSVM implementation in C++: https://code.google.com/archive/p/psvm/source/default/source original code: Copyright 2007 Google Inc., Apache License, Version 2.0
PrimalDualIPM() - Constructor for class hex.psvm.psvm.PrimalDualIPM
 
PrimalDualIPM.Parms - Class in hex.psvm.psvm
 
PrimalDualIPM.ProgressObserver - Interface in hex.psvm.psvm
 
printConstraintSummary(GLMModel, ComputationState, String[]) - Static method in class hex.glm.ConstrainedGLMUtils
 
printConstraintSummary(ComputationState, String[]) - Static method in class hex.glm.ConstrainedGLMUtils
 
prior - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
 
prior - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
prior - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
prior - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
probability - Variable in class hex.tree.dt.DTPrediction
 
process(ModelSelectionUtils.SweepElement, List<ModelSelectionUtils.SweepElement>) - Static method in class hex.modelselection.ModelSelectionUtils
This method will generate all the elements that are needed to perform sweeping on the currEle.
processMiniBatch(long, double[], double[], int) - Method in class hex.deeplearning.DeepLearningTask
Apply the gradient to update the weights
processMiniBatch(long, double[], double[], int) - Method in class hex.FrameTask
Mini-Batch update of model parameters
processRow(DataInfo.Row) - Method in class hex.coxph.CoxPH.CoxPHTask
 
processRow(long, DataInfo.Row, int) - Method in class hex.deeplearning.DeepLearningTask
Process one training row at a time (online learning)
processRow(long, DataInfo.Row) - Method in class hex.FrameTask
Method to process one row of the data.
processRow(long, DataInfo.Row, NewChunk[]) - Method in class hex.FrameTask
 
processRow(long, DataInfo.Row, int) - Method in class hex.FrameTask
 
processRow(DataInfo.Row) - Method in class hex.FrameTask2
 
processRow(DataInfo.Row) - Method in class hex.glm.GLMTask.ComputeDiTriGammaTsk
 
processRow(DataInfo.Row) - Method in class hex.glm.GLMTask.ComputeGammaMLSETsk
 
processRow(DataInfo.Row) - Method in class hex.glm.GLMTask.ComputeSEorDEVIANCETsk
 
processRow(DataInfo.Row) - Method in class hex.glm.GLMTask.GLMIterationTask
 
processRow(DataInfo.Row) - Method in class hex.glm.GLMTask.GLMIterationTaskMultinomial
 
processRow(DataInfo.Row) - Method in class hex.glm.GLMTask.GLMMultinomialUpdate
 
processRow(DataInfo.Row) - Method in class hex.glm.GLMTask.GLMMultinomialWLSTask
 
processRow(DataInfo.Row) - Method in class hex.glm.GLMTask.GLMWLSTask
 
processRow(DataInfo.Row) - Method in class hex.glm.GLMTask.LSTask
 
processRow(DataInfo.Row) - Method in class hex.gram.Gram.GramTask
 
processRow(long, DataInfo.Row, NewChunk[]) - Method in class hex.util.LinearAlgebraUtils.BMulTask
 
productMtDM(Frame, Vec) - Static method in class hex.psvm.psvm.MatrixUtils
Calculates matrix product M'DM
productMtv(Frame, Vec) - Static method in class hex.psvm.psvm.MatrixUtils
Calculates matrix-vector product M'v
progress(double[], OptimizationUtils.GradientInfo) - Method in class hex.glm.GLM.GLMDriver
 
progress(double[], double) - Method in class hex.glm.GLM.GLMDriver
 
progress(double[], OptimizationUtils.GradientInfo) - Method in interface hex.optimization.L_BFGS.ProgressMonitor
 
progressUnits() - Method in class hex.adaboost.AdaBoostModel.AdaBoostParameters
 
progressUnits() - Method in class hex.aggregator.AggregatorModel.AggregatorParameters
 
progressUnits() - Method in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
 
progressUnits() - Method in class hex.coxph.CoxPHModel.CoxPHParameters
 
progressUnits() - Method in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
 
progressUnits() - Method in class hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters
 
progressUnits() - Method in class hex.gam.GAMModel.GAMParameters
 
progressUnits() - Method in class hex.generic.GenericModelParameters
 
progressUnits() - Method in class hex.glm.GLMModel.GLMParameters
 
progressUnits() - Method in class hex.glrm.GLRMModel.GLRMParameters
 
progressUnits() - Method in class hex.grep.GrepModel.GrepParameters
 
progressUnits() - Method in class hex.hglm.HGLMModel.HGLMParameters
 
progressUnits() - Method in class hex.isotonic.IsotonicRegressionModel.IsotonicRegressionParameters
 
progressUnits() - Method in class hex.kmeans.KMeansModel.KMeansParameters
 
progressUnits() - Method in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
progressUnits() - Method in class hex.naivebayes.NaiveBayesModel.NaiveBayesParameters
 
progressUnits() - Method in class hex.pca.PCAModel.PCAParameters
 
progressUnits() - Method in class hex.psvm.PSVMModel.PSVMParameters
 
progressUnits() - Method in class hex.rulefit.RuleFitModel.RuleFitParameters
 
progressUnits() - Method in class hex.svd.SVDModel.SVDParameters
 
progressUnits() - Method in class hex.tree.dt.DTModel.DTParameters
 
progressUnits() - Method in class hex.tree.isoforextended.ExtendedIsolationForestModel.ExtendedIsolationForestParameters
 
progressUnits() - Method in class hex.tree.SharedTreeModel.SharedTreeParameters
 
progressUnits() - Method in class hex.tree.uplift.UpliftDRFModel.UpliftDRFParameters
 
progressUnits() - Method in class hex.word2vec.Word2VecModel.Word2VecParameters
 
providesVarImp() - Method in class hex.tree.SharedTree
 
proximal_gradient(double[], double, double[], double[], double[]) - Static method in class hex.glm.GLM.ProximalGradientSolver
 
ProximalGradientInfo(OptimizationUtils.GradientInfo, double, double[]) - Constructor for class hex.glm.GLM.ProximalGradientInfo
 
ProximalGradientSolver(OptimizationUtils.GradientSolver, double[], double[], double, double, OptimizationUtils.GradientInfo, L_BFGS.ProgressMonitor) - Constructor for class hex.glm.GLM.ProximalGradientSolver
 
PSVM - Class in hex.psvm
 
PSVM(boolean) - Constructor for class hex.psvm.PSVM
 
PSVM(PSVMModel.PSVMParameters) - Constructor for class hex.psvm.PSVM
 
PSVMModel - Class in hex.psvm
 
PSVMModel(Key<PSVMModel>, PSVMModel.PSVMParameters, PSVMModel.PSVMModelOutput) - Constructor for class hex.psvm.PSVMModel
 
PSVMModel.PSVMModelOutput - Class in hex.psvm
 
PSVMModel.PSVMParameters - Class in hex.psvm
 
PSVMModelOutputV3() - Constructor for class hex.schemas.PSVMModelV3.PSVMModelOutputV3
 
PSVMModelV3 - Class in hex.schemas
 
PSVMModelV3() - Constructor for class hex.schemas.PSVMModelV3
 
PSVMModelV3.PSVMModelOutputV3 - Class in hex.schemas
 
PSVMParameters() - Constructor for class hex.psvm.PSVMModel.PSVMParameters
 
PSVMParametersV3() - Constructor for class hex.schemas.PSVMV3.PSVMParametersV3
 
PSVMV3 - Class in hex.schemas
 
PSVMV3() - Constructor for class hex.schemas.PSVMV3
 
PSVMV3.PSVMParametersV3 - Class in hex.schemas
 
pValues() - Method in class hex.glm.GLMModel.GLMOutput
 
pValues(long) - Method in class hex.glm.GLMModel.Submodel
 
pValues(double[], long) - Method in class hex.glm.GLMModel.Submodel
 

Q

qrCholesky(List<Integer>, double[][], boolean) - Method in class hex.glm.ComputationState.GramGrad
 
qrCholesky(ArrayList<Integer>, boolean) - Method in class hex.gram.Gram
Compute Cholesky decompostion by computing partial QR decomposition (R == LU).
quiet_mode - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
Enable quiet mode for less output to standard output.

R

r2_stopping - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
 
raiseReproducibilityWarning(String, int) - Method in class hex.tree.gbm.GBM
 
rand_family - Variable in class hex.schemas.HGLMV3.HGLMParametersV3
 
random_coefficient_names - Variable in class hex.schemas.HGLMModelV3.HGLMModelOutputV3
 
random_columns - Variable in class hex.schemas.HGLMV3.HGLMParametersV3
 
random_intercept - Variable in class hex.schemas.HGLMV3.HGLMParametersV3
 
randomlySparsifyActivation(Storage.Vector, long) - Method in class hex.deeplearning.Dropout
 
rank() - Method in class hex.glm.GLMModel.GLMOutput
 
rank() - Method in class hex.glm.GLMModel.Submodel
 
rank() - Method in class hex.glrm.GLRM.Archetypes
 
rank_ratio - Variable in class hex.schemas.PSVMV3.PSVMParametersV3
 
rate(double) - Method in class hex.deeplearning.Neurons
The learning rate
rate - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
When adaptive learning rate is disabled, the magnitude of the weight updates are determined by the user specified learning rate (potentially annealed), and are a function of the difference between the predicted value and the target value.
rate_annealing - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
Learning rate annealing reduces the learning rate to "freeze" into local minima in the optimization landscape.
rate_decay - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
The learning rate decay parameter controls the change of learning rate across layers.
raw() - Method in class hex.coxph.Storage.DenseRowMatrix
 
raw() - Method in interface hex.coxph.Storage.Matrix
 
raw() - Method in class hex.deeplearning.Storage.DenseColMatrix
 
raw() - Method in class hex.deeplearning.Storage.DenseRowMatrix
 
raw() - Method in class hex.deeplearning.Storage.DenseVector
 
raw() - Method in interface hex.deeplearning.Storage.Matrix
 
raw() - Method in class hex.deeplearning.Storage.SparseRowMatrix
 
raw() - Method in interface hex.deeplearning.Storage.Tensor
 
raw() - Method in interface hex.deeplearning.Storage.Vector
 
read_impl(AutoBuffer) - Method in class hex.coxph.CoxPHModel.FrameMatrix
 
read_impl(AutoBuffer) - Method in class hex.word2vec.WordCountTask
 
readAll_impl(AutoBuffer, Futures) - Method in class hex.adaboost.AdaBoostModel
 
readAll_impl(AutoBuffer, Futures) - Method in class hex.anovaglm.ANOVAGLMModel
 
readAll_impl(AutoBuffer, Futures) - Method in class hex.ensemble.StackedEnsembleModel
Read in models (base + metalearner)
readAll_impl(AutoBuffer, Futures) - Method in class hex.gam.GAMModel
 
readAll_impl(AutoBuffer, Futures) - Method in class hex.glm.GLMModel
 
readAll_impl(AutoBuffer, Futures) - Method in class hex.glrm.GLRMModel
 
readAll_impl(AutoBuffer, Futures) - Method in class hex.hglm.HGLMModel
 
readAll_impl(AutoBuffer, Futures) - Method in class hex.modelselection.ModelSelectionModel
 
readAll_impl(AutoBuffer, Futures) - Method in class hex.svd.SVDModel
 
readAll_impl(AutoBuffer, Futures) - Method in class hex.tree.dt.DTModel
 
readAll_impl(AutoBuffer, Futures) - Method in class hex.tree.isoforextended.ExtendedIsolationForestModel
 
readAll_impl(AutoBuffer, Futures) - Method in class hex.tree.SharedTreeModel
 
rebalance(Frame, boolean, String) - Method in class hex.deeplearning.DeepLearning
 
ReconstructTreeState - Class in hex.tree
Computing oob scores over all trees and rows and reconstructing ntree_id, oobt fields in given frame.
ReconstructTreeState(int, int, SharedTree, double, CompressedForest, boolean) - Constructor for class hex.tree.ReconstructTreeState
 
recover_svd - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
 
Rectifier(int) - Constructor for class hex.deeplearning.Neurons.Rectifier
 
RectifierDropout(int) - Constructor for class hex.deeplearning.Neurons.RectifierDropout
 
reduce(ContributionsMeanAggregator) - Method in class hex.ContributionsMeanAggregator
 
reduce(CoxPH.CoxPHTask) - Method in class hex.coxph.CoxPH.CoxPHTask
 
reduce(DeepLearningTask) - Method in class hex.deeplearning.DeepLearningTask
Average the per-node models (for elastic averaging, already wrote them to DKV in postLocal()) This is a no-op between F/J worker threads (operate on the same weights/biases)
reduce(DeepLearningTask2) - Method in class hex.deeplearning.DeepLearningTask2
Reduce between worker nodes, with network traffic (if greater than 1 nodes) After all reduce()'s are done, postGlobal() will be called
reduce(FrameTask.ExtractDenseRow) - Method in class hex.FrameTask.ExtractDenseRow
 
reduce(ThinPlateRegressionUtils.ScaleTPPenalty) - Method in class hex.gam.GamSplines.ThinPlateRegressionUtils.ScaleTPPenalty
 
reduce(GenCSSplineGamOneColumn) - Method in class hex.gam.MatrixFrameUtils.GenCSSplineGamOneColumn
 
reduce(GenISplineGamOneColumn) - Method in class hex.gam.MatrixFrameUtils.GenISplineGamOneColumn
 
reduce(GenMSplineGamOneColumn) - Method in class hex.gam.MatrixFrameUtils.GenMSplineGamOneColumn
 
reduce(MetricBuilderGAM) - Method in class hex.gam.MetricBuilderGAM
 
reduce(DispersionTask.ComputeMaxSumSeriesTsk) - Method in class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk
 
reduce(GLMMetricBuilder) - Method in class hex.glm.GLMMetricBuilder
 
reduce(GLMScore) - Method in class hex.glm.GLMScore
 
reduce(GLMTask.ComputeDiTriGammaTsk) - Method in class hex.glm.GLMTask.ComputeDiTriGammaTsk
 
reduce(GLMTask.ComputeGammaMLSETsk) - Method in class hex.glm.GLMTask.ComputeGammaMLSETsk
 
reduce(GLMTask.ComputeSEorDEVIANCETsk) - Method in class hex.glm.GLMTask.ComputeSEorDEVIANCETsk
 
reduce(GLMTask.GLMCoordinateDescentTaskSeqIntercept) - Method in class hex.glm.GLMTask.GLMCoordinateDescentTaskSeqIntercept
 
reduce(GLMTask.GLMCoordinateDescentTaskSeqNaive) - Method in class hex.glm.GLMTask.GLMCoordinateDescentTaskSeqNaive
 
reduce(GLMTask.GLMGenerateWeightsTask) - Method in class hex.glm.GLMTask.GLMGenerateWeightsTask
 
reduce(GLMTask.GLMIterationTask) - Method in class hex.glm.GLMTask.GLMIterationTask
 
reduce(GLMTask.GLMIterationTaskMultinomial) - Method in class hex.glm.GLMTask.GLMIterationTaskMultinomial
 
reduce(GLMTask.GLMMultinomialGradientBaseTask) - Method in class hex.glm.GLMTask.GLMMultinomialGradientBaseTask
 
reduce(GLMTask.LSTask) - Method in class hex.glm.GLMTask.LSTask
 
reduce(GLMTask.YMUTask) - Method in class hex.glm.GLMTask.YMUTask
 
reduce(TweedieEstimator) - Method in class hex.glm.TweedieEstimator
 
reduce(ModelMetricsGLRM.GlrmModelMetricsBuilder) - Method in class hex.glrm.ModelMetricsGLRM.GlrmModelMetricsBuilder
 
reduce(Gram.GramTask) - Method in class hex.gram.Gram.GramTask
 
reduce(Gram.OuterGramTask) - Method in class hex.gram.Gram.OuterGramTask
 
reduce(HGLMScore) - Method in class hex.hglm.HGLMScore
 
reduce(HGLMTask.ComputationEngineTask) - Method in class hex.hglm.HGLMTask.ComputationEngineTask
 
reduce(HGLMTask.ResidualLLHTask) - Method in class hex.hglm.HGLMTask.ResidualLLHTask
 
reduce(MetricBuilderHGLM) - Method in class hex.hglm.MetricBuilderHGLM
 
reduce(T) - Method in class hex.psvm.MetricBuilderPSVM
 
reduce(TreeMeasuresCollector) - Method in class hex.tree.drf.TreeMeasuresCollector
 
reduce(CountBinsSamplesCountsMRTask) - Method in class hex.tree.dt.mrtasks.CountBinsSamplesCountsMRTask
 
reduce(FeaturesLimitsMRTask) - Method in class hex.tree.dt.mrtasks.FeaturesLimitsMRTask
 
reduce(GetClassCountsMRTask) - Method in class hex.tree.dt.mrtasks.GetClassCountsMRTask
 
reduce(ScoreDTTask) - Method in class hex.tree.dt.mrtasks.ScoreDTTask
 
reduce(ExactSplitPoints) - Method in class hex.tree.ExactSplitPoints
 
reduce(ModelMetricsAnomaly.MetricBuilderAnomaly) - Method in class hex.tree.isofor.ModelMetricsAnomaly.MetricBuilderAnomaly
 
reduce(Score) - Method in class hex.tree.Score
 
reduce(ScoreBuildHistogram) - Method in class hex.tree.ScoreBuildHistogram
 
reduce(LinearAlgebraUtils.FindMaxIndex) - Method in class hex.util.LinearAlgebraUtils.FindMaxIndex
 
reduce(LinearAlgebraUtils.SMulTask) - Method in class hex.util.LinearAlgebraUtils.SMulTask
 
reduce(WordCountTask) - Method in class hex.word2vec.WordCountTask
 
reduce(WordVectorConverter) - Method in class hex.word2vec.WordVectorConverter
 
reduce(WordVectorTrainer) - Method in class hex.word2vec.WordVectorTrainer
 
reducePrecision() - Method in class hex.tree.DHistogram
Cast bin values (except for sums of weights) to floats to drop least significant bits.
regex - Variable in class hex.schemas.GrepV3.GrepParametersV3
 
RegisterAlgos - Class in hex.api
 
RegisterAlgos() - Constructor for class hex.api.RegisterAlgos
 
registerEndPoints(RestApiContext) - Method in class hex.api.RegisterAlgos
 
regression_stop - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
The stopping criteria in terms of regression error (MSE) on the training data scoring dataset.
RegressionInfluenceDiagBinomial(Job, double[], double[][], GLMModel.GLMParameters, DataInfo, double[]) - Constructor for class hex.glm.RegressionInfluenceDiagnosticsTasks.RegressionInfluenceDiagBinomial
 
RegressionInfluenceDiagGaussian(double[][], double[], Job) - Constructor for class hex.glm.RegressionInfluenceDiagnosticsTasks.RegressionInfluenceDiagGaussian
 
RegressionInfluenceDiagnosticsTasks - Class in hex.glm
Classes defined here implemented the various pieces of regression influence diagnostics described in this doc: https://github.com/h2oai/h2o-3/issues/7044.
RegressionInfluenceDiagnosticsTasks() - Constructor for class hex.glm.RegressionInfluenceDiagnosticsTasks
 
RegressionInfluenceDiagnosticsTasks.ComputeNewBetaVarEstimatedGaussian - Class in hex.glm
 
RegressionInfluenceDiagnosticsTasks.RegressionInfluenceDiagBinomial - Class in hex.glm
 
RegressionInfluenceDiagnosticsTasks.RegressionInfluenceDiagGaussian - Class in hex.glm
generate DFBETAS as in equation 4 of the document.
regularization_x - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
 
regularization_y - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
 
RegularizationPath() - Constructor for class hex.glm.GLMModel.RegularizationPath
 
rel_improvement - Variable in class hex.optimization.L_BFGS.Result
 
rel_tol_num_exemplars - Variable in class hex.schemas.AggregatorV99.AggregatorParametersV99
 
remove_collinear_columns - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
remove_collinear_columns - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
remove_collinear_columns - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
remove_duplicates - Variable in class hex.schemas.RuleFitV3.RuleFitParametersV3
 
remove_impl(Futures, boolean) - Method in class hex.adaboost.AdaBoostModel
 
remove_impl(Futures, boolean) - Method in class hex.aggregator.AggregatorModel
 
remove_impl(Futures, boolean) - Method in class hex.anovaglm.ANOVAGLMModel
 
remove_impl(Futures, boolean) - Method in class hex.coxph.CoxPHModel
 
remove_impl(Futures, boolean) - Method in class hex.deeplearning.DeepLearningModel
 
remove_impl(Futures, boolean) - Method in class hex.ensemble.StackedEnsembleModel
 
remove_impl(Futures, boolean) - Method in class hex.gam.GAMModel
 
remove_impl(Futures, boolean) - Method in class hex.generic.GenericModel
 
remove_impl(Futures, boolean) - Method in class hex.glm.GLMModel
 
remove_impl(Futures, boolean) - Method in class hex.glrm.GLRMModel
 
remove_impl(Futures, boolean) - Method in class hex.hglm.HGLMModel
 
remove_impl(Futures, boolean) - Method in class hex.modelselection.ModelSelectionModel
 
remove_impl(Futures, boolean) - Method in class hex.psvm.PSVMModel
 
remove_impl(Futures, boolean) - Method in class hex.rulefit.RuleFitModel
 
remove_impl(Futures, boolean) - Method in class hex.svd.SVDModel
 
remove_impl(Futures, boolean) - Method in class hex.tree.dt.DTModel
 
remove_impl(Futures, boolean) - Method in class hex.tree.isoforextended.ExtendedIsolationForestModel
 
remove_impl(Futures, boolean) - Method in class hex.tree.SharedTreeModel
 
removeCenteringIS(double[][][], GAMModel.GAMParameters) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
This function is used to remove the dimension change due to centering for I-splines
removeCols(int[]) - Method in class hex.glm.ComputationState
 
removeFromDKV(Frame[], int) - Static method in class hex.anovaglm.ANOVAGLMUtils
 
removePredictors(GLMModel.GLMParameters, Frame) - Static method in class hex.glm.GLMUtils
 
removeRedCols(double[], double[], double[]) - Static method in class hex.glm.GLMUtils
 
removeSpecialColumns(Frame) - Method in class hex.tree.SharedTreeModelWithContributions
 
removeSpecialNNonNumericColumns(Frame) - Method in class hex.tree.SharedTreeModelWithContributions
 
removeTrainingFrames(Frame[]) - Static method in class hex.modelselection.ModelSelectionUtils
 
replacement(List<Integer>, List<Integer>, Set<BitSet>, BitSet, ModelSelection.SweepModel, int[][]) - Method in class hex.modelselection.ModelSelection
consider the predictors in subset as pred0, pred1, pred2 (using subset size 3 as example): a.
replacement(List<Integer>, List<String>, double, ModelSelectionModel.ModelSelectionParameters, int, String, List<Integer>, Model.Parameters.FoldAssignmentScheme, Set<BitSet>) - Static method in class hex.modelselection.ModelSelection
consider the predictors in subset as pred0, pred1, pred2 (using subset size 3 as example): a.
replicate_training_data - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
Replicate the entire training dataset onto every node for faster training on small datasets.
reportProgress(int, double, double, double, boolean) - Method in interface hex.psvm.psvm.PrimalDualIPM.ProgressObserver
 
representation_name - Variable in class hex.schemas.GLRMModelV3.GLRMModelOutputV3
 
representation_name - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
 
reproducible - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
 
resDOF() - Method in class hex.gam.MetricBuilderGAM
 
resDOF() - Method in class hex.glm.GLMMetricBuilder
 
reset(double[], ComputationState, List<String>) - Method in class hex.optimization.OptimizationUtils.ExactLineSearch
 
resetCatPredNames(DataInfo, int[], List<String>) - Method in class hex.modelselection.ModelSelectionModel.ModelSelectionModelOutput
 
resetNumPredNames(List<String>, List<String>) - Method in class hex.modelselection.ModelSelectionModel.ModelSelectionModelOutput
 
reshape1DArray(double[], int, int) - Static method in class hex.util.LinearAlgebraUtils
 
residualDeviance() - Method in class hex.gam.MetricBuilderGAM
 
residualDeviance() - Method in class hex.glm.GLMMetricBuilder
 
ResidualLLHTask(Job, HGLMModel.HGLMParameters, DataInfo, double[][], double[], HGLMTask.ComputationEngineTask) - Constructor for class hex.hglm.HGLMTask.ResidualLLHTask
 
resizeConstraintInfo(ConstrainedGLMUtils.LinearConstraints[], ConstrainedGLMUtils.LinearConstraints[]) - Method in class hex.glm.ComputationState
 
respControlNA() - Method in class hex.tree.DHistogram
 
RESPIND - Static variable in class hex.glm.DispersionTask
 
response - Variable in class hex.DataInfo.Row
 
response(int) - Method in class hex.DataInfo.Row
 
response_bad - Variable in class hex.DataInfo.Row
 
responseChunkId(int) - Method in class hex.DataInfo
 
responseColumn - Variable in class hex.ensemble.StackedEnsembleModel
 
responseIdx() - Method in class hex.tree.isofor.IsolationForestModel.IsolationForestOutput
 
responseIndex - Variable in class hex.tree.SharedTree.FrameMap
 
responseMeans() - Method in class hex.glm.GLMTask.YMUTask
 
responseName() - Method in class hex.tree.isofor.IsolationForestModel.IsolationForestOutput
 
responseSDs() - Method in class hex.glm.GLMTask.YMUTask
 
respTreatmentNA() - Method in class hex.tree.DHistogram
 
result() - Method in class hex.anovaglm.ANOVAGLMModel
Return the ANOVA table as an H2OFrame per seb suggestion
result() - Method in class hex.modelselection.ModelSelectionModel
 
Result(boolean, int, double[], OptimizationUtils.GradientInfo, double) - Constructor for class hex.optimization.L_BFGS.Result
 
result - Variable in class hex.schemas.DataInfoFrameV3
 
resultSSE() - Method in class hex.tree.drf.TreeMeasuresCollector
 
resultVotes() - Method in class hex.tree.drf.TreeMeasuresCollector
 
resumeFromCheckpoint(SharedTree) - Method in class hex.tree.SharedTree.Driver
Restore the workspace from a previous model (checkpoint)
revertCoeffNames(String[], int, TwoDimTableV3) - Method in class hex.schemas.GLMModelV3.GLMModelOutputV3
 
rho() - Method in class hex.glm.GLM.GramSolver
 
rho() - Method in class hex.glm.GLM.ProximalGradientSolver
 
rho() - Method in interface hex.optimization.ADMM.ProximalSolver
 
rho - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
The first of two hyper parameters for adaptive learning rate (ADADELTA).
rho - Variable in class hex.schemas.PSVMModelV3.PSVMModelOutputV3
 
rid - Variable in class hex.DataInfo.Row
 
right_children - Variable in class hex.schemas.TreeV3
 
rms_weight - Variable in class hex.deeplearning.DeepLearningModelInfo
 
rngForChunk(int) - Method in class hex.tree.CompressedTree
 
root() - Method in class hex.tree.DTree
 
root_node_id - Variable in class hex.schemas.TreeV3
 
ROUND_ROBIN_CANDIDATES - Static variable in enum hex.tree.SharedTreeModel.SharedTreeParameters.HistogramType
 
routeSample(double[]) - Method in class hex.tree.dt.AbstractSplittingRule
 
routeSample(double[]) - Method in class hex.tree.dt.CategoricalSplittingRule
 
routeSample(double[]) - Method in class hex.tree.dt.NumericSplittingRule
 
Row(boolean, int, int, int, int, long) - Constructor for class hex.DataInfo.Row
 
Row(boolean, double[], int[], double[], int, long) - Constructor for class hex.DataInfo.Row
 
Row(double[]) - Constructor for class hex.DataInfo.Row
 
row(int) - Method in class hex.DataInfo.Rows
 
rows() - Method in class hex.coxph.Storage.DenseRowMatrix
 
rows() - Method in interface hex.coxph.Storage.Matrix
 
rows(Chunk[]) - Method in class hex.DataInfo
 
rows(Chunk[], boolean) - Method in class hex.DataInfo
 
rows() - Method in class hex.deeplearning.Storage.DenseColMatrix
 
rows() - Method in class hex.deeplearning.Storage.DenseRowMatrix
 
rows() - Method in interface hex.deeplearning.Storage.Matrix
 
rows() - Method in class hex.deeplearning.Storage.SparseRowMatrix
 
rows() - Method in interface hex.deeplearning.Storage.Tensor
 
rowToTreeAssignment(Frame, Key<Frame>, Job<Frame>) - Method in class hex.tree.gbm.GBMModel
 
Rule - Class in hex.rulefit
 
Rule(Condition[], double, String) - Constructor for class hex.rulefit.Rule
 
Rule(Condition[], double, String, double, double) - Constructor for class hex.rulefit.Rule
 
rule_generation_ntrees - Variable in class hex.schemas.RuleFitV3.RuleFitParametersV3
 
rule_importance - Variable in class hex.schemas.RuleFitModelV3.RuleFitModelOutputV3
 
RuleEnsemble - Class in hex.rulefit
 
RuleEnsemble(Rule[]) - Constructor for class hex.rulefit.RuleEnsemble
 
ruleExplanation - Variable in class hex.tree.dt.DTPrediction
 
RuleFit - Class in hex.rulefit
Rule Fit
http://statweb.stanford.edu/~jhf/ftp/RuleFit.pdf https://github.com/h2oai/h2o-tutorials/blob/8df6b492afa172095e2595922f0b67f8d715d1e0/best-practices/explainable-models/rulefit.py
RuleFit(RuleFitModel.RuleFitParameters) - Constructor for class hex.rulefit.RuleFit
 
RuleFit(boolean) - Constructor for class hex.rulefit.RuleFit
 
RuleFitModel - Class in hex.rulefit
 
RuleFitModel(Key<RuleFitModel>, RuleFitModel.RuleFitParameters, RuleFitModel.RuleFitOutput, GLMModel, RuleEnsemble) - Constructor for class hex.rulefit.RuleFitModel
 
RuleFitModel.Algorithm - Enum in hex.rulefit
 
RuleFitModel.ModelType - Enum in hex.rulefit
 
RuleFitModel.RuleFitOutput - Class in hex.rulefit
 
RuleFitModel.RuleFitParameters - Class in hex.rulefit
 
RuleFitModelOutputV3() - Constructor for class hex.schemas.RuleFitModelV3.RuleFitModelOutputV3
 
RuleFitModelV3 - Class in hex.schemas
 
RuleFitModelV3() - Constructor for class hex.schemas.RuleFitModelV3
 
RuleFitModelV3.RuleFitModelOutputV3 - Class in hex.schemas
 
RuleFitMojoWriter - Class in hex.rulefit
 
RuleFitMojoWriter() - Constructor for class hex.rulefit.RuleFitMojoWriter
 
RuleFitMojoWriter(RuleFitModel) - Constructor for class hex.rulefit.RuleFitMojoWriter
 
RuleFitOutput(RuleFit) - Constructor for class hex.rulefit.RuleFitModel.RuleFitOutput
 
RuleFitParameters() - Constructor for class hex.rulefit.RuleFitModel.RuleFitParameters
 
RuleFitParametersV3() - Constructor for class hex.schemas.RuleFitV3.RuleFitParametersV3
 
RuleFitUtils - Class in hex.rulefit
 
RuleFitUtils() - Constructor for class hex.rulefit.RuleFitUtils
 
RuleFitV3 - Class in hex.schemas
 
RuleFitV3() - Constructor for class hex.schemas.RuleFitV3
 
RuleFitV3.RuleFitParametersV3 - Class in hex.schemas
 
runAndGetOutput(Job, Key<Frame>, String[]) - Method in class hex.ContributionsWithBackgroundFrameTask
 
runPAV(Frame) - Static method in class hex.isotonic.PoolAdjacentViolatorsDriver
 

S

Sample - Class in hex.tree
 
Sample(DTree, double, double[]) - Constructor for class hex.tree.Sample
 
Sample(long, double, double[], int, int) - Constructor for class hex.tree.Sample
 
sample_rate - Variable in class hex.schemas.DRFV3.DRFParametersV3
 
sample_rate - Variable in class hex.schemas.GBMV3.GBMParametersV3
 
sample_rate - Variable in class hex.schemas.IsolationForestV3.IsolationForestParametersV3
 
sample_rate - Variable in class hex.schemas.UpliftDRFV3.UpliftDRFParametersV3
 
sample_rate_per_class - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
 
sample_size - Variable in class hex.schemas.ExtendedIsolationForestV3.ExtendedIsolationForestParametersV3
 
sample_size - Variable in class hex.schemas.IsolationForestV3.IsolationForestParametersV3
 
save_mapping_frame - Variable in class hex.schemas.AggregatorV99.AggregatorParametersV99
 
save_transformed_framekeys - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
 
scale - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
scale_tp_penalty_mat - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
ScaleTPPenalty(double[][], Frame) - Constructor for class hex.gam.GamSplines.ThinPlateRegressionUtils.ScaleTPPenalty
 
schema() - Method in class hex.coxph.CoxPHModel
 
schema() - Method in class hex.naivebayes.NaiveBayesModel
 
score(Frame, String, Job, boolean, CFuncRef) - Method in class hex.anovaglm.ANOVAGLMModel
 
score(double[]) - Method in class hex.deeplearning.DeepLearningModel
 
score(double[]) - Method in class hex.glm.GLMModel
 
score(Frame, String, Job, boolean, CFuncRef) - Method in class hex.modelselection.ModelSelectionModel
 
score(Frame, String, Job, boolean, CFuncRef) - Method in class hex.rulefit.RuleFitModel
 
score(double[], String[][]) - Method in class hex.tree.CompressedTree
 
score(double[]) - Method in class hex.tree.drf.DRFModel
 
score(double[]) - Method in class hex.tree.gbm.GBMModel
 
Score - Class in hex.tree
Score the tree columns, and produce a confusion matrix and AUC
Score(SharedTree, boolean, boolean, Vec, ModelCategory, boolean, Frame, CFuncRef) - Constructor for class hex.tree.Score
Compute ModelMetrics on the testing dataset.
Score(SharedTree, Score.ScoreIncInfo, boolean, Vec, ModelCategory, boolean, Frame, CFuncRef) - Constructor for class hex.tree.Score
 
Score.ScoreExtension - Class in hex.tree
 
Score.ScoreIncInfo - Class in hex.tree
 
score0(double[], double[]) - Method in class hex.adaboost.AdaBoostModel
 
score0(double[], double[]) - Method in class hex.aggregator.AggregatorModel
 
score0(double[], double[]) - Method in class hex.anovaglm.ANOVAGLMModel
 
score0(double[], double[]) - Method in class hex.coxph.CoxPHModel
 
score0(double[], double[]) - Method in class hex.deeplearning.DeepLearningModel
 
score0(double[], double[], double) - Method in class hex.deeplearning.DeepLearningModel
Predict from raw double values representing the data
score0(double[], double[]) - Method in class hex.ensemble.StackedEnsembleModel
Should never be called: the code paths that normally go here should call predictScoreImpl().
score0(double[], double[]) - Method in class hex.gam.GAMModel
 
score0(double[], double[]) - Method in class hex.generic.GenericModel
 
score0(double[], double[], double) - Method in class hex.generic.GenericModel
 
score0(double[], double[]) - Method in class hex.glm.GLMModel
 
score0(double[], double[], double) - Method in class hex.glm.GLMModel
 
score0(double[], double[]) - Method in class hex.glrm.GLRMModel
 
score0(double[], double[]) - Method in class hex.grep.GrepModel
 
score0(double[], double[]) - Method in class hex.hglm.HGLMModel
 
score0(double[], double[]) - Method in class hex.isotonic.IsotonicRegressionModel
 
score0(double[], double[], double) - Method in class hex.kmeans.KMeansModel
 
score0(double[], double[]) - Method in class hex.kmeans.KMeansModel
 
score0(double[], double[]) - Method in class hex.modelselection.ModelSelectionModel
 
score0(double[], double[]) - Method in class hex.naivebayes.NaiveBayesModel
 
score0(double[], double[]) - Method in class hex.pca.PCAModel
 
score0(double[], double[]) - Method in class hex.psvm.PSVMModel
 
score0(double[], double[]) - Method in class hex.rulefit.RuleFitModel
 
score0(double[], double[]) - Method in class hex.svd.SVDModel
 
score0(double[], double[], double, int) - Method in class hex.tree.drf.DRFModel
Bulk scoring API for one row.
score0(double[], double[]) - Method in class hex.tree.dt.DTModel
 
score0(double[], double[], int) - Method in class hex.tree.DTreeScorer
 
score0(double[], double[], double, int) - Method in class hex.tree.gbm.GBMModel
Bulk scoring API for one row.
score0(double[], double[], double, int) - Method in class hex.tree.isofor.IsolationForestModel
Bulk scoring API for one row.
score0(double[], double[]) - Method in class hex.tree.isoforextended.ExtendedIsolationForestModel
 
score0(double[], double[], double) - Method in class hex.tree.SharedTreeModel
 
score0(double[], double[]) - Method in class hex.tree.SharedTreeModel
 
score0(double[], double[], double, int) - Method in class hex.tree.SharedTreeModel
 
score0(double[], double[], double, int, int) - Method in class hex.tree.SharedTreeModel
 
score0(double[], double[], double, int) - Method in class hex.tree.uplift.UpliftDRFModel
Bulk scoring API for one row.
score0(Chunk[], int, double[], double[]) - Method in class hex.word2vec.Word2VecModel
 
score0(double[], double[]) - Method in class hex.word2vec.Word2VecModel
 
score0Incremental(Score.ScoreIncInfo, Chunk[], double, int, double[], double[]) - Method in class hex.tree.gbm.GBMModel
 
score0Incremental(Score.ScoreIncInfo, Chunk[], double, int, double[], double[]) - Method in class hex.tree.SharedTreeModel
 
score1(Chunk[], double, double, double[], int) - Method in class hex.tree.drf.DRF
 
score1(Chunk[], double, double, double[], int) - Method in class hex.tree.gbm.GBM
 
score1(Chunk[], double, double, double[], int) - Method in class hex.tree.isofor.IsolationForest
 
score1(Chunk[], double, double, double[], int) - Method in class hex.tree.SharedTree
 
score1(Chunk[], double, double, double[], int) - Method in class hex.tree.uplift.UpliftDRF
Read the 'tree' columns, do model-specific math and put the results in the fs[] array, and return the sum.
score_decide(Chunk[], int[]) - Method in class hex.tree.ScoreBuildHistogram2
 
score_duty_cycle - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
Maximum fraction of wall clock time spent on model scoring on training and validation samples, and on diagnostics such as computation of feature importances (i.e., not on training).
score_indicator(Chunk[], int, double[], double[]) - Method in class hex.kmeans.KMeansModel
 
score_interval - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
The minimum time (in seconds) to elapse between model scoring.
score_iteration_interval - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
score_iteration_interval - Variable in class hex.schemas.HGLMV3.HGLMParametersV3
 
score_iteration_interval - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
score_ratio(Chunk[], int, double[]) - Method in class hex.kmeans.KMeansModel
 
score_training_samples - Variable in class hex.deeplearning.DeepLearningScoringInfo
 
score_training_samples() - Method in class hex.deeplearning.DeepLearningScoringInfo
 
score_training_samples - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
The number of training dataset points to be used for scoring.
score_training_samples - Variable in class hex.schemas.StackedEnsembleV99.StackedEnsembleParametersV99
 
score_tree_interval - Variable in class hex.schemas.ExtendedIsolationForestV3.ExtendedIsolationForestParametersV3
 
score_tree_interval - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
 
score_validation_samples - Variable in class hex.deeplearning.DeepLearningScoringInfo
 
score_validation_samples() - Method in class hex.deeplearning.DeepLearningScoringInfo
 
score_validation_samples - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
The number of validation dataset points to be used for scoring.
score_validation_sampling - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
Method used to sample the validation dataset for scoring, see Score Validation Samples above.
scoreAndBuildTrees(boolean) - Method in class hex.tree.SharedTree.Driver
Build more trees, as specified by the model parameters
scoreArchetypes(Frame, Key<Frame>, boolean) - Method in class hex.glrm.GLRMModel
Project each archetype into original feature space
scoreAutoEncoder(Frame, Key, boolean) - Method in class hex.deeplearning.DeepLearningModel
Score auto-encoded reconstruction (on-the-fly, without allocating the reconstruction as done in Frame score(Frame fr))
ScoreBuildHistogram - Class in hex.tree
Score and Build Histogram
ScoreBuildHistogram(H2O.H2OCountedCompleter, int, int, int, DTree, int, DHistogram[][], DistributionFamily, int, int, int, int) - Constructor for class hex.tree.ScoreBuildHistogram
 
ScoreBuildHistogram2 - Class in hex.tree
Created by tomas on 10/28/16.
ScoreBuildHistogram2(SharedTree.ScoreBuildOneTree, int, int, int, int, DTree, int, DHistogram[][], DistributionFamily, int, int, int, int, int, int) - Constructor for class hex.tree.ScoreBuildHistogram2
 
ScoreBuildOneTree(SharedTree, int, int, DTree, int[], DHistogram[][][], Frame, boolean, float[], DistributionFamily, int, int, int, int, int, int) - Constructor for class hex.tree.SharedTree.ScoreBuildOneTree
 
scoreCols() - Method in class hex.tree.DTree.UndecidedNode
 
scoreContributions(Frame, Key<Frame>, Job<Frame>, Model.Contributions.ContributionsOptions, Frame) - Method in class hex.deeplearning.DeepLearningModel
 
scoreContributions(Frame, Key<Frame>, Job<Frame>, Model.Contributions.ContributionsOptions, Frame) - Method in class hex.ensemble.StackedEnsembleModel
 
scoreContributions(Frame, Key<Frame>) - Method in class hex.generic.GenericModel
 
scoreContributions(Frame, Key<Frame>, Job<Frame>) - Method in class hex.generic.GenericModel
 
scoreContributions(Frame, Key<Frame>, Job<Frame>, Model.Contributions.ContributionsOptions, Frame) - Method in class hex.glm.GLMModel
 
scoreContributions(Frame, Key<Frame>, Job<Frame>) - Method in class hex.tree.drf.DRFModel
 
scoreContributions(Frame, Key<Frame>, Job<Frame>, Model.Contributions.ContributionsOptions) - Method in class hex.tree.drf.DRFModel
 
scoreContributions(Frame, Key<Frame>) - Method in class hex.tree.SharedTreeModelWithContributions
 
scoreContributions(Frame, Key<Frame>, Job<Frame>) - Method in class hex.tree.SharedTreeModelWithContributions
 
scoreContributions(Frame, Key<Frame>, Job<Frame>, Model.Contributions.ContributionsOptions) - Method in class hex.tree.SharedTreeModelWithContributions
 
scoreContributions(Frame, Key<Frame>, Job<Frame>, Model.Contributions.ContributionsOptions, Frame) - Method in class hex.tree.SharedTreeModelWithContributions
 
ScoreContributionsSoringTaskDRF(SharedTreeModel, Model.Contributions.ContributionsOptions) - Constructor for class hex.tree.drf.DRFModel.ScoreContributionsSoringTaskDRF
 
ScoreContributionsSortingTask(SharedTreeModel, Model.Contributions.ContributionsOptions) - Constructor for class hex.tree.SharedTreeModelWithContributions.ScoreContributionsSortingTask
 
ScoreContributionsTask(SharedTreeModel) - Constructor for class hex.tree.SharedTreeModelWithContributions.ScoreContributionsTask
 
ScoreContributionsTaskDRF(SharedTreeModel) - Constructor for class hex.tree.drf.DRFModel.ScoreContributionsTaskDRF
 
ScoreContributionsWithBackgroundTask(Key<Frame>, Key<Frame>, boolean, SharedTreeModel, boolean, int[], boolean) - Constructor for class hex.tree.SharedTreeModelWithContributions.ScoreContributionsWithBackgroundTask
 
ScoreContributionsWithBackgroundTaskDRF(Frame, Frame, boolean, SharedTreeModel, boolean, int[]) - Constructor for class hex.tree.drf.DRFModel.ScoreContributionsWithBackgroundTaskDRF
 
scoreContributionsWorkEstimate(Frame, Frame, boolean) - Method in class hex.ensemble.StackedEnsembleModel
 
scoreDeepFeatures(Frame, int) - Method in class hex.deeplearning.DeepLearningModel
Score auto-encoded reconstruction (on-the-fly, and materialize the deep features of given layer
scoreDeepFeatures(Frame, int, Job) - Method in class hex.deeplearning.DeepLearningModel
 
scoreDeepFeatures(Frame, String, Job) - Method in class hex.deeplearning.DeepLearningModel
 
ScoreDTTask - Class in hex.tree.dt.mrtasks
 
ScoreDTTask(DTModel) - Constructor for class hex.tree.dt.mrtasks.ScoreDTTask
 
scoreExemplarMembers(Key<Frame>, int) - Method in class hex.aggregator.AggregatorModel
 
ScoreExtension() - Constructor for class hex.tree.Score.ScoreExtension
 
scoreFeatureFrequencies(Frame, Key<Frame>) - Method in class hex.tree.SharedTreeModel
 
ScoreIncInfo(int, int, int, int) - Constructor for class hex.tree.Score.ScoreIncInfo
 
scoreKeepers() - Method in class hex.glm.GLMModel
 
scoreKeepers() - Method in class hex.tree.SharedTreeModel.SharedTreeOutput
 
scoreLeafNodeAssignment(Frame, Model.LeafNodeAssignment.LeafNodeAssignmentType, Key<Frame>) - Method in class hex.tree.SharedTreeModel
 
scoreMetrics(Frame) - Method in class hex.gam.GAMModel
Score on an already adapted validation frame during cross validation.
scoreMetrics(Frame) - Method in class hex.glm.GLMModel
Score an already adapted frame.
scoreMetricsOnly(Frame) - Method in class hex.glrm.GLRMModel
 
scoreReconstruction(Frame, Key<Frame>, boolean) - Method in class hex.glrm.GLRMModel
 
scoreRow(DataInfo.Row, double, double[]) - Method in class hex.glm.GLMScore
 
scoreRow(DataInfo.Row, double[], double[], double[], int) - Method in class hex.hglm.HGLMScore
only processing gaussian for now.
scores - Variable in class hex.schemas.Word2VecSynonymsV3
 
scoreStagedPredictions(Frame, Key<Frame>) - Method in class hex.tree.gbm.GBMModel
 
scoreTree(double[], double[], int) - Method in class hex.tree.CompressedForest.LocalCompressedForest
Score given tree on the row of data.
scoreZeroTrees() - Method in class hex.tree.drf.DRF
 
scoreZeroTrees() - Method in class hex.tree.isofor.IsolationForest
 
scoreZeroTrees() - Method in class hex.tree.SharedTree
 
scoreZeroTrees() - Method in class hex.tree.uplift.UpliftDRF
 
SCORING_INTERVAL_MSEC - Static variable in class hex.glm.GLM
 
scoringDomains() - Method in class hex.gam.GAMModel
 
scoringDomains() - Method in class hex.glm.GLMModel
 
scoringInfo(String[], Frame) - Method in class hex.DataInfo
 
scoringInfo(String[], Frame, int, boolean) - Method in class hex.DataInfo
Creates a scoringInfo from a DataInfo instance created during model training
scoringInfo() - Method in class hex.DataInfo
Creates a DataInfo for scoring on a test Frame from a DataInfo instance created during model training This is a lightweight version of the method only usable for models that don't use advanced features of DataInfo (eg.
se() - Method in class hex.tree.DTree.Split
 
seed - Variable in class hex.schemas.AdaBoostV3.AdaBoostParametersV3
 
seed - Variable in class hex.schemas.AggregatorV99.AggregatorParametersV99
 
seed - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
 
seed - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
The random seed controls sampling and initialization.
seed - Variable in class hex.schemas.DTV3.DTParametersV3
 
seed - Variable in class hex.schemas.ExtendedIsolationForestV3.ExtendedIsolationForestParametersV3
 
seed - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
seed - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
seed - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
 
seed - Variable in class hex.schemas.HGLMV3.HGLMParametersV3
 
seed - Variable in class hex.schemas.KMeansV3.KMeansParametersV3
 
seed - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
seed - Variable in class hex.schemas.NaiveBayesV3.NaiveBayesParametersV3
 
seed - Variable in class hex.schemas.PCAV3.PCAParametersV3
 
seed - Variable in class hex.schemas.PSVMV3.PSVMParametersV3
 
seed - Variable in class hex.schemas.RuleFitV3.RuleFitParametersV3
 
seed - Variable in class hex.schemas.SharedTreeV3.SharedTreeParametersV3
 
seed - Variable in class hex.schemas.StackedEnsembleV99.StackedEnsembleParametersV99
 
seed - Variable in class hex.schemas.SVDV99.SVDParametersV99
 
seed(int) - Static method in class hex.tree.drf.TreeMeasuresCollector.ShuffleTask
 
sent_sample_rate - Variable in class hex.schemas.Word2VecV3.Word2VecParametersV3
 
seP1NA() - Method in class hex.tree.DHistogram
Squared Error for NA bucket and prediction value _pred1
seP2NA() - Method in class hex.tree.DHistogram
Squared Error for NA bucket and prediction value _pred2
separate_linear_beta - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
set(int, int, double) - Method in class hex.coxph.Storage.DenseRowMatrix
 
set(int, int, double) - Method in interface hex.coxph.Storage.Matrix
 
set(int, int, float) - Method in class hex.deeplearning.Storage.DenseColMatrix
 
set(int, int, float) - Method in class hex.deeplearning.Storage.DenseRowMatrix
 
set(int, double) - Method in class hex.deeplearning.Storage.DenseVector
 
set(int, int, float) - Method in interface hex.deeplearning.Storage.Matrix
 
set(int, int, float) - Method in class hex.deeplearning.Storage.SparseRowMatrix
 
set(int, int, int, float) - Method in interface hex.deeplearning.Storage.Tensor
 
set(int, double) - Method in interface hex.deeplearning.Storage.Vector
 
set_params(DeepLearningModel.DeepLearningParameters, Key<Model>) - Method in class hex.deeplearning.DeepLearningModelInfo
 
set_processed_global(long) - Method in class hex.deeplearning.DeepLearningModelInfo
 
set_processed_local(long) - Method in class hex.deeplearning.DeepLearningModelInfo
 
setActiveClass(int) - Method in class hex.glm.ComputationState
 
setActiveDataMultinomialNull() - Method in class hex.glm.ComputationState
 
setActiveDataNull() - Method in class hex.glm.ComputationState
 
setAllIn(boolean) - Method in class hex.glm.ComputationState
 
setAlpha(double) - Method in class hex.glm.ComputationState
 
setAlphai(boolean, boolean) - Method in class hex.optimization.OptimizationUtils.ExactLineSearch
 
setBC(GLM.BetaConstraint) - Method in class hex.glm.ComputationState
 
setBeta(double[]) - Method in class hex.glm.ComputationState
 
setBeta(double[]) - Method in class hex.hglm.ComputationStateHGLM
 
setBetaConstraintsDeriv(double[], double[], ComputationState, ConstrainedGLMUtils.LinearConstraints[], ConstrainedGLMUtils.LinearConstraints[], GLM.GLMGradientSolver, double[]) - Method in class hex.optimization.OptimizationUtils.ExactLineSearch
 
setBetaDiff(double) - Method in class hex.glm.ComputationState
 
setBetaMultinomial(int, double[], double[]) - Method in class hex.glm.ComputationState
 
setBitSet(BitSet, int[]) - Static method in class hex.modelselection.ModelSelectionUtils
 
setCalibrationFrame(Frame) - Method in interface hex.tree.CalibrationHelper.ModelBuilderWithCalibration
 
setCalibrationFrame(Frame) - Method in class hex.tree.SharedTree
 
setCalibrationMethod(CalibrationHelper.CalibrationMethod) - Method in interface hex.tree.CalibrationHelper.ParamsWithCalibration
 
setCalibrationMethod(CalibrationHelper.CalibrationMethod) - Method in class hex.tree.SharedTreeModel.SharedTreeParameters
 
setCalibrationModel(Model<?, ?, ?>) - Method in interface hex.tree.CalibrationHelper.OutputWithCalibration
 
setCalibrationModel(Model<?, ?, ?>) - Method in class hex.tree.SharedTreeModel.SharedTreeOutput
 
setCatNAFill(int[]) - Method in class hex.DataInfo
 
setCoefficient(double) - Method in class hex.rulefit.Rule
 
setCombo(int[], int, int) - Static method in class hex.gam.GamSplines.ThinPlateRegressionUtils
 
setCommonParams(P) - Method in class hex.ensemble.Metalearner
 
setConstIndices(Map<DispersionTask.ConstColNames, Integer>, int) - Static method in class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk
 
setConstraintInfo(GLM.GLMGradientInfo, ConstrainedGLMUtils.LinearConstraints[], ConstrainedGLMUtils.LinearConstraints[], double[], double[]) - Method in class hex.glm.ComputationState
 
setCriterionValue(double) - Method in class hex.tree.dt.AbstractSplittingRule
 
setCriterionValue(double) - Method in class hex.tree.dt.binning.SplitStatistics
 
setCrossValidationParams(P) - Method in class hex.ensemble.Metalearner
 
setCustomParams(P) - Method in class hex.ensemble.Metalearner
 
setDebugParams(SharedTree.SharedTreeDebugParams) - Method in class hex.tree.SharedTree
Modify algorithm inner workings - only meant for development
setDebugValues(int, int, double, double, double, double, int, int, int, int, int, int, double, double, double, double, double, double, Chunk[], Map<DispersionTask.InfoColNames, Integer>, double) - Method in class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk
 
setDefaultAuucThresholds(double[]) - Method in class hex.tree.uplift.UpliftDRFModel.UpliftDRFOutput
 
setDefaultBSType(GAMModel.GAMParameters) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
 
setDefaultScale(GAMModel.GAMParameters) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
 
setDiagValues(double[][], double) - Static method in class hex.hglm.HGLMUtils
 
setDispersion(double, boolean) - Method in class hex.glm.GLMModel
 
setDistributionFamily(DistributionFamily) - Method in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
 
setDistributionFamily(DistributionFamily) - Method in class hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters
 
setDistributionFamily(DistributionFamily) - Method in class hex.gam.GAMModel.GAMParameters
 
setDistributionFamily(DistributionFamily) - Method in class hex.glm.GLMModel.GLMParameters
 
setFeatureIndex(int) - Method in class hex.tree.dt.AbstractSplittingRule
 
setFeatureIndex(int) - Method in class hex.tree.dt.binning.SplitStatistics
 
setGamParameters(GAMModel.GAMParameters, int, int) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
 
setGamPredSize(GAMModel.GAMParameters, int) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
For each spline type, calculate the gam columns in each gam column group.
setGinfo(GLM.GLMGradientInfo) - Method in class hex.glm.ComputationState
 
setgMax(double) - Method in class hex.glm.ComputationState
 
setGradEps(double) - Method in class hex.optimization.L_BFGS
 
setGradientErr(double) - Method in class hex.glm.ComputationState
 
setGradientNorm(MathUtils.Norm) - Method in class hex.optimization.ADMM.L1Solver
 
setGslvrNull() - Method in class hex.glm.ComputationState
 
setHistorySz(int) - Method in class hex.optimization.L_BFGS
 
setInfoIndices(Map<DispersionTask.InfoColNames, Integer>, int, boolean) - Static method in class hex.glm.DispersionTask.ComputeMaxSumSeriesTsk
 
setInitialStep(double) - Method in interface hex.optimization.OptimizationUtils.LineSearchSolver
 
setInitialStep(double) - Method in class hex.optimization.OptimizationUtils.MoreThuente
 
setInitialStep(double) - Method in class hex.optimization.OptimizationUtils.SimpleBacktrackingLS
 
setInput(long, double[], int) - Method in class hex.deeplearning.Neurons.Input
One of two methods to set layer input values.
setInput(long, int[], double[], int, int[], int) - Method in class hex.deeplearning.Neurons.Input
The second method used to set input layer values.
setIter(int) - Method in class hex.glm.ComputationState
 
setLambda(double) - Method in class hex.glm.ComputationState
 
setLambdaMax(double) - Method in class hex.glm.ComputationState
 
setLambdas(GLMModel.GLMParameters) - Method in class hex.glm.GLMModel.GLMOutput
 
setLambdaSimple(double) - Method in class hex.glm.ComputationState
 
setLikelihood(double) - Method in class hex.glm.ComputationState
 
setLinearConstraints(ConstrainedGLMUtils.LinearConstraints[], ConstrainedGLMUtils.LinearConstraints[], boolean) - Method in class hex.glm.ComputationState
 
setMax(double) - Method in class hex.tree.dt.binning.NumericBin
 
setMaxIter(int) - Method in class hex.optimization.L_BFGS
 
setMin(double) - Method in class hex.tree.dt.binning.NumericBin
 
setModelOutput(HGLMTask.ComputationEngineTask) - Method in class hex.hglm.HGLMModel.HGLMModelOutput
 
setModelOutputFields(ComputationStateHGLM) - Method in class hex.hglm.HGLMModel.HGLMModelOutput
 
setModelOutputFixMatVec(HGLMTask.ComputationEngineTask) - Method in class hex.hglm.HGLMModel.HGLMModelOutput
For debugging only.
setNewMask(boolean[]) - Method in class hex.tree.dt.CategoricalFeatureLimits
 
setNewMaskExcluded(boolean[]) - Method in class hex.tree.dt.CategoricalFeatureLimits
 
setNewMax(double) - Method in class hex.tree.dt.NumericFeatureLimits
 
setNewMin(double) - Method in class hex.tree.dt.NumericFeatureLimits
 
setNonNegative() - Method in class hex.glm.GLM.BetaConstraint
 
setNonNegative(Frame) - Method in class hex.glm.GLM.BetaConstraint
 
setNumTrees(int) - Method in class hex.tree.TreeStats
 
setObjEps(double) - Method in class hex.optimization.L_BFGS
 
setOutputLayerGradient(double, int, int) - Method in class hex.deeplearning.Neurons.Linear
Backpropagation for regression
setOutputLayerGradient(double, int, int) - Method in class hex.deeplearning.Neurons
Accumulation of reconstruction errors for a generic Neurons class (This is only used for AutoEncoders)
setOutputLayerGradient(double, int, int) - Method in class hex.deeplearning.Neurons.Softmax
Part of backpropagation for classification Update every weight as follows: w += -rate * dE/dw Compute dE/dw via chain rule: dE/dw = dE/dy * dy/dnet * dnet/dw, where net = sum(xi*wi)+b and y = activation function
setParamField(Model.Parameters, Model.Parameters, boolean, Field[], List<String>) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
 
setParamField(Model.Parameters, GLMModel.GLMParameters, boolean, Field[], List<String>) - Static method in class hex.modelselection.ModelSelectionUtils
 
setPredictorTransform(DataInfo.TransformType) - Method in class hex.DataInfo
 
setResponse(int, double) - Method in class hex.DataInfo.Row
 
setResponse(String, Vec) - Method in class hex.DataInfo
 
setResponse(String, Vec, int) - Method in class hex.DataInfo
 
setResponseTransform(DataInfo.TransformType) - Method in class hex.DataInfo
 
setSparse(boolean) - Method in class hex.FrameTask2
 
setSPD(boolean) - Method in class hex.gram.Gram.Cholesky
 
setStartIndex(int) - Method in class hex.ContributionsMeanAggregator
 
setSubmodelIdx(int, GLMModel.GLMParameters) - Method in class hex.glm.GLMModel.GLMOutput
 
setT(double[][]) - Method in class hex.hglm.ComputationStateHGLM
 
setTauEVarE10(double) - Method in class hex.hglm.ComputationStateHGLM
 
setThinPlateParameters(GAMModel.GAMParameters, int) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
 
setUbeta(double[][]) - Method in class hex.hglm.ComputationStateHGLM
 
setUnstable() - Method in class hex.deeplearning.DeepLearningModelInfo
 
setupBigScorePredict(Model<GenericModel, GenericModelParameters, GenericModelOutput>.BigScore) - Method in class hex.generic.GenericModel
 
setupBigScorePredict(Model<PSVMModel, PSVMModel.PSVMParameters, PSVMModel.PSVMModelOutput>.BigScore) - Method in class hex.psvm.PSVMModel
 
setupLocal() - Method in class hex.deeplearning.DeepLearningTask
Transfer ownership from global (shared) model to local model which will be worked on
setupLocal() - Method in class hex.deeplearning.DeepLearningTask2
Do the local computation: Perform one DeepLearningTask (with run_local=true) iteration.
setupLocal() - Method in class hex.FrameTask
 
setupLocal() - Method in class hex.FrameTask2
 
setupLocal() - Method in class hex.glm.GLMTask.YMUTask
 
setupLocal() - Method in class hex.glrm.GLRMGenX
 
setupLocal() - Method in class hex.tree.drf.TreeMeasuresCollector
 
setupLocal() - Method in class hex.tree.DTreeScorer
 
setupLocal() - Method in class hex.tree.ScoreBuildHistogram2
 
setupLocal() - Method in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsTask
 
setupLocal() - Method in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsWithBackgroundTask
 
setupLocal() - Method in class hex.word2vec.WordVectorConverter
 
setupLocal() - Method in class hex.word2vec.WordVectorTrainer
 
setVarName(String) - Method in class hex.rulefit.Rule
 
setVcov(double[][]) - Method in class hex.glm.GLMModel
 
setWeights(String, Vec) - Method in class hex.DataInfo
 
setWideDataset(boolean) - Method in class hex.glrm.GLRM
 
setWideDataset(boolean) - Method in class hex.pca.PCA
 
setWideDataset(boolean) - Method in class hex.svd.SVD
 
setZValues(double[], boolean) - Method in class hex.glm.ComputationState
 
setZValues(double[], double, boolean) - Method in class hex.glm.GLMModel
 
SharedTree<M extends SharedTreeModel<M,P,O>,P extends SharedTreeModel.SharedTreeParameters,O extends SharedTreeModel.SharedTreeOutput> - Class in hex.tree
 
SharedTree(P) - Constructor for class hex.tree.SharedTree
 
SharedTree(P, Key<M>) - Constructor for class hex.tree.SharedTree
 
SharedTree(P, Job) - Constructor for class hex.tree.SharedTree
 
SharedTree(P, boolean) - Constructor for class hex.tree.SharedTree
 
SharedTree.Driver - Class in hex.tree
 
SharedTree.FrameMap - Class in hex.tree
 
SharedTree.ScoreBuildOneTree - Class in hex.tree
 
SharedTree.SharedTreeDebugParams - Class in hex.tree
 
SharedTreeDebugParams(boolean) - Constructor for class hex.tree.SharedTree.SharedTreeDebugParams
 
SharedTreeDebugParams() - Constructor for class hex.tree.SharedTree.SharedTreeDebugParams
 
SharedTreeModel<M extends SharedTreeModel<M,P,O>,P extends SharedTreeModel.SharedTreeParameters,O extends SharedTreeModel.SharedTreeOutput> - Class in hex.tree
 
SharedTreeModel(Key<M>, P, O) - Constructor for class hex.tree.SharedTreeModel
 
SharedTreeModel.BufStringDecisionPathTracker - Class in hex.tree
 
SharedTreeModel.SharedTreeOutput - Class in hex.tree
 
SharedTreeModel.SharedTreeParameters - Class in hex.tree
 
SharedTreeModel.SharedTreeParameters.HistogramType - Enum in hex.tree
 
SharedTreeModelOutputV3() - Constructor for class hex.schemas.SharedTreeModelV3.SharedTreeModelOutputV3
 
SharedTreeModelV3<M extends SharedTreeModel<M,P,O>,S extends SharedTreeModelV3<M,S,P,PS,O,OS>,P extends SharedTreeModel.SharedTreeParameters,PS extends SharedTreeV3.SharedTreeParametersV3<P,PS>,O extends SharedTreeModel.SharedTreeOutput,OS extends SharedTreeModelV3.SharedTreeModelOutputV3<O,OS>> - Class in hex.schemas
 
SharedTreeModelV3() - Constructor for class hex.schemas.SharedTreeModelV3
 
SharedTreeModelV3.SharedTreeModelOutputV3<O extends SharedTreeModel.SharedTreeOutput,SO extends SharedTreeModelV3.SharedTreeModelOutputV3<O,SO>> - Class in hex.schemas
 
SharedTreeModelWithContributions<M extends SharedTreeModel<M,P,O>,P extends SharedTreeModel.SharedTreeParameters,O extends SharedTreeModel.SharedTreeOutput> - Class in hex.tree
 
SharedTreeModelWithContributions(Key<M>, P, O) - Constructor for class hex.tree.SharedTreeModelWithContributions
 
SharedTreeModelWithContributions.ScoreContributionsSortingTask - Class in hex.tree
 
SharedTreeModelWithContributions.ScoreContributionsTask - Class in hex.tree
 
SharedTreeModelWithContributions.ScoreContributionsWithBackgroundTask - Class in hex.tree
 
SharedTreeMojoWriter<M extends SharedTreeModel<M,P,O>,P extends SharedTreeModel.SharedTreeParameters,O extends SharedTreeModel.SharedTreeOutput> - Class in hex.tree
Shared Mojo definition file for DRF and GBM models.
SharedTreeMojoWriter() - Constructor for class hex.tree.SharedTreeMojoWriter
 
SharedTreeMojoWriter(M) - Constructor for class hex.tree.SharedTreeMojoWriter
 
SharedTreeOutput(SharedTree) - Constructor for class hex.tree.SharedTreeModel.SharedTreeOutput
 
SharedTreeParameters() - Constructor for class hex.tree.SharedTreeModel.SharedTreeParameters
 
SharedTreeParametersV3() - Constructor for class hex.schemas.SharedTreeV3.SharedTreeParametersV3
 
SharedTreePojoWriter - Class in hex.tree
 
SharedTreePojoWriter(Key<?>, Model.Output, CategoricalEncoding, boolean, CompressedTree[][], TreeStats) - Constructor for class hex.tree.SharedTreePojoWriter
 
SharedTreeV3<B extends SharedTree,S extends SharedTreeV3<B,S,P>,P extends SharedTreeV3.SharedTreeParametersV3> - Class in hex.schemas
 
SharedTreeV3() - Constructor for class hex.schemas.SharedTreeV3
 
SharedTreeV3.SharedTreeParametersV3<P extends SharedTreeModel.SharedTreeParameters,S extends SharedTreeV3.SharedTreeParametersV3<P,S>> - Class in hex.schemas
 
shouldReorder(Vec) - Method in class hex.tree.SharedTree
 
shrinkage(double, double) - Static method in class hex.optimization.ADMM
 
shrinkArrays(int) - Method in class hex.modelselection.ModelSelectionModel.ModelSelectionModelOutput
 
shrinkDoubleArray(double[][], int) - Static method in class hex.modelselection.ModelSelectionUtils
 
shrinkFullArray(double[]) - Method in class hex.glm.ComputationState
 
shrinkKeyArray(Key[], int) - Static method in class hex.modelselection.ModelSelectionUtils
 
shrinkStringArray(String[][], int) - Static method in class hex.modelselection.ModelSelectionUtils
 
shuffle(Vec) - Static method in class hex.tree.drf.TreeMeasuresCollector.ShuffleTask
 
shuffle_training_data - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
Enable shuffling of training data (on each node).
ShuffleSplitFrame - Class in hex.splitframe
Frame splitter function to divide given frame into multiple partitions based on given ratios.
ShuffleSplitFrame() - Constructor for class hex.splitframe.ShuffleSplitFrame
 
shuffleSplitFrame(Frame, Key<Frame>[], double[], long) - Static method in class hex.splitframe.ShuffleSplitFrame
 
ShuffleTask() - Constructor for class hex.tree.drf.TreeMeasuresCollector.ShuffleTask
 
SimpleBacktrackingLS(OptimizationUtils.GradientSolver, double[], double) - Constructor for class hex.optimization.OptimizationUtils.SimpleBacktrackingLS
 
SimpleBacktrackingLS(OptimizationUtils.GradientSolver, double[], double, OptimizationUtils.GradientInfo) - Constructor for class hex.optimization.OptimizationUtils.SimpleBacktrackingLS
 
SimpleMetalearner(String) - Constructor for class hex.ensemble.Metalearners.SimpleMetalearner
 
single_node_mode - Variable in class hex.schemas.CoxPHV3.CoxPHParametersV3
 
single_node_mode - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
Run on a single node for fine-tuning of model parameters.
singular_vals - Variable in class hex.schemas.GLRMModelV3.GLRMModelOutputV3
 
size() - Method in class hex.coxph.Storage.DenseRowMatrix
 
size() - Method in interface hex.coxph.Storage.Matrix
 
size() - Method in class hex.deeplearning.DeepLearningModelInfo
 
size() - Method in class hex.deeplearning.Storage.DenseColMatrix
 
size() - Method in class hex.deeplearning.Storage.DenseRowMatrix
 
size() - Method in class hex.deeplearning.Storage.DenseVector
 
size() - Method in interface hex.deeplearning.Storage.Matrix
 
size() - Method in class hex.deeplearning.Storage.SparseRowMatrix
 
size() - Method in interface hex.deeplearning.Storage.Tensor
 
size() - Method in interface hex.deeplearning.Storage.Vector
 
size() - Method in class hex.rulefit.RuleEnsemble
 
size() - Method in class hex.tree.DTree.DecidedNode
 
size() - Method in class hex.tree.DTree.LeafNode
 
size() - Method in class hex.tree.DTree.Node
 
size() - Method in class hex.tree.DTree.UndecidedNode
 
skip_missing - Variable in class hex.schemas.GramV3
 
skipRow(long) - Method in class hex.FrameTask
 
slices() - Method in interface hex.deeplearning.Storage.Tensor
 
SMulTask(DataInfo, int) - Constructor for class hex.util.LinearAlgebraUtils.SMulTask
 
SMulTask(DataInfo, int, int) - Constructor for class hex.util.LinearAlgebraUtils.SMulTask
 
Softmax(int) - Constructor for class hex.deeplearning.Neurons.Softmax
 
solve(double[]) - Method in class hex.glm.GLM.GramSolver
 
solve(double[], double[]) - Method in class hex.glm.GLM.GramSolver
 
solve(double[], double[]) - Method in class hex.glm.GLM.ProximalGradientSolver
 
solve(double[][]) - Method in class hex.gram.Gram.Cholesky
 
solve(double[]) - Method in class hex.gram.Gram.Cholesky
Find solution to A*x = y.
solve(ADMM.ProximalSolver, double[], double, boolean) - Method in class hex.optimization.ADMM.L1Solver
 
solve(ADMM.ProximalSolver, double[], double, boolean, double[], double[]) - Method in class hex.optimization.ADMM.L1Solver
 
solve(double[], double[]) - Method in interface hex.optimization.ADMM.ProximalSolver
 
solve(OptimizationUtils.GradientSolver, double[], OptimizationUtils.GradientInfo, L_BFGS.ProgressMonitor) - Method in class hex.optimization.L_BFGS
Solve the optimization problem defined by the user-supplied ginfo function using L-BFGS algorithm.
solve(OptimizationUtils.GradientSolver, double[]) - Method in class hex.optimization.L_BFGS
Solve the optimization problem defined by the user-supplied ginfo function using L-BFGS algorithm.
solve(Frame, Vec, PrimalDualIPM.Parms, PrimalDualIPM.ProgressObserver) - Static method in class hex.psvm.psvm.PrimalDualIPM
 
solver - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
 
solver - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
solver - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
solver - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
sortCoeffMags(int, double[]) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
 
sortGAMParameters(GAMModel.GAMParameters, int, int, int) - Static method in class hex.gam.MatrixFrameUtils.GamUtils
move CS spline smoothers to the front and TP spline smoothers to the back for arrays: gam_columns, bs, scale, num_knots.
sparse - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
 
sparseness() - Method in class hex.gram.Gram
 
sparseOffset(double[], DataInfo) - Static method in class hex.glm.GLM
 
sparsity_beta - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
 
spline_orders - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
SPLINENOTIMPL - Static variable in class hex.gam.MatrixFrameUtils.GamUtils
 
splines_non_negative - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
Split(int, int, DHistogram.NASplitDir, IcedBitSet, byte, double, double, double, double, double, double, double, double, double) - Constructor for class hex.tree.DTree.Split
 
Split(int, int, DHistogram.NASplitDir, IcedBitSet, byte, double, double, double, double, double, double, double, double, double, double, double, double, double, double, double, double, double, double, double) - Constructor for class hex.tree.DTree.Split
 
split(double, double, double, double, double, double) - Method in class hex.tree.uplift.Divergence
Calculate gain after split
SplitStatistics - Class in hex.tree.dt.binning
Potential split including splitting rule and statistics on count of samples and distribution of target variable.
SplitStatistics() - Constructor for class hex.tree.dt.binning.SplitStatistics
 
sqrtDiag(double[][]) - Static method in class hex.util.LinearAlgebraUtils
Given a matrix aMat as a double [][] array, this function will return an array that is the square root of the diagonals of aMat.
StackedEnsemble - Class in hex.ensemble
An ensemble of other models, created by stacking with the SuperLearner algorithm or a variation.
StackedEnsemble(StackedEnsembleModel.StackedEnsembleParameters) - Constructor for class hex.ensemble.StackedEnsemble
 
StackedEnsemble(boolean) - Constructor for class hex.ensemble.StackedEnsemble
 
StackedEnsembleModel - Class in hex.ensemble
An ensemble of other models, created by stacking with the SuperLearner algorithm or a variation.
StackedEnsembleModel(Key, StackedEnsembleModel.StackedEnsembleParameters, StackedEnsembleModel.StackedEnsembleOutput) - Constructor for class hex.ensemble.StackedEnsembleModel
 
StackedEnsembleModel.StackedEnsembleOutput - Class in hex.ensemble
 
StackedEnsembleModel.StackedEnsembleParameters - Class in hex.ensemble
 
StackedEnsembleModel.StackedEnsembleParameters.MetalearnerTransform - Enum in hex.ensemble
 
StackedEnsembleModel.StackingStrategy - Enum in hex.ensemble
 
StackedEnsembleModelOutputV99() - Constructor for class hex.schemas.StackedEnsembleModelV99.StackedEnsembleModelOutputV99
 
StackedEnsembleModelV99 - Class in hex.schemas
 
StackedEnsembleModelV99() - Constructor for class hex.schemas.StackedEnsembleModelV99
 
StackedEnsembleModelV99.StackedEnsembleModelOutputV99 - Class in hex.schemas
 
StackedEnsembleModelV99.StackingStrategyProvider - Class in hex.schemas
 
StackedEnsembleMojoWriter - Class in hex.ensemble
 
StackedEnsembleMojoWriter() - Constructor for class hex.ensemble.StackedEnsembleMojoWriter
 
StackedEnsembleMojoWriter(StackedEnsembleModel) - Constructor for class hex.ensemble.StackedEnsembleMojoWriter
 
StackedEnsembleOutput() - Constructor for class hex.ensemble.StackedEnsembleModel.StackedEnsembleOutput
 
StackedEnsembleOutput(StackedEnsemble) - Constructor for class hex.ensemble.StackedEnsembleModel.StackedEnsembleOutput
 
StackedEnsembleOutput(Job) - Constructor for class hex.ensemble.StackedEnsembleModel.StackedEnsembleOutput
 
StackedEnsembleParameters() - Constructor for class hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters
 
StackedEnsembleParametersV99() - Constructor for class hex.schemas.StackedEnsembleV99.StackedEnsembleParametersV99
 
StackedEnsembleV99 - Class in hex.schemas
 
StackedEnsembleV99() - Constructor for class hex.schemas.StackedEnsembleV99
 
StackedEnsembleV99.StackedEnsembleParametersV99 - Class in hex.schemas
 
StackedEnsembleV99.StackedEnsembleParametersV99.AlgorithmValuesProvider - Class in hex.schemas
 
StackingStrategyProvider() - Constructor for class hex.schemas.StackedEnsembleModelV99.StackingStrategyProvider
 
standardize(double[], double[]) - Method in class hex.DataInfo.Row
 
standardize - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
 
standardize - Variable in class hex.schemas.DataInfoFrameV3
 
standardize - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
 
standardize - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
standardize - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
standardize - Variable in class hex.schemas.GramV3
 
standardize - Variable in class hex.schemas.KMeansV3.KMeansParametersV3
 
standardize - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
standardize_tp_gam_cols - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
start_column - Variable in class hex.schemas.CoxPHV3.CoxPHParametersV3
 
startCoefs(int, long) - Static method in class hex.optimization.L_BFGS
 
startval - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
startval - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
startval - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
std_errs - Variable in class hex.schemas.GLMRegularizationPathV3
 
stdErr() - Method in class hex.glm.GLMModel.GLMOutput
 
stdErr() - Method in class hex.glm.GLMModel.Submodel
 
stdErr(double[], double[]) - Method in class hex.glm.GLMModel.Submodel
 
step() - Method in interface hex.optimization.OptimizationUtils.LineSearchSolver
 
step() - Method in class hex.optimization.OptimizationUtils.MoreThuente
 
step() - Method in class hex.optimization.OptimizationUtils.SimpleBacktrackingLS
 
step_size - Variable in class hex.schemas.GLRMModelV3.GLRMModelOutputV3
 
stop_column - Variable in class hex.schemas.CoxPHV3.CoxPHParametersV3
 
stopped_early - Variable in class hex.deeplearning.DeepLearningModel
 
Storage - Class in hex.coxph
 
Storage() - Constructor for class hex.coxph.Storage
 
Storage - Class in hex.deeplearning
 
Storage() - Constructor for class hex.deeplearning.Storage
 
Storage.DenseColMatrix - Class in hex.deeplearning
Dense column matrix implementation
Storage.DenseRowMatrix - Class in hex.coxph
Dense row matrix implementation
Storage.DenseRowMatrix - Class in hex.deeplearning
Dense row matrix implementation
Storage.DenseVector - Class in hex.deeplearning
Dense vector implementation
Storage.Matrix - Interface in hex.coxph
Abstract matrix interface
Storage.Matrix - Interface in hex.deeplearning
Abstract matrix interface
Storage.SparseRowMatrix - Class in hex.deeplearning
Sparse row matrix implementation
Storage.Tensor - Interface in hex.deeplearning
Abstract tensor interface
Storage.Vector - Interface in hex.deeplearning
Abstract vector interface
store_knot_locations - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
str() - Method in class water.rapids.prims.AstPredictedVsActualByVar
 
str() - Method in class water.rapids.prims.AstSetCalibrationModel
 
str() - Method in class water.rapids.prims.isotonic.AstPoolAdjacentViolators
 
str() - Method in class water.rapids.prims.rulefit.AstPredictRule
 
str() - Method in class water.rapids.prims.tree.AstTreeUpdateWeights
 
str() - Method in class water.rapids.prims.word2vec.AstWord2VecToFrame
 
stratify_by - Variable in class hex.schemas.CoxPHV3.CoxPHParametersV3
 
subgrad(double, double[], double[]) - Static method in class hex.optimization.ADMM
 
Submodel(double, double, double[], int, double, double, int, double[], boolean) - Constructor for class hex.glm.GLMModel.Submodel
 
sumAfjAfjAfjTYj(double[][][], double[][], double[][], double[]) - Static method in class hex.hglm.HGLMTask.ComputationEngineTask
 
sumGramConstribution(ConstrainedGLMUtils.ConstraintsGram[], int) - Static method in class hex.glm.ConstrainedGLMUtils
 
summaryTable - Variable in class hex.deeplearning.DeepLearningModelInfo
 
sumOfRowWeights - Variable in class hex.glm.ComputationState.GramXY
 
surrogate_gap_threshold - Variable in class hex.schemas.PSVMV3.PSVMParametersV3
 
sv_threshold - Variable in class hex.schemas.PSVMV3.PSVMParametersV3
 
SVD - Class in hex.svd
SVD(SVDModel.SVDParameters) - Constructor for class hex.svd.SVD
 
SVD(SVDModel.SVDParameters, Job) - Constructor for class hex.svd.SVD
 
SVD(SVDModel.SVDParameters, Job, boolean, GLRMModel) - Constructor for class hex.svd.SVD
 
SVD(boolean) - Constructor for class hex.svd.SVD
 
svd_method - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
 
svd_method - Variable in class hex.schemas.SVDV99.SVDParametersV99
 
SVDModel - Class in hex.svd
 
SVDModel(Key<SVDModel>, SVDModel.SVDParameters, SVDModel.SVDOutput) - Constructor for class hex.svd.SVDModel
 
SVDModel.ModelMetricsSVD - Class in hex.svd
 
SVDModel.ModelMetricsSVD.SVDModelMetrics - Class in hex.svd
 
SVDModel.SVDOutput - Class in hex.svd
 
SVDModel.SVDParameters - Class in hex.svd
 
SVDModel.SVDParameters.Method - Enum in hex.svd
 
SVDModelMetrics(int) - Constructor for class hex.svd.SVDModel.ModelMetricsSVD.SVDModelMetrics
 
SVDModelOutputV99() - Constructor for class hex.schemas.SVDModelV99.SVDModelOutputV99
 
SVDModelV99 - Class in hex.schemas
 
SVDModelV99() - Constructor for class hex.schemas.SVDModelV99
 
SVDModelV99.SVDModelOutputV99 - Class in hex.schemas
 
SVDOutput(SVD) - Constructor for class hex.svd.SVDModel.SVDOutput
 
SVDParameters() - Constructor for class hex.svd.SVDModel.SVDParameters
 
SVDParametersV99() - Constructor for class hex.schemas.SVDV99.SVDParametersV99
 
SVDV99 - Class in hex.schemas
 
SVDV99() - Constructor for class hex.schemas.SVDV99
 
SVDV99.SVDParametersV99 - Class in hex.schemas
 
svs_count - Variable in class hex.schemas.PSVMModelV3.PSVMModelOutputV3
 
sweepCPM(double[][], int[], boolean) - Static method in class hex.modelselection.ModelSelectionUtils
This method perform the sweeping action described in section II of doc.
sweepCPMElements(Set<ModelSelectionUtils.SweepElement>[], double[][]) - Static method in class hex.modelselection.ModelSelectionUtils
 
sweepCPMParallel(Frame, int[], int[]) - Static method in class hex.modelselection.ModelSelectionUtils
 
SweepFrameParallel(int[], int, Frame) - Constructor for class hex.modelselection.ModelSelectionTasks.SweepFrameParallel
 
SweepModel(int[], double[][], double) - Constructor for class hex.modelselection.ModelSelection.SweepModel
 
sweepMSE(double[][], List<Integer>) - Static method in class hex.modelselection.ModelSelectionUtils
This function performs sweeping on the last row and column only to update the variance error to reduce computation time.
SweepVector(int, int, double) - Constructor for class hex.modelselection.ModelSelectionUtils.SweepVector
 
synonyms - Variable in class hex.schemas.Word2VecSynonymsV3
 

T

Tanh(int) - Constructor for class hex.deeplearning.Neurons.Tanh
 
TanhDropout(int) - Constructor for class hex.deeplearning.Neurons.TanhDropout
 
target_num_exemplars - Variable in class hex.schemas.AggregatorV99.AggregatorParametersV99
 
target_ratio_comm_to_comp - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
 
tau_e_var_init - Variable in class hex.schemas.HGLMV3.HGLMParametersV3
 
tau_u_var_init - Variable in class hex.schemas.HGLMV3.HGLMParametersV3
 
terminate() - Method in class hex.tree.SharedTreeModel.BufStringDecisionPathTracker
 
theta - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
 
theta - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
theta - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
theta - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
ThinPlateDistanceWithKnots - Class in hex.gam.GamSplines
Implementation details of this class can be found in GamThinPlateRegressionH2O.doc attached to this GitHub issue: https://github.com/h2oai/h2o-3/issues/7783
ThinPlateDistanceWithKnots(double[][], int, double[], boolean) - Constructor for class hex.gam.GamSplines.ThinPlateDistanceWithKnots
 
ThinPlatePolynomialWithKnots - Class in hex.gam.GamSplines
 
ThinPlatePolynomialWithKnots(int, int[][], double[], double[], boolean) - Constructor for class hex.gam.GamSplines.ThinPlatePolynomialWithKnots
 
ThinPlateRegressionUtils - Class in hex.gam.GamSplines
This class contains functions that perform different functions for generating the thin plate regression splines and the polynomial basis functions
ThinPlateRegressionUtils() - Constructor for class hex.gam.GamSplines.ThinPlateRegressionUtils
 
ThinPlateRegressionUtils.ScaleTPPenalty - Class in hex.gam.GamSplines
this class performs scaling on TP penalty matrices that is done in R.
threshold - Variable in class hex.schemas.MakeGLMModelV3
 
thresholds - Variable in class hex.schemas.TreeV3
 
thresholds_x - Variable in class hex.schemas.IsotonicRegressionModelV3.IsotonicRegressionModelOutputV3
 
thresholds_y - Variable in class hex.schemas.IsotonicRegressionModelV3.IsotonicRegressionModelOutputV3
 
ties - Variable in class hex.schemas.CoxPHV3.CoxPHParametersV3
 
time_for_communication_us - Variable in class hex.deeplearning.DeepLearningModel
 
timeAverage(DeepLearningModelInfo) - Static method in class hex.deeplearning.DeepLearningModelInfo
TimeAveraging as part of Elastic Averaging Algorithm Cf.
tmat - Variable in class hex.schemas.HGLMModelV3.HGLMModelOutputV3
 
toAuxInfos() - Method in class hex.tree.CompressedTree
 
toBytes(AutoBuffer) - Method in class hex.tree.isoforextended.isolationtree.AbstractCompressedNode
Serialize Node to the byte buffer
toBytes() - Method in class hex.tree.isoforextended.isolationtree.CompressedIsolationTree
The structure of the bytes is: sizeOfInternalArrays -> size of random slope and intercept (size of both is always equal) nodeNumber -> index of the node in the array, byte arrays always starts with the root and ends with some leaf.
toBytes(AutoBuffer) - Method in class hex.tree.isoforextended.isolationtree.CompressedLeaf
The structure of the bytes is: |identifierOfTheNodeType|numRows|
toBytes(AutoBuffer) - Method in class hex.tree.isoforextended.isolationtree.CompressedNode
The structure of the bytes is: |identifierOfTheNodeType|nvalues|pvalues|
toDoubles() - Method in class hex.tree.dt.AbstractFeatureLimits
 
toDoubles() - Method in class hex.tree.dt.binning.AbstractBin
 
toDoubles() - Method in class hex.tree.dt.binning.CategoricalBin
 
toDoubles() - Method in class hex.tree.dt.binning.NumericBin
 
toDoubles() - Method in class hex.tree.dt.CategoricalFeatureLimits
 
toDoubles() - Method in class hex.tree.dt.DataFeaturesLimits
Serialize limits to 2D double array depending on the features types, so it can be passed to MR task
toDoubles() - Method in class hex.tree.dt.NumericFeatureLimits
 
toEigen - Static variable in class hex.util.LinearAlgebraUtils
 
toEigen(Vec) - Static method in class hex.util.LinearAlgebraUtils
 
toEigenArray(Vec) - Static method in class hex.util.LinearAlgebraUtils
 
toEigenProjectionArray(Frame, Frame, boolean) - Static method in class hex.util.LinearAlgebraUtils
 
toFrame(Key<Frame>) - Method in interface hex.coxph.Storage.Matrix
 
toFrame(Key) - Method in class hex.deeplearning.Storage.DenseColMatrix
 
toFrame(Key) - Method in class hex.deeplearning.Storage.DenseRowMatrix
 
toFrame(Key) - Method in class hex.deeplearning.Storage.DenseVector
 
toFrame(Key) - Method in interface hex.deeplearning.Storage.Matrix
 
toFrame(Key) - Method in class hex.deeplearning.Storage.SparseRowMatrix
 
toFrame(int, Key) - Method in interface hex.deeplearning.Storage.Tensor
 
toFrame(Key) - Method in interface hex.deeplearning.Storage.Vector
 
toFrame() - Method in class hex.word2vec.Word2VecModel
Converts this word2vec model to a Frame.
toIsotonicCalibrator() - Method in class hex.isotonic.IsotonicRegressionModel
 
toJavaAlgo() - Method in class hex.generic.GenericModel
 
toJavaCheckTooBig() - Method in class hex.deeplearning.DeepLearningModel
 
toJavaCheckTooBig() - Method in class hex.glm.GLMModel
 
toJavaCheckTooBig() - Method in class hex.kmeans.KMeansModel
 
toJavaCheckTooBig() - Method in class hex.tree.SharedTreePojoWriter
 
toJavaInit(SBPrintStream, CodeGeneratorPipeline) - Method in class hex.deeplearning.DeepLearningModel
 
toJavaInit(SBPrintStream, CodeGeneratorPipeline) - Method in class hex.glm.GLMModel
 
toJavaInit(SBPrintStream, CodeGeneratorPipeline) - Method in class hex.naivebayes.NaiveBayesModel
 
toJavaInit(SBPrintStream, CodeGeneratorPipeline) - Method in class hex.pca.PCAModel
 
toJavaInit(SBPrintStream, CodeGeneratorPipeline) - Method in class hex.svd.SVDModel
 
toJavaInit(SBPrintStream, CodeGeneratorPipeline) - Method in class hex.tree.SharedTreePojoWriter
 
toJavaModelClassName() - Method in class hex.generic.GenericModel
 
toJavaPredictBody(SBPrintStream, CodeGeneratorPipeline, CodeGeneratorPipeline, boolean) - Method in class hex.deeplearning.DeepLearningModel
 
toJavaPredictBody(SBPrintStream, CodeGeneratorPipeline, CodeGeneratorPipeline, boolean) - Method in class hex.glm.GLMModel
 
toJavaPredictBody(SBPrintStream, CodeGeneratorPipeline, CodeGeneratorPipeline, boolean) - Method in class hex.kmeans.KMeansModel
 
toJavaPredictBody(SBPrintStream, CodeGeneratorPipeline, CodeGeneratorPipeline, boolean) - Method in class hex.naivebayes.NaiveBayesModel
 
toJavaPredictBody(SBPrintStream, CodeGeneratorPipeline, CodeGeneratorPipeline, boolean) - Method in class hex.pca.PCAModel
 
toJavaPredictBody(SBPrintStream, CodeGeneratorPipeline, CodeGeneratorPipeline, boolean) - Method in class hex.svd.SVDModel
 
toJavaPredictBody(SBPrintStream, CodeGeneratorPipeline, CodeGeneratorPipeline, boolean) - Method in class hex.tree.SharedTreePojoWriter
 
toJavaTransform(SBPrintStream, CodeGeneratorPipeline, boolean) - Method in class hex.kmeans.KMeansModel
 
toJavaUnifyPreds(SBPrintStream) - Method in class hex.tree.SharedTreePojoWriter
 
toJavaUUID() - Method in class hex.generic.GenericModel
 
toSharedTreeSubgraph(CompressedTree, String[], String[][]) - Method in class hex.tree.CompressedTree
 
toString() - Method in class hex.DataInfo.Row
 
toString() - Method in class hex.deeplearning.DeepLearningModelInfo
Print a summary table
toString() - Method in class hex.deeplearning.Dropout
 
toString() - Method in class hex.deeplearning.Neurons
Print the status of this neuron layer
toString() - Method in class hex.glm.ComputationState
 
toString() - Method in class hex.glm.ConstrainedGLMUtils.CoefIndices
 
toString() - Method in class hex.glm.GLM.BetaConstraint
 
toString() - Method in class hex.glm.GLM.GLMGradientInfo
 
toString() - Method in class hex.gram.Gram
 
toString() - Method in class hex.hglm.HGLMModel
 
toString() - Method in class hex.optimization.ADMM.L1Solver
 
toString() - Method in class hex.optimization.L_BFGS.Result
 
toString() - Method in class hex.optimization.OptimizationUtils.GradientInfo
 
toString() - Method in class hex.optimization.OptimizationUtils.MoreThuente
 
toString() - Method in class hex.optimization.OptimizationUtils.SimpleBacktrackingLS
 
toString() - Method in class hex.psvm.MetricBuilderPSVM
 
toString(SharedTreeModel.SharedTreeOutput) - Method in class hex.tree.CompressedTree
 
toString() - Method in class hex.tree.DHistogram
 
toString() - Method in class hex.tree.dt.AbstractCompressedNode
 
toString() - Method in class hex.tree.dt.AbstractSplittingRule
 
toString() - Method in class hex.tree.dt.CategoricalSplittingRule
 
toString() - Method in class hex.tree.dt.CompressedDT
 
toString() - Method in class hex.tree.dt.CompressedLeaf
 
toString() - Method in class hex.tree.dt.CompressedNode
 
toString() - Method in class hex.tree.dt.NumericSplittingRule
 
toString() - Method in class hex.tree.DTree.DecidedNode
 
toString() - Method in class hex.tree.DTree.LeafNode
 
toString() - Method in class hex.tree.DTree.Split
 
toString() - Method in class hex.tree.DTree.UndecidedNode
 
toString() - Method in class hex.tree.TreeStats
 
toString2(StringBuilder, int) - Method in class hex.tree.DTree.DecidedNode
 
toString2(StringBuilder, int) - Method in class hex.tree.DTree.LeafNode
 
toString2(StringBuilder, int) - Method in class hex.tree.DTree.Node
 
toString2(StringBuilder, int) - Method in class hex.tree.DTree.UndecidedNode
 
toStringAll() - Method in class hex.deeplearning.DeepLearningModelInfo
Debugging printout
toStringTree(int, int) - Method in class hex.tree.SharedTreeModel.SharedTreeOutput
 
total_checkpointed_run_time_ms - Variable in class hex.deeplearning.DeepLearningModel
 
total_scoring_time_ms - Variable in class hex.deeplearning.DeepLearningModel
 
total_setup_time_ms - Variable in class hex.deeplearning.DeepLearningModel
 
total_training_time_ms - Variable in class hex.deeplearning.DeepLearningModel
 
totalBetaLength() - Method in class hex.glm.GLM.BetaInfo
 
totalFreeMemory() - Static method in class hex.ContributionsWithBackgroundFrameTask
 
toTwoDimTable(String[], String) - Method in class hex.tree.isofor.IsolationForest.VarSplits
 
train_samples_per_iteration - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
The number of training data rows to be processed per iteration.
training_rows - Variable in class hex.deeplearning.DeepLearningModel
 
training_samples - Variable in class hex.deeplearning.DeepLearningScoringInfo
 
training_samples() - Method in class hex.deeplearning.DeepLearningScoringInfo
 
trainingFrameRows - Variable in class hex.ensemble.StackedEnsembleModel
 
trainModel(DeepLearningModel) - Method in class hex.deeplearning.DeepLearning.DeepLearningDriver
Train a Deep Learning neural net model
trainModelImpl() - Method in class hex.adaboost.AdaBoost
 
trainModelImpl() - Method in class hex.aggregator.Aggregator
 
trainModelImpl() - Method in class hex.anovaglm.ANOVAGLM
 
trainModelImpl() - Method in class hex.coxph.CoxPH
 
trainModelImpl() - Method in class hex.deeplearning.DeepLearning
 
trainModelImpl() - Method in class hex.ensemble.StackedEnsemble
 
trainModelImpl() - Method in class hex.gam.GAM
 
trainModelImpl() - Method in class hex.generic.Generic
 
trainModelImpl() - Method in class hex.glm.GLM
 
trainModelImpl() - Method in class hex.glrm.GLRM
 
trainModelImpl() - Method in class hex.grep.Grep
 
trainModelImpl() - Method in class hex.hglm.HGLM
 
trainModelImpl() - Method in class hex.isotonic.IsotonicRegression
 
trainModelImpl() - Method in class hex.kmeans.KMeans
Start the KMeans training Job on an F/J thread.
trainModelImpl() - Method in class hex.modelselection.ModelSelection
 
trainModelImpl() - Method in class hex.naivebayes.NaiveBayes
 
trainModelImpl() - Method in class hex.pca.PCA
 
trainModelImpl() - Method in class hex.psvm.PSVM
 
trainModelImpl() - Method in class hex.rulefit.RuleFit
Start the KMeans training Job on an F/J thread.
trainModelImpl() - Method in class hex.svd.SVD
 
trainModelImpl() - Method in class hex.tree.drf.DRF
Start the DRF training Job on an F/J thread.
trainModelImpl() - Method in class hex.tree.dt.DT
 
trainModelImpl() - Method in class hex.tree.gbm.GBM
Start the GBM training Job on an F/J thread.
trainModelImpl() - Method in class hex.tree.isofor.IsolationForest
 
trainModelImpl() - Method in class hex.tree.isoforextended.ExtendedIsolationForest
 
trainModelImpl() - Method in class hex.tree.uplift.UpliftDRF
Start the DRF training Job on an F/J thread.
trainModelImpl() - Method in class hex.word2vec.Word2Vec
 
transform(int, Word2VecTransformV3) - Method in class hex.api.Word2VecHandler
 
transform(StackedEnsembleModel, Frame, Key<Frame>) - Method in enum hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters.MetalearnerTransform
 
transform(double[][], double[], double[], int, int) - Static method in class hex.glrm.GLRM
 
transform(Frame) - Method in class hex.glrm.GLRMModel
GLRM performs the action A=X*Y during training.
transform(Frame) - Method in class hex.rulefit.RuleEnsemble
 
transform - Variable in class hex.schemas.AggregatorV99.AggregatorParametersV99
 
transform - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
 
transform - Variable in class hex.schemas.PCAV3.PCAParametersV3
 
transform - Variable in class hex.schemas.SVDV99.SVDParametersV99
 
transform(String) - Method in class hex.word2vec.Word2VecModel
Takes an input string can return the word vector for that word.
transform(Vec, Word2VecModel.AggregateMethod) - Method in class hex.word2vec.Word2VecModel
 
transformInteractingPred(double[][]) - Method in class hex.anovaglm.GenerateTransformColumns
 
transformMultipleCols(Frame, String[][], int, String[][]) - Static method in class hex.anovaglm.ANOVAGLMUtils
 
transformOneCol(Frame, String) - Static method in class hex.anovaglm.ANOVAGLMUtils
perform data transformation described in AnovaGLMTutorial https://github.com/h2oai/h2o-3/issues/7561 section III.II on one predictor.
transformOneRow(double[][], double[], int, int[]) - Method in class hex.anovaglm.GenerateTransformColumns
 
transformTwoCols(Frame, String[], String[]) - Static method in class hex.anovaglm.ANOVAGLMUtils
Generate frame transformation on two interacting columns.
treatment_column - Variable in class hex.schemas.UpliftDRFV3.UpliftDRFParametersV3
 
treatmentChunkId() - Method in class hex.DataInfo
 
treatmentIndex - Variable in class hex.tree.SharedTree.FrameMap
 
tree0Index - Variable in class hex.tree.SharedTree.FrameMap
 
tree_class - Variable in class hex.schemas.TreeV3
 
tree_decision_path - Variable in class hex.schemas.TreeV3
 
tree_number - Variable in class hex.schemas.TreeV3
 
TreeHandler - Class in hex.tree
Handling requests for various model trees
TreeHandler() - Constructor for class hex.tree.TreeHandler
 
TreeHandler.PlainLanguageRules - Enum in hex.tree
 
TreeHandler.TreeProperties - Class in hex.tree
 
TreeMeasures(int) - Constructor for class hex.tree.drf.TreeMeasuresCollector.TreeMeasures
 
TreeMeasures(double[], int) - Constructor for class hex.tree.drf.TreeMeasuresCollector.TreeMeasures
 
TreeMeasuresCollector - Class in hex.tree.drf
Score given tree model and preserve errors per tree in form of votes (for classification) or MSE (for regression).
TreeMeasuresCollector.ShuffleTask - Class in hex.tree.drf
 
TreeMeasuresCollector.TreeMeasures<T extends TreeMeasuresCollector.TreeMeasures> - Class in hex.tree.drf
A simple holder for set of different tree measurements.
TreeMeasuresCollector.TreeSSE - Class in hex.tree.drf
A simple holder serving SSE per tree.
TreeMeasuresCollector.TreeVotes - Class in hex.tree.drf
A class holding tree votes.
TreeProperties() - Constructor for class hex.tree.TreeHandler.TreeProperties
 
TreeSSE(int) - Constructor for class hex.tree.drf.TreeMeasuresCollector.TreeSSE
 
TreeSSE(float[], double[], int) - Constructor for class hex.tree.drf.TreeMeasuresCollector.TreeSSE
 
TreeStats - Class in hex.tree
 
TreeStats() - Constructor for class hex.tree.TreeStats
 
TreeStatsV3 - Class in hex.schemas
 
TreeStatsV3() - Constructor for class hex.schemas.TreeStatsV3
 
TreeUtils - Class in hex.tree
 
TreeUtils() - Constructor for class hex.tree.TreeUtils
 
TreeV3 - Class in hex.schemas
 
TreeV3() - Constructor for class hex.schemas.TreeV3
 
TreeVisitor<T extends java.lang.Exception> - Class in hex.tree
Abstract visitor class for serialized trees.
TreeVisitor(CompressedTree) - Constructor for class hex.tree.TreeVisitor
 
TreeVotes(int) - Constructor for class hex.tree.drf.TreeMeasuresCollector.TreeVotes
 
TreeVotes(double[], double[], int) - Constructor for class hex.tree.drf.TreeMeasuresCollector.TreeVotes
 
TriDiagonalMatrix - Class in hex.gam.MatrixFrameUtils
 
TriDiagonalMatrix(int) - Constructor for class hex.gam.MatrixFrameUtils.TriDiagonalMatrix
 
TriDiagonalMatrix(double[]) - Constructor for class hex.gam.MatrixFrameUtils.TriDiagonalMatrix
 
trim(Aggregator.Exemplar[]) - Static method in class hex.aggregator.Aggregator.Exemplar
Trim any training nulls
trimTo(int) - Method in class hex.tree.SharedTreeModel.SharedTreeOutput
 
tweedie_epsilon - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
tweedie_link_power - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
 
tweedie_link_power - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
tweedie_link_power - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
tweedie_link_power - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
tweedie_variance_power - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
 
tweedie_variance_power - Variable in class hex.schemas.GAMV3.GAMParametersV3
 
tweedie_variance_power - Variable in class hex.schemas.GLMV3.GLMParametersV3
 
tweedie_variance_power - Variable in class hex.schemas.ModelSelectionV3.ModelSelectionParametersV3
 
TweedieEstimator - Class in hex.glm
 
TweedieMLDispersionOnly - Class in hex.glm
class to find bounds on infinite series approximation to calculate tweedie dispersion parameter using the maximum likelihood function in Dunn et.al.
TweedieMLDispersionOnly(Frame, GLMModel.GLMParameters, GLMModel, double[], DataInfo) - Constructor for class hex.glm.TweedieMLDispersionOnly
 
twoNormSq() - Method in class hex.DataInfo.Row
 
type - Variable in class hex.schemas.ANOVAGLMV3.ANOVAGLMParametersV3
 

U

u_key - Variable in class hex.schemas.SVDModelV99.SVDModelOutputV99
 
u_name - Variable in class hex.schemas.SVDV99.SVDParametersV99
 
ubeta - Variable in class hex.schemas.HGLMModelV3.HGLMModelOutputV3
 
undecided(int) - Method in class hex.tree.DTree
 
UNDECIDED_CHILD_NODE_ID - Static variable in class hex.tree.ScoreBuildHistogram
Marker for a fresh tree
UndecidedNode(DTree, int, DHistogram[], Constraints, BranchInteractionConstraints) - Constructor for class hex.tree.DTree.UndecidedNode
 
UndecidedNode(DTree.UndecidedNode, DTree) - Constructor for class hex.tree.DTree.UndecidedNode
 
unit_active(int) - Method in class hex.deeplearning.Dropout
 
units - Variable in class hex.deeplearning.Neurons
 
unScaleNumericals(double[], double[]) - Method in class hex.DataInfo
Undo the standardization/normalization of numerical columns
update(double[], double, double, int) - Method in class hex.glm.GLMModel
 
update(double[], double[], double, double, int) - Method in class hex.glm.GLMModel
 
updateAuxTreeWeights(Frame, String) - Method in class hex.tree.SharedTreeModel
 
updateBy(IsolationTree) - Method in class hex.tree.isoforextended.isolationtree.IsolationTreeStats
 
updateBy(DTree) - Method in class hex.tree.TreeStats
 
updateConstraintInfo(ConstrainedGLMUtils.LinearConstraints[], ConstrainedGLMUtils.LinearConstraints[]) - Method in class hex.glm.ComputationState
Any time when the glm coefficient changes, the constraints values will change and active constraints can be inactive and vice versa.
updateConstraintParameters(ComputationState, double[], double[], ConstrainedGLMUtils.LinearConstraints[], ConstrainedGLMUtils.LinearConstraints[], GLMModel.GLMParameters) - Static method in class hex.glm.ConstrainedGLMUtils
This method will update the constraint parameter values cKCS, epsilonkCS, etakCS.
updateConstraintValues(double[], List<String>, ConstrainedGLMUtils.LinearConstraints[], ConstrainedGLMUtils.LinearConstraints[]) - Static method in class hex.glm.ConstrainedGLMUtils
Simple method to all linear constraints given the coefficient values.
updateDerivativeActive(ConstrainedGLMUtils.ConstraintsDerivatives[], ConstrainedGLMUtils.ConstraintsGram[], ConstrainedGLMUtils.LinearConstraints[]) - Method in class hex.glm.ComputationState
 
updateDispersionP(double) - Method in class hex.glm.TweedieMLDispersionOnly
 
updateDOFColInfo(int, String[], int[], int[], int) - Static method in class hex.anovaglm.ANOVAGLMUtils
 
updateGradGam(double[], double[][][], int[][], double[], int[]) - Static method in class hex.glm.GLMUtils
 
updateGradGamMultinomial(double[][], double[][][], int[][], double[][]) - Static method in class hex.glm.GLMUtils
 
updateIVVSum(double[][], double[]) - Static method in class hex.svd.SVD
 
updateLambda(double[], double, ConstrainedGLMUtils.LinearConstraints[]) - Static method in class hex.glm.ConstrainedGLMUtils
 
updateLaterBits(int[], int[], int, int) - Static method in class hex.anovaglm.ANOVAGLMUtils
 
updateLaterIndices(int[], int, int) - Static method in class hex.modelselection.ModelSelectionUtils
Give 5 predictors and say we want the combo of 3 predictors, this function will properly reset the prediction combination indices say from [0, 1, 4] -> [0, 2, 3] or [0, 3, 4] -> [1, 2, 3].
updateLeafNodeWeights(double[]) - Method in class hex.tree.CompressedTree
 
updateMask(int, boolean[]) - Method in class hex.tree.dt.DataFeaturesLimits
Creates new instance of limits with updated mask - replaces old mask with new more precise one.
updateMaskExcluded(int, boolean[]) - Method in class hex.tree.dt.DataFeaturesLimits
Creates new instance of limits with updated mask - excludes from the current mask categories defined by the new one.
updateMax(int, double) - Method in class hex.tree.dt.DataFeaturesLimits
Creates new instance of limits with updated max.
updateMin(int, double) - Method in class hex.tree.dt.DataFeaturesLimits
Creates new instance of limits with updated min.
updateModelInfo(Word2VecModel.Word2VecModelInfo) - Method in class hex.word2vec.WordVectorTrainer
 
updatePredCombo(int[], int[]) - Static method in class hex.anovaglm.ANOVAGLMUtils
 
updatePredIndices(int[], int[]) - Static method in class hex.modelselection.ModelSelectionUtils
Given predictor indices stored in currentPredIndices, we need to find the next combination of predictor indices to use to generate the next combination.
updateProgress(boolean) - Method in class hex.glm.GLM.GLMDriver
 
updates - Variable in class hex.schemas.GLRMModelV3.GLRMModelOutputV3
 
updateState(double[], double) - Method in class hex.glm.ComputationState
 
updateState(double[], GLM.GLMGradientInfo) - Method in class hex.glm.ComputationState
 
updateSubmodel(int, GLMModel.Submodel) - Method in class hex.glm.GLMModel
 
updateTweedieParams(double, double, double) - Method in class hex.glm.GLMModel.GLMParameters
 
updateWeightedSigmaAndMean(double[], double[]) - Method in class hex.DataInfo
 
updateWeightedSigmaAndMeanForResponse(double[], double[]) - Method in class hex.DataInfo
 
updateXVecs(int, int) - Constructor for class hex.glrm.GLRM.updateXVecs
 
uplift_metric - Variable in class hex.schemas.UpliftDRFV3.UpliftDRFParametersV3
 
UpliftDRF - Class in hex.tree.uplift
 
UpliftDRF(UpliftDRFModel.UpliftDRFParameters) - Constructor for class hex.tree.uplift.UpliftDRF
 
UpliftDRF(UpliftDRFModel.UpliftDRFParameters, Key<UpliftDRFModel>) - Constructor for class hex.tree.uplift.UpliftDRF
 
UpliftDRF(UpliftDRFModel.UpliftDRFParameters, Job) - Constructor for class hex.tree.uplift.UpliftDRF
 
UpliftDRF(boolean) - Constructor for class hex.tree.uplift.UpliftDRF
 
UpliftDRF.UpliftMetricType - Enum in hex.tree.uplift
 
UpliftDRFModel - Class in hex.tree.uplift
 
UpliftDRFModel(Key<UpliftDRFModel>, UpliftDRFModel.UpliftDRFParameters, UpliftDRFModel.UpliftDRFOutput) - Constructor for class hex.tree.uplift.UpliftDRFModel
 
UpliftDRFModel.UpliftDRFOutput - Class in hex.tree.uplift
 
UpliftDRFModel.UpliftDRFParameters - Class in hex.tree.uplift
 
UpliftDRFModel.UpliftDRFParameters.UpliftMetricType - Enum in hex.tree.uplift
 
UpliftDRFModelOutputV3() - Constructor for class hex.schemas.UpliftDRFModelV3.UpliftDRFModelOutputV3
 
UpliftDRFModelV3 - Class in hex.schemas
 
UpliftDRFModelV3() - Constructor for class hex.schemas.UpliftDRFModelV3
 
UpliftDRFModelV3.UpliftDRFModelOutputV3 - Class in hex.schemas
 
UpliftDrfMojoWriter - Class in hex.tree.uplift
 
UpliftDrfMojoWriter() - Constructor for class hex.tree.uplift.UpliftDrfMojoWriter
 
UpliftDrfMojoWriter(UpliftDRFModel) - Constructor for class hex.tree.uplift.UpliftDrfMojoWriter
 
UpliftDRFOutput(UpliftDRF) - Constructor for class hex.tree.uplift.UpliftDRFModel.UpliftDRFOutput
 
UpliftDRFParameters() - Constructor for class hex.tree.uplift.UpliftDRFModel.UpliftDRFParameters
 
UpliftDRFParametersV3() - Constructor for class hex.schemas.UpliftDRFV3.UpliftDRFParametersV3
 
UpliftDRFV3 - Class in hex.schemas
 
UpliftDRFV3() - Constructor for class hex.schemas.UpliftDRFV3
 
UpliftDRFV3.UpliftDRFParametersV3 - Class in hex.schemas
 
upliftGain() - Method in class hex.tree.DTree.Split
 
use_all - Variable in class hex.schemas.DataInfoFrameV3
 
use_all_factor_levels - Variable in class hex.schemas.AggregatorV99.AggregatorParametersV99
 
use_all_factor_levels - Variable in class hex.schemas.CoxPHV3.CoxPHParametersV3
 
use_all_factor_levels - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
 
use_all_factor_levels - Variable in class hex.schemas.GramV3
 
use_all_factor_levels - Variable in class hex.schemas.PCAV3.PCAParametersV3
 
use_all_factor_levels - Variable in class hex.schemas.SVDV99.SVDParametersV99
 
useBounds() - Method in class hex.tree.Constraints
 
useColSampling() - Method in class hex.tree.gbm.GBMModel.GBMParameters
 
useColSampling() - Method in class hex.tree.SharedTreeModel.SharedTreeParameters
 
useIntOpt(Vec, SharedTreeModel.SharedTreeParameters, Constraints) - Static method in class hex.tree.DHistogram
Determines if histogram making can use integer optimization when extracting data.
user_points - Variable in class hex.schemas.KMeansV3.KMeansParametersV3
 
user_x - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
 
user_y - Variable in class hex.schemas.GLRMV3.GLRMParametersV3
 
useRowSampling() - Method in class hex.tree.SharedTreeModel.SharedTreeParameters
 

V

v_key - Variable in class hex.schemas.SVDModelV99.SVDModelOutputV99
 
validate(GLM) - Method in class hex.glm.GLMModel.GLMParameters
 
validate(RuleFit) - Method in class hex.rulefit.RuleFitModel.RuleFitParameters
 
validateBinaryResponse() - Method in class hex.coxph.CoxPH
 
validateParams(P) - Method in class hex.ensemble.Metalearner
 
validateRowSampleRate() - Method in class hex.tree.isofor.IsolationForest
 
validateRowSampleRate() - Method in class hex.tree.SharedTree
 
validateStoppingMetric() - Method in class hex.tree.isofor.IsolationForest
 
validation_response_column - Variable in class hex.schemas.IsolationForestV3.IsolationForestParametersV3
 
validation_rows - Variable in class hex.deeplearning.DeepLearningModel
 
validDinfo(Frame) - Method in class hex.DataInfo
 
validWorkspace() - Method in class hex.tree.SharedTree
 
value() - Method in enum hex.tree.DHistogram.NASplitDir
 
value(double, double, double, double, double, double, double, double, double, double, double, double) - Method in class hex.tree.uplift.Divergence
Calculate normalized gain as result value to select best split.
valueOf(String) - Static method in enum hex.adaboost.AdaBoostModel.Algorithm
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.coxph.CoxPHModel.CoxPHParameters.CoxPHTies
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.DataInfo.TransformType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.deeplearning.DeepLearningModel.DeepLearningParameters.Activation
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.deeplearning.DeepLearningModel.DeepLearningParameters.ClassSamplingMethod
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.deeplearning.DeepLearningModel.DeepLearningParameters.InitialWeightDistribution
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.deeplearning.DeepLearningModel.DeepLearningParameters.Loss
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.deeplearning.DeepLearningModel.DeepLearningParameters.MissingValuesHandling
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.ensemble.Metalearner.Algorithm
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters.MetalearnerTransform
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.ensemble.StackedEnsembleModel.StackingStrategy
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.gam.MatrixFrameUtils.GamUtils.AllocateType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.glm.DispersionTask.ConstColNames
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.glm.DispersionTask.InfoColNames
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.glm.GLMModel.GLMParameters.Constraints
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.glm.GLMModel.GLMParameters.DispersionMethod
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.glm.GLMModel.GLMParameters.Family
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.glm.GLMModel.GLMParameters.GLMType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.glm.GLMModel.GLMParameters.Influence
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.glm.GLMModel.GLMParameters.Link
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.glm.GLMModel.GLMParameters.MissingValuesHandling
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.glm.GLMModel.GLMParameters.Solver
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.hglm.HGLMModel.HGLMParameters.Method
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.isotonic.IsotonicRegressionModel.OutOfBoundsHandling
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.kmeans.KMeans.Initialization
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.modelselection.ModelSelectionModel.ModelSelectionParameters.Mode
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.pca.PCAImplementation
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.pca.PCAModel.PCAParameters.Method
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.rulefit.Condition.Operator
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.rulefit.Condition.Type
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.rulefit.RuleFitModel.Algorithm
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.rulefit.RuleFitModel.ModelType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.svd.SVDModel.SVDParameters.Method
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.tree.CalibrationHelper.CalibrationMethod
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.tree.DHistogram.NASplitDir
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.tree.dt.binning.BinningStrategy
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.tree.SharedTreeModel.SharedTreeParameters.HistogramType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.tree.TreeHandler.PlainLanguageRules
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.tree.uplift.UpliftDRF.UpliftMetricType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.tree.uplift.UpliftDRFModel.UpliftDRFParameters.UpliftMetricType
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.word2vec.Word2Vec.NormModel
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.word2vec.Word2Vec.WordModel
Returns the enum constant of this type with the specified name.
valueOf(String) - Static method in enum hex.word2vec.Word2VecModel.AggregateMethod
Returns the enum constant of this type with the specified name.
values() - Static method in enum hex.adaboost.AdaBoostModel.Algorithm
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.coxph.CoxPHModel.CoxPHParameters.CoxPHTies
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.DataInfo.TransformType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.deeplearning.DeepLearningModel.DeepLearningParameters.Activation
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.deeplearning.DeepLearningModel.DeepLearningParameters.ClassSamplingMethod
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.deeplearning.DeepLearningModel.DeepLearningParameters.InitialWeightDistribution
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.deeplearning.DeepLearningModel.DeepLearningParameters.Loss
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.deeplearning.DeepLearningModel.DeepLearningParameters.MissingValuesHandling
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.ensemble.Metalearner.Algorithm
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters.MetalearnerTransform
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.ensemble.StackedEnsembleModel.StackingStrategy
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.gam.MatrixFrameUtils.GamUtils.AllocateType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.glm.DispersionTask.ConstColNames
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.glm.DispersionTask.InfoColNames
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.glm.GLMModel.GLMParameters.Constraints
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.glm.GLMModel.GLMParameters.DispersionMethod
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.glm.GLMModel.GLMParameters.Family
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.glm.GLMModel.GLMParameters.GLMType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.glm.GLMModel.GLMParameters.Influence
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.glm.GLMModel.GLMParameters.Link
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.glm.GLMModel.GLMParameters.MissingValuesHandling
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.glm.GLMModel.GLMParameters.Solver
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.hglm.HGLMModel.HGLMParameters.Method
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.isotonic.IsotonicRegressionModel.OutOfBoundsHandling
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.kmeans.KMeans.Initialization
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.modelselection.ModelSelectionModel.ModelSelectionParameters.Mode
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.pca.PCAImplementation
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.pca.PCAModel.PCAParameters.Method
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.rulefit.Condition.Operator
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.rulefit.Condition.Type
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.rulefit.RuleFitModel.Algorithm
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.rulefit.RuleFitModel.ModelType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.svd.SVDModel.SVDParameters.Method
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.tree.CalibrationHelper.CalibrationMethod
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.tree.DHistogram.NASplitDir
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.tree.dt.binning.BinningStrategy
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.tree.SharedTreeModel.SharedTreeParameters.HistogramType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.tree.TreeHandler.PlainLanguageRules
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.tree.uplift.UpliftDRF.UpliftMetricType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.tree.uplift.UpliftDRFModel.UpliftDRFParameters.UpliftMetricType
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.word2vec.Word2Vec.NormModel
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.word2vec.Word2Vec.WordModel
Returns an array containing the constants of this enum type, in the order they are declared.
values() - Static method in enum hex.word2vec.Word2VecModel.AggregateMethod
Returns an array containing the constants of this enum type, in the order they are declared.
var(int) - Method in class hex.tree.DHistogram
compute the sample variance within a given bin
variable_importances - Variable in class hex.schemas.DeepLearningV3.DeepLearningParametersV3
Whether to compute variable importances for input features.
variable_splits - Variable in class hex.schemas.IsolationForestModelV3.IsolationForestModelOutputV3
 
variableInflationFactors() - Method in class hex.glm.GLMModel.GLMOutput
 
variance(double) - Method in class hex.glm.GLMModel.GLMParameters
 
variance(double) - Method in class hex.glm.GLMModel.GLMWeightsFun
 
varImp() - Method in class hex.deeplearning.DeepLearningModel
 
vcov() - Method in class hex.glm.GLMModel.GLMOutput
Variance Covariance matrix accessor.
vec_nids(Frame, int) - Method in class hex.tree.SharedTree
 
vec_offset(Frame) - Method in class hex.tree.SharedTree
 
vec_oobt(Frame) - Method in class hex.tree.SharedTree
 
vec_resp(Frame) - Method in class hex.tree.SharedTree
 
vec_size - Variable in class hex.schemas.Word2VecV3.Word2VecParametersV3
 
vec_tree(Frame, int) - Method in class hex.tree.SharedTree
 
vec_weight(Frame) - Method in class hex.tree.SharedTree
 
vec_work(Frame, int) - Method in class hex.tree.SharedTree
 
vectors_frame - Variable in class hex.schemas.Word2VecTransformV3
 
visit() - Method in class hex.tree.TreeVisitor
 
votes() - Method in class hex.tree.drf.TreeMeasuresCollector.TreeVotes
Returns number of positive votes per tree.

W

w - Variable in class hex.glm.GLMModel.GLMWeights
 
W - Variable in class hex.schemas.GramV3
 
w(int) - Method in class hex.tree.DHistogram
 
water.api - package water.api
 
water.rapids.prims - package water.rapids.prims
 
water.rapids.prims.isotonic - package water.rapids.prims.isotonic
 
water.rapids.prims.rulefit - package water.rapids.prims.rulefit
 
water.rapids.prims.tree - package water.rapids.prims.tree
 
water.rapids.prims.word2vec - package water.rapids.prims.word2vec
 
water.tools - package water.tools
 
weak_learner - Variable in class hex.schemas.AdaBoostV3.AdaBoostParametersV3
 
weak_learner_params - Variable in class hex.schemas.AdaBoostV3.AdaBoostParametersV3
 
weight - Variable in class hex.DataInfo.Row
 
weightChunkId() - Method in class hex.DataInfo
 
WEIGHTIND - Static variable in class hex.glm.DispersionTask
 
weightIndex - Variable in class hex.tree.SharedTree.FrameMap
 
weightsIdx() - Method in class hex.coxph.CoxPHModel.CoxPHOutput
 
window_size - Variable in class hex.schemas.Word2VecV3.Word2VecParametersV3
 
wNA() - Method in class hex.tree.DHistogram
 
word - Variable in class hex.schemas.Word2VecSynonymsV3
 
Word2Vec - Class in hex.word2vec
 
Word2Vec(boolean) - Constructor for class hex.word2vec.Word2Vec
 
Word2Vec(Word2VecModel.Word2VecParameters) - Constructor for class hex.word2vec.Word2Vec
 
Word2Vec.NormModel - Enum in hex.word2vec
 
Word2Vec.WordModel - Enum in hex.word2vec
 
Word2VecHandler - Class in hex.api
 
Word2VecHandler() - Constructor for class hex.api.Word2VecHandler
 
Word2VecModel - Class in hex.word2vec
 
Word2VecModel(Key<Word2VecModel>, Word2VecModel.Word2VecParameters, Word2VecModel.Word2VecOutput) - Constructor for class hex.word2vec.Word2VecModel
 
Word2VecModel.AggregateMethod - Enum in hex.word2vec
 
Word2VecModel.Vocabulary - Class in hex.word2vec
 
Word2VecModel.Word2VecModelInfo - Class in hex.word2vec
 
Word2VecModel.Word2VecOutput - Class in hex.word2vec
 
Word2VecModel.Word2VecParameters - Class in hex.word2vec
 
Word2VecModel.WordCounts - Class in hex.word2vec
 
Word2VecModelInfo() - Constructor for class hex.word2vec.Word2VecModel.Word2VecModelInfo
 
Word2VecModelOutputV3() - Constructor for class hex.schemas.Word2VecModelV3.Word2VecModelOutputV3
 
Word2VecModelV3 - Class in hex.schemas
 
Word2VecModelV3() - Constructor for class hex.schemas.Word2VecModelV3
 
Word2VecModelV3.Word2VecModelOutputV3 - Class in hex.schemas
 
Word2VecMojoWriter - Class in hex.word2vec
MOJO serializer for word2vec model.
Word2VecMojoWriter() - Constructor for class hex.word2vec.Word2VecMojoWriter
 
Word2VecMojoWriter(Word2VecModel) - Constructor for class hex.word2vec.Word2VecMojoWriter
 
Word2VecOutput(Word2Vec) - Constructor for class hex.word2vec.Word2VecModel.Word2VecOutput
 
Word2VecParameters() - Constructor for class hex.word2vec.Word2VecModel.Word2VecParameters
 
Word2VecParametersV3() - Constructor for class hex.schemas.Word2VecV3.Word2VecParametersV3
 
Word2VecSynonymsV3 - Class in hex.schemas
 
Word2VecSynonymsV3() - Constructor for class hex.schemas.Word2VecSynonymsV3
 
Word2VecTransformV3 - Class in hex.schemas
 
Word2VecTransformV3() - Constructor for class hex.schemas.Word2VecTransformV3
 
Word2VecV3 - Class in hex.schemas
 
Word2VecV3() - Constructor for class hex.schemas.Word2VecV3
 
Word2VecV3.Word2VecParametersV3 - Class in hex.schemas
 
word_model - Variable in class hex.schemas.Word2VecV3.Word2VecParametersV3
 
WordCountTask - Class in hex.word2vec
Reduce a string column of a given Vec to a set of unique words and their frequency counts Currently the array is consolidated on the calling node.
words_frame - Variable in class hex.schemas.Word2VecTransformV3
 
WordVectorConverter - Class in hex.word2vec
 
WordVectorConverter(Job<Word2VecModel>, int, int) - Constructor for class hex.word2vec.WordVectorConverter
 
WordVectorTrainer - Class in hex.word2vec
 
WordVectorTrainer(Job<Word2VecModel>, Word2VecModel.Word2VecModelInfo) - Constructor for class hex.word2vec.WordVectorTrainer
 
work0Index - Variable in class hex.tree.SharedTree.FrameMap
 
WORK_TOTAL - Static variable in class hex.glm.GLM
 
WORK_TOTAL - Static variable in class hex.rulefit.RuleFit
 
write_impl(AutoBuffer) - Method in class hex.coxph.CoxPHModel.FrameMatrix
 
write_impl(AutoBuffer) - Method in class hex.word2vec.WordCountTask
 
writeAll_impl(AutoBuffer) - Method in class hex.adaboost.AdaBoostModel
 
writeAll_impl(AutoBuffer) - Method in class hex.anovaglm.ANOVAGLMModel
 
writeAll_impl(AutoBuffer) - Method in class hex.ensemble.StackedEnsembleModel
Write out models (base + metalearner)
writeAll_impl(AutoBuffer) - Method in class hex.gam.GAMModel
 
writeAll_impl(AutoBuffer) - Method in class hex.glm.GLMModel
 
writeAll_impl(AutoBuffer) - Method in class hex.glrm.GLRMModel
 
writeAll_impl(AutoBuffer) - Method in class hex.hglm.HGLMModel
 
writeAll_impl(AutoBuffer) - Method in class hex.modelselection.ModelSelectionModel
 
writeAll_impl(AutoBuffer) - Method in class hex.svd.SVDModel
Write out K/V pairs
writeAll_impl(AutoBuffer) - Method in class hex.tree.dt.DTModel
 
writeAll_impl(AutoBuffer) - Method in class hex.tree.isoforextended.ExtendedIsolationForestModel
 
writeAll_impl(AutoBuffer) - Method in class hex.tree.SharedTreeModel
Write out K/V pairs
writeModelData() - Method in class hex.coxph.CoxPHMojoWriter
 
writeModelData() - Method in class hex.deeplearning.DeepLearningMojoWriter
 
writeModelData() - Method in class hex.gam.GAMMojoWriter
 
writeModelData() - Method in class hex.generic.GenericModelMojoWriter
 
writeModelData() - Method in class hex.glm.GLMMojoWriter
 
writeModelData() - Method in class hex.glrm.GlrmMojoWriter
 
writeModelData() - Method in class hex.isotonic.IsotonicRegressionMojoWriter
 
writeModelData() - Method in class hex.kmeans.KMeansMojoWriter
 
writeModelData() - Method in class hex.pca.PCAMojoWriter
 
writeModelData() - Method in class hex.tree.drf.DrfMojoWriter
 
writeModelData() - Method in class hex.tree.gbm.GbmMojoWriter
 
writeModelData() - Method in class hex.tree.isofor.IsolationForestMojoWriter
 
writeModelData() - Method in class hex.tree.isoforextended.ExtendedIsolationForestMojoWriter
 
writeModelData() - Method in class hex.tree.SharedTreeMojoWriter
 
writeModelData() - Method in class hex.tree.uplift.UpliftDrfMojoWriter
 
writeModelData() - Method in class hex.word2vec.Word2VecMojoWriter
 
writeParentModelData() - Method in class hex.ensemble.StackedEnsembleMojoWriter
 
writeParentModelData() - Method in class hex.rulefit.RuleFitMojoWriter
 
writeTo(OutputStream, StreamWriteOption...) - Method in class hex.generic.GenericModelMojoWriter
 
wsum() - Method in class hex.glm.GLMTask.YMUTask
 
wY(int) - Method in class hex.tree.DHistogram
 
wYNA() - Method in class hex.tree.DHistogram
 
wYY(int) - Method in class hex.tree.DHistogram
 
wYYNA() - Method in class hex.tree.DHistogram
 

X

X - Variable in class hex.schemas.GramV3
 
xFrameVec(Chunk[], int, int) - Static method in class hex.glrm.GLRM
 
xy - Variable in class hex.glm.ComputationState.GramXY
 

Y

yArcheTypeVal(GLRM.Archetypes, int, int) - Static method in class hex.glrm.GLRM
 
ymu() - Method in class hex.glm.GLMModel.GLMOutput
 
YMUTask(DataInfo, int, boolean, boolean, boolean, boolean) - Constructor for class hex.glm.GLMTask.YMUTask
 
yy - Variable in class hex.glm.ComputationState.GramXY
 

Z

z - Variable in class hex.glm.GLMModel.GLMWeights
 
z_values - Variable in class hex.schemas.GLMRegularizationPathV3
 
ZERO_TO_DIVIDE - Static variable in class hex.tree.uplift.Divergence
 
zeroOutIStranspose(int[], double[][][]) - Static method in class hex.gam.MatrixFrameUtils.GAMModelUtils
 
zValues() - Method in class hex.glm.ComputationState
 
zValues() - Method in class hex.glm.GLMModel.GLMOutput
 
zValues - Variable in class hex.glm.GLMModel.Submodel
 
zValues() - Method in class hex.glm.GLMModel.Submodel
 

_

_a - Variable in class hex.deeplearning.Neurons
 
_abAux - Variable in class hex.tree.DTree
 
_absoluteSplitPts - Variable in class hex.tree.DHistogram
 
_activation - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
The activation function (non-linearity) to be used the neurons in the hidden layers.
_active - Variable in class hex.glm.ConstrainedGLMUtils.ConstraintsDerivatives
 
_active - Variable in class hex.glm.ConstrainedGLMUtils.ConstraintsGram
 
_active - Variable in class hex.glm.ConstrainedGLMUtils.LinearConstraints
 
_activeCols - Variable in class hex.DataInfo
 
_activeColsPerClass - Variable in class hex.glm.GLMModel.GLMOutput
 
_activeDataMultinomial - Variable in class hex.glm.ComputationState
 
_adaptedFrame - Variable in class hex.DataInfo
 
_adaptive_rate - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
The implemented adaptive learning rate algorithm (ADADELTA) automatically combines the benefits of learning rate annealing and momentum training to avoid slow convergence.
_afjtafj - Variable in class hex.hglm.HGLMModel.HGLMModelOutput
 
_AfjTAfj - Variable in class hex.hglm.HGLMTask.ComputationEngineTask
 
_afjtarj - Variable in class hex.hglm.HGLMModel.HGLMModelOutput
 
_AfjTArj - Variable in class hex.hglm.HGLMTask.ComputationEngineTask
 
_afjtyj - Variable in class hex.hglm.HGLMModel.HGLMModelOutput
 
_AfjTYj - Variable in class hex.hglm.HGLMTask.ComputationEngineTask
 
_AfjTYjSum - Variable in class hex.hglm.HGLMTask.ComputationEngineTask
 
_AfTAftInv - Variable in class hex.hglm.HGLMTask.ComputationEngineTask
 
_AfTAftInvAfjTYj - Variable in class hex.hglm.HGLMTask.ComputationEngineTask
 
_aggSplitRatios - Variable in class hex.tree.isofor.IsolationForest.VarSplits
 
_algorithm - Variable in class hex.rulefit.RuleFitModel.RuleFitParameters
 
_all_constraints_satisfied - Variable in class hex.glm.GLMModel.GLMOutput
 
_alpha - Variable in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
 
_alpha - Variable in class hex.gam.GAMModel.GAMParameters
 
_alpha - Variable in class hex.glm.GLMModel.GLMParameters
 
_alpha - Variable in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
_alpha_key - Variable in class hex.psvm.PSVMModel.PSVMModelOutput
 
_alphai - Variable in class hex.optimization.OptimizationUtils.ExactLineSearch
 
_alphal - Variable in class hex.optimization.OptimizationUtils.ExactLineSearch
 
_alphar - Variable in class hex.optimization.OptimizationUtils.ExactLineSearch
 
_alphas - Variable in class hex.glm.GLMModel.RegularizationPath
 
_apriori - Variable in class hex.naivebayes.NaiveBayesModel.NaiveBayesOutput
 
_apriori_raw - Variable in class hex.naivebayes.NaiveBayesModel.NaiveBayesOutput
 
_archetypes - Variable in class hex.glrm.GLRMModel.GLRMOutput
 
_archetypes_raw - Variable in class hex.glrm.GLRMModel.GLRMOutput
 
_ArjTAfj - Variable in class hex.hglm.HGLMTask.ComputationEngineTask
 
_arjtarj - Variable in class hex.hglm.HGLMModel.HGLMModelOutput
 
_ArjTArj - Variable in class hex.hglm.HGLMTask.ComputationEngineTask
 
_arjtyj - Variable in class hex.hglm.HGLMModel.HGLMModelOutput
 
_ArjTYj - Variable in class hex.hglm.HGLMTask.ComputationEngineTask
 
_atq - Variable in class hex.util.LinearAlgebraUtils.SMulTask
 
_auc - Variable in class hex.psvm.MetricBuilderPSVM
 
_autoencoder - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
 
_average_activation - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
 
_avg_a - Variable in class hex.deeplearning.Neurons
 
_avg_change_obj - Variable in class hex.glrm.GLRMModel.GLRMOutput
 
_b - Variable in class hex.deeplearning.Neurons
 
_base_model_predictions_keys - Variable in class hex.ensemble.StackedEnsembleModel.StackedEnsembleOutput
 
_base_models - Variable in class hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters
 
_bEA - Variable in class hex.deeplearning.Neurons
 
_best_alpha - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_best_lambda - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_best_lambda_idx - Variable in class hex.glm.GLMModel.GLMOutput
 
_best_model_ids - Variable in class hex.modelselection.ModelSelectionModel.ModelSelectionModelOutput
 
_best_submodel_idx - Variable in class hex.glm.GLMModel.GLMOutput
 
_bestModelPredictors - Variable in class hex.modelselection.ModelSelection
 
_bestR2Values - Variable in class hex.modelselection.ModelSelection
 
_beta - Variable in class hex.hglm.ComputationStateHGLM.ComputationStateSimple
 
_beta - Variable in class hex.hglm.HGLMModel.HGLMModelOutput
 
_beta - Variable in class hex.hglm.HGLMTask.ResidualLLHTask
 
_beta - Variable in class hex.hglm.MetricBuilderHGLM
 
_beta_constraints - Variable in class hex.gam.GAMModel.GAMParameters
 
_beta_constraints - Variable in class hex.glm.GLMModel.GLMParameters
 
_beta_epsilon - Variable in class hex.gam.GAMModel.GAMParameters
 
_beta_epsilon - Variable in class hex.glm.GLMModel.GLMParameters
 
_beta_epsilon - Variable in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
_betaCndCheckpoint - Variable in class hex.glm.GLMModel
 
_betaConstraintsOff - Variable in class hex.gam.GAMModel.GAMParameters
 
_betadiff_var - Variable in class hex.glm.GLMModel.GLMOutput
 
_betaInfo - Variable in class hex.glm.GLM
 
_betaLenPerClass - Variable in class hex.glm.GLM.BetaInfo
 
_betaLS1 - Variable in class hex.optimization.OptimizationUtils.ExactLineSearch
 
_betaLS2 - Variable in class hex.optimization.OptimizationUtils.ExactLineSearch
 
_betweenss - Variable in class hex.kmeans.KMeansModel.KMeansOutput
 
_bics - Variable in class hex.tree.DTree.UndecidedNode
 
_bin - Variable in class hex.tree.DTree.Split
 
_binomial - Variable in class hex.glm.GLMModel.GLMOutput
 
_binomial_double_trees - Variable in class hex.tree.drf.DRFModel.DRFParameters
 
_binomialOpt - Variable in class hex.tree.SharedTreePojoWriter
 
_bins - Variable in class hex.tree.dt.mrtasks.CountBinsSamplesCountsMRTask
 
_binvD - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_bInvD - Variable in class hex.gam.MatrixFrameUtils.GenCSSplineGamOneColumn
 
_blending - Variable in class hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters
 
_bs - Variable in class hex.gam.GAMModel.GAMParameters
 
_bs_sorted - Variable in class hex.gam.GAMModel.GAMParameters
 
_bsv_count - Variable in class hex.psvm.PSVMModel.PSVMModelOutput
 
_build_glm_model - Variable in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
_build_null_model - Variable in class hex.glm.GLMModel.GLMParameters
 
_build_tree_one_node - Variable in class hex.tree.SharedTreeModel.SharedTreeParameters
 
_byte_size - Variable in class hex.tree.TreeStats
 
_c_neg - Variable in class hex.psvm.psvm.PrimalDualIPM.Parms
 
_c_pos - Variable in class hex.psvm.psvm.PrimalDualIPM.Parms
 
_calc_cumhaz - Variable in class hex.coxph.CoxPHModel.CoxPHParameters
 
_calc_like - Variable in class hex.glm.GLMModel.GLMParameters
 
_calib_model - Variable in class hex.tree.SharedTreeModel.SharedTreeOutput
 
_calibrate_model - Variable in class hex.tree.SharedTreeModel.SharedTreeParameters
 
_calibration_frame - Variable in class hex.tree.SharedTreeModel.SharedTreeParameters
 
_calibration_method - Variable in class hex.tree.SharedTreeModel.SharedTreeParameters
 
_catcnt - Variable in class hex.glrm.ModelMetricsGLRM
 
_catcnt - Variable in class hex.glrm.ModelMetricsGLRM.GlrmModelMetricsBuilder
 
_categorical_column_count - Variable in class hex.kmeans.KMeansModel.KMeansOutput
 
_category - Variable in class hex.tree.dt.binning.CategoricalBin
 
_caterr - Variable in class hex.glrm.ModelMetricsGLRM
 
_catLvls - Variable in class hex.DataInfo
 
_catMissing - Variable in class hex.DataInfo
 
_catNAFills - Variable in class hex.anovaglm.GenerateTransformColumns
 
_catOffsets - Variable in class hex.DataInfo
 
_catOffsets - Variable in class hex.glrm.GLRMModel.GLRMOutput
 
_catOffsets - Variable in class hex.pca.PCAModel.PCAOutput
 
_catOffsets - Variable in class hex.svd.SVDModel.SVDOutput
 
_catOffsets - Variable in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsWithBackgroundTask
 
_cats - Variable in class hex.DataInfo
 
_cforest - Variable in class hex.tree.DTreeScorer
 
_checkConstraintConsistency - Variable in class hex.tree.DTree
 
_checkFloatSplits - Variable in class hex.tree.DHistogram
 
_classification_stop - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
The stopping criteria in terms of classification error (1-accuracy) on the training data scoring dataset.
_cluster_size_constraints - Variable in class hex.kmeans.KMeansModel.KMeansParameters
 
_coef - Variable in class hex.coxph.CoxPHModel.CoxPHOutput
 
_coef_names - Variable in class hex.coxph.CoxPHModel.CoxPHOutput
 
_coefficient_names - Variable in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMModelOutput
 
_coefficient_names - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_coefficient_names - Variable in class hex.glm.GLMModel.GLMOutput
 
_coefficient_names - Variable in class hex.glm.GLMModel.RegularizationPath
 
_coefficient_names_no_centering - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_coefficients - Variable in class hex.glm.GLMModel.RegularizationPath
 
_coefficients_std - Variable in class hex.glm.GLMModel.RegularizationPath
 
_coefficients_table - Variable in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMModelOutput
 
_coefficients_table - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_coefficients_table_no_centering - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_coeffNames - Variable in class hex.optimization.OptimizationUtils.ExactLineSearch
 
_coeffs - Variable in class hex.gam.GamSplines.NBSplinesTypeIDerivative
 
_coefIndicesValue - Variable in class hex.glm.ConstrainedGLMUtils.ConstraintsGram
 
_coefNames - Variable in class hex.DataInfo
 
_coefOriginalIndices - Variable in class hex.DataInfo
 
_col - Variable in class hex.tree.DTree.Split
 
_col_major - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
 
_col_sample_rate - Variable in class hex.tree.gbm.GBMModel.GBMParameters
 
_col_sample_rate_change_per_level - Variable in class hex.tree.SharedTreeModel.SharedTreeParameters
 
_col_sample_rate_per_tree - Variable in class hex.tree.SharedTreeModel.SharedTreeParameters
 
_cold_start - Variable in class hex.gam.GAMModel.GAMParameters
 
_cold_start - Variable in class hex.glm.GLMModel.GLMParameters
 
_cols - Variable in class hex.tree.DTree
 
_compressed_svs - Variable in class hex.psvm.PSVMModel.PSVMModelOutput
 
_compute_metrics - Variable in class hex.naivebayes.NaiveBayesModel.NaiveBayesParameters
 
_compute_metrics - Variable in class hex.pca.PCAModel.PCAParameters
 
_compute_p_values - Variable in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
 
_compute_p_values - Variable in class hex.gam.GAMModel.GAMParameters
 
_compute_p_values - Variable in class hex.glm.GLMModel.GLMParameters
 
_compute_p_values - Variable in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
_constantTerms - Variable in class hex.gam.GamSplines.ThinPlateDistanceWithKnots
 
_constraint_alpha - Variable in class hex.glm.GLMModel.GLMParameters
 
_constraint_beta - Variable in class hex.glm.GLMModel.GLMParameters
 
_constraint_c0 - Variable in class hex.glm.GLMModel.GLMParameters
 
_constraint_eta0 - Variable in class hex.glm.GLMModel.GLMParameters
 
_constraint_tau - Variable in class hex.glm.GLMModel.GLMParameters
 
_constraintCoefficientNames - Variable in class hex.glm.GLMModel.GLMOutput
 
_constraints - Variable in class hex.glm.ConstrainedGLMUtils.LinearConstraints
 
_constraintsDerivative - Variable in class hex.glm.ConstrainedGLMUtils.ConstraintsDerivatives
 
_constraintsVal - Variable in class hex.glm.ConstrainedGLMUtils.LinearConstraints
 
_contamination - Variable in class hex.tree.isofor.IsolationForestModel.IsolationForestParameters
 
_count - Variable in class hex.tree.dt.binning.AbstractBin
 
_count0 - Variable in class hex.tree.dt.binning.AbstractBin
 
_counts - Variable in class hex.aggregator.AggregatorModel
 
_countsByClass - Variable in class hex.tree.dt.mrtasks.GetClassCountsMRTask
 
_criterionValue - Variable in class hex.tree.dt.AbstractSplittingRule
 
_cs - Variable in class hex.tree.DTree.UndecidedNode
 
_csGLMState - Variable in class hex.glm.ComputationState
 
_ct - Variable in class hex.tree.TreeVisitor
 
_cubicSplineNum - Variable in class hex.gam.GAMModel
 
_currGradDirIP - Variable in class hex.optimization.OptimizationUtils.ExactLineSearch
 
_d - Variable in class hex.svd.SVDModel.SVDOutput
 
_debugTDispersionOnly - Variable in class hex.glm.GLMModel.GLMParameters
 
_decisionPaths - Variable in class hex.tree.TreeHandler.TreeProperties
 
_defaultAuucThresholds - Variable in class hex.tree.uplift.UpliftDRFModel.UpliftDRFOutput
 
_defaultThreshold - Variable in class hex.generic.GenericModelOutput
 
_depth - Variable in class hex.tree.DTree
 
_depth - Variable in class hex.tree.TreeVisitor
 
_descriptions - Variable in class hex.tree.TreeHandler.TreeProperties
 
_devianceTrain - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_devianceValid - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_diag - Variable in class hex.gram.Gram
 
_diag - Variable in class hex.gram.Gram.Cholesky
 
_diagAdded - Variable in class hex.gram.Gram
 
_diagN - Variable in class hex.gram.Gram
 
_diagnostics - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
Gather diagnostics for hidden layers, such as mean and RMS values of learning rate, momentum, weights and biases.
_did_split - Variable in class hex.tree.SharedTree.ScoreBuildOneTree
 
_dinfo - Variable in class hex.FrameTask
 
_dinfo - Variable in class hex.FrameTask2
 
_dinfo - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_dinfo - Variable in class hex.gram.Gram.OuterGramTask
 
_dinfo - Variable in class hex.hglm.HGLMModel.HGLMModelOutput
 
_direction - Variable in class hex.optimization.OptimizationUtils.ExactLineSearch
 
_disable_algo_check - Variable in class hex.generic.GenericModelParameters
Skip the check for white-listed algorithms, this allows load any MOJO.
_disable_training_metrics - Variable in class hex.psvm.PSVMModel.PSVMParameters
 
_disable_training_metrics - Variable in class hex.tree.isoforextended.ExtendedIsolationForestModel.ExtendedIsolationForestParameters
Disable calculating training metrics (expensive on large datasets).
_dispersion_epsilon - Variable in class hex.glm.GLMModel.GLMParameters
 
_dispersion_estimated - Variable in class hex.glm.GLMModel.GLMParameters
 
_dispersion_learning_rate - Variable in class hex.glm.GLMModel.GLMParameters
 
_dispersion_parameter_method - Variable in class hex.glm.GLMModel.GLMParameters
 
_dist - Variable in class hex.tree.Constraints
 
_domains - Variable in class hex.tree.CompressedForest
 
_domains - Variable in class hex.tree.CompressedForest.LocalCompressedForest
 
_dropout - Variable in class hex.deeplearning.Neurons
For Dropout training
_e - Variable in class hex.deeplearning.Neurons
 
_early_stopping - Variable in class hex.gam.GAMModel.GAMParameters
 
_early_stopping - Variable in class hex.glm.GLMModel.GLMParameters
 
_eigenvectors - Variable in class hex.glrm.GLRMModel.GLRMOutput
 
_eigenvectors - Variable in class hex.pca.PCAModel.PCAOutput
 
_eigenvectors_raw - Variable in class hex.glrm.GLRMModel.GLRMOutput
 
_eigenvectors_raw - Variable in class hex.pca.PCAModel.PCAOutput
 
_elastic_averaging - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
 
_elastic_averaging_moving_rate - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
 
_elastic_averaging_regularization - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
 
_em_epsilon - Variable in class hex.hglm.HGLMModel.HGLMParameters
 
_encoding - Variable in class hex.tree.SharedTreePojoWriter
 
_epochs - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
The number of passes over the training dataset to be carried out.
_epochs - Variable in class hex.word2vec.Word2VecModel.Word2VecOutput
 
_epochs - Variable in class hex.word2vec.Word2VecModel.Word2VecParameters
 
_EPS - Static variable in class hex.glm.GLMModel
 
_eps_prob - Variable in class hex.naivebayes.NaiveBayesModel.NaiveBayesParameters
 
_eps_sdev - Variable in class hex.naivebayes.NaiveBayesModel.NaiveBayesParameters
 
_epsilon - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
The second of two hyper parameters for adaptive learning rate (ADADELTA).
_epsilonkCSSquare - Variable in class hex.glm.ConstrainedGLMUtils.ConstraintGLMStates
 
_equalityConstraintsBeta - Variable in class hex.glm.GLMModel.GLMOutput
 
_equalityConstraintsLinear - Variable in class hex.glm.GLMModel.GLMOutput
 
_estimate_k - Variable in class hex.kmeans.KMeansModel.KMeansParameters
 
_exemplar_assignment_vec_key - Variable in class hex.aggregator.AggregatorModel
 
_exemplars - Variable in class hex.aggregator.AggregatorModel
 
_exp_coef - Variable in class hex.coxph.CoxPHModel.CoxPHOutput
 
_exp_neg_coef - Variable in class hex.coxph.CoxPHModel.CoxPHOutput
 
_expand - Variable in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsWithBackgroundTask
 
_expand_user_y - Variable in class hex.glrm.GLRMModel.GLRMParameters
 
_explained_deviance_train - Variable in class hex.glm.GLMModel.RegularizationPath
 
_explained_deviance_valid - Variable in class hex.glm.GLMModel.RegularizationPath
 
_export_weights_and_biases - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
 
_expose_constraints - Variable in class hex.glm.GLMModel.GLMParameters
 
_extension_level - Variable in class hex.tree.isoforextended.ExtendedIsolationForestModel.ExtendedIsolationForestParameters
Maximum is N - 1 (N = numCols).
_fact_threshold - Variable in class hex.psvm.PSVMModel.PSVMParameters
 
_family - Variable in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
 
_family - Variable in class hex.gam.GAMModel.GAMParameters
 
_family - Variable in class hex.glm.GLMModel.GLMParameters
 
_family - Variable in class hex.glm.GLMModel.GLMWeightsFun
 
_family - Variable in class hex.hglm.HGLMModel.HGLMParameters
 
_fast_mode - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
Enable fast mode (minor approximation in back-propagation), should not affect results significantly.
_feasible_threshold - Variable in class hex.psvm.psvm.PrimalDualIPM.Parms
 
_feasible_threshold - Variable in class hex.psvm.PSVMModel.PSVMParameters
 
_featureIndex - Variable in class hex.tree.dt.AbstractSplittingRule
 
_features - Variable in class hex.tree.TreeHandler.TreeProperties
 
_featureSplit - Variable in class hex.tree.dt.mrtasks.CountBinsSamplesCountsMRTask
 
_finalScoring - Variable in class hex.glm.GLMModel
 
_first_diag - Variable in class hex.gam.MatrixFrameUtils.TriDiagonalMatrix
 
_fix_dispersion_parameter - Variable in class hex.glm.GLMModel.GLMParameters
 
_fix_tweedie_variance_power - Variable in class hex.glm.GLMModel.GLMParameters
 
_fixed_coefficient_names - Variable in class hex.hglm.HGLMModel.HGLMModelOutput
 
_fold - Variable in class hex.DataInfo
 
_force_load_balance - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
Increase training speed on small datasets by splitting it into many chunks to allow utilization of all cores.
_forest - Variable in class hex.tree.DTreeScorer
 
_frame2DProduce - Variable in class hex.gram.Gram
 
_fullInfo - Variable in class hex.glm.ComputationState.GLMSubsetGinfo
 
_gam_columns - Variable in class hex.gam.GAMModel.GAMParameters
 
_gam_columns_sorted - Variable in class hex.gam.GAMModel.GAMParameters
 
_gam_knot_column_names - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_gam_transformed_center_key - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_gamColIndices - Variable in class hex.glm.GLM
 
_gamColMeans - Variable in class hex.gam.GAMModel
 
_gamColMeansRaw - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_gamColNames - Variable in class hex.gam.GAMModel
 
_gamColNames - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_gamColnames - Variable in class hex.glm.GLM
 
_gamColNamesNoCentering - Variable in class hex.gam.GAMModel
 
_gamCols2Add - Variable in class hex.gam.MatrixFrameUtils.AddCSGamColumns
 
_gamCols2Add - Variable in class hex.gam.MatrixFrameUtils.AddTPKnotsGamColumns
 
_gamFrameKeysCenter - Variable in class hex.gam.GAMModel
 
_gamFrameKeysCenter - Variable in class hex.gam.MatrixFrameUtils.AddTPKnotsGamColumns
 
_gamma - Variable in class hex.psvm.PSVMModel.PSVMParameters
 
_gamma_x - Variable in class hex.glrm.GLRMModel.GLRMParameters
 
_gamma_y - Variable in class hex.glrm.GLRMModel.GLRMParameters
 
_gamPredSize - Variable in class hex.gam.GAMModel
 
_gamPredSize - Variable in class hex.gam.GAMModel.GAMParameters
 
_gamTransformedTrainCenter - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_gen_syn_data - Variable in class hex.hglm.HGLMModel.HGLMParameters
 
_generate_scoring_history - Variable in class hex.gam.GAMModel.GAMParameters
 
_generate_scoring_history - Variable in class hex.glm.GLMModel.GLMParameters
 
_generate_variable_inflation_factors - Variable in class hex.glm.GLMModel.GLMParameters
 
_generatedWeights - Variable in class hex.glm.GLM
 
_ginfoOriginal - Variable in class hex.optimization.OptimizationUtils.ExactLineSearch
 
_glm_best_lamda_value - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_glm_cv_scoring_history - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_glm_dispersion - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_glm_model_summary - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_glm_pvalues - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_glm_scoring_history - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_glm_stdErr - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_glm_training_metrics - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_glm_validation_metrics - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_glm_vcov - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_glm_zvalues - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_glmNFolds - Variable in class hex.gam.GAM
 
_glmNFolds - Variable in class hex.modelselection.ModelSelection
 
_glmType - Variable in class hex.glm.GLMModel.GLMParameters
 
_globalSplitPointsKey - Variable in class hex.tree.DHistogram
 
_grad - Variable in class hex.glm.ComputationState.GramGrad
 
_gradient - Variable in class hex.glm.GLMTask.GLMMultinomialGradientBaseTask
 
_gradient - Variable in class hex.optimization.OptimizationUtils.GradientInfo
 
_gradient_epsilon - Variable in class hex.gam.GAMModel.GAMParameters
 
_gradient_epsilon - Variable in class hex.glm.GLMModel.GLMParameters
 
_gradient_epsilon - Variable in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
_gram - Variable in class hex.glm.ComputationState.GramGrad
 
_gram - Variable in class hex.glm.GLMTask.GLMIterationTask
 
_gram - Variable in class hex.glm.GLMTask.LSTask
 
_gram - Variable in class hex.gram.Gram.GramTask
 
_gram - Variable in class hex.gram.Gram.OuterGramTask
 
_group_column - Variable in class hex.hglm.HGLMModel.HGLMParameters
 
_group_column_names - Variable in class hex.hglm.HGLMModel.HGLMModelOutput
 
_hasMetalearnerParams - Variable in class hex.ensemble.Metalearner
 
_hidden - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
The number and size of each hidden layer in the model.
_hidden_dropout_ratios - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
A fraction of the inputs for each hidden layer to be omitted from training in order to improve generalization.
_highest_interaction_term - Variable in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
 
_histo_monitor_class - Variable in class hex.tree.SharedTree.SharedTreeDebugParams
 
_histogram_type - Variable in class hex.tree.SharedTreeModel.SharedTreeParameters
 
_history_average_SEE - Variable in class hex.svd.SVDModel.SVDOutput
 
_history_eigenVectorIndex - Variable in class hex.svd.SVDModel.SVDOutput
 
_history_err - Variable in class hex.svd.SVDModel.SVDOutput
 
_history_objective - Variable in class hex.glrm.GLRMModel.GLRMOutput
 
_history_step_size - Variable in class hex.glrm.GLRMModel.GLRMOutput
 
_history_withinss - Variable in class hex.kmeans.KMeansModel.KMeansOutput
 
_histoType - Variable in class hex.tree.DHistogram
 
_hj - Variable in class hex.gam.GamSplines.CubicRegressionSplines
 
_hs - Variable in class hex.tree.DTree.UndecidedNode
 
_hyper_param - Variable in class hex.psvm.PSVMModel.PSVMParameters
 
_icc - Variable in class hex.hglm.HGLMModel.HGLMModelOutput
 
_ics - Variable in class hex.tree.SharedTree
 
_importance - Variable in class hex.glrm.GLRMModel.GLRMOutput
 
_importance - Variable in class hex.pca.PCAModel.PCAOutput
 
_improvPerVar - Variable in class hex.tree.SharedTree
 
_impute_missing - Variable in class hex.pca.PCAModel.PCAParameters
 
_impute_missing - Variable in class hex.svd.SVDModel.SVDParameters
 
_impute_original - Variable in class hex.glrm.GLRMModel.GLRMParameters
 
_impute_original - Variable in class hex.glrm.ModelMetricsGLRM.GlrmModelMetricsBuilder
 
_imputeMissing - Variable in class hex.anovaglm.GenerateTransformColumns
 
_imputeMissing - Variable in class hex.DataInfo
 
_in_training_checkpoints_dir - Variable in class hex.tree.SharedTreeModel.SharedTreeParameters
 
_in_training_checkpoints_tree_interval - Variable in class hex.tree.SharedTreeModel.SharedTreeParameters
 
_index - Variable in class hex.deeplearning.Neurons
 
_influence - Variable in class hex.glm.GLMModel.GLMParameters
 
_influence - Variable in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
_init - Variable in class hex.coxph.CoxPHModel.CoxPHParameters
 
_init - Variable in class hex.glrm.GLRMModel.GLRMParameters
 
_init - Variable in class hex.kmeans.KMeansModel.KMeansParameters
 
_init_dispersion_parameter - Variable in class hex.glm.GLMModel.GLMParameters
 
_init_f - Variable in class hex.tree.SharedTreeModel.SharedTreeOutput
InitF value (for zero trees) f0 = mean(yi) for gaussian f0 = log(yi/1-yi) for bernoulli For GBM bernoulli, the initial prediction for 0 trees is p = 1/(1+exp(-f0)) From this, the mse for 0 trees (null model) can be computed as follows: mean((yi-p)^2)
_init_key - Variable in class hex.glrm.GLRMModel.GLRMOutput
 
_init_learning_rate - Variable in class hex.word2vec.Word2VecModel.Word2VecParameters
 
_init_optimal_glm - Variable in class hex.glm.GLMModel.GLMParameters
 
_init_step_size - Variable in class hex.glrm.GLRMModel.GLRMParameters
 
_initChunks - Variable in class hex.gam.GamSplines.ThinPlateRegressionUtils.ScaleTPPenalty
 
_initChunks - Variable in class hex.gam.MatrixFrameUtils.GenCSSplineGamOneColumn
 
_initConstraintMatrix - Variable in class hex.glm.GLMModel.GLMOutput
 
_initial_biases - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
Frame keys for initial bias vectors
_initial_fixed_effects - Variable in class hex.hglm.HGLMModel.HGLMParameters
 
_initial_random_effects - Variable in class hex.hglm.HGLMModel.HGLMParameters
 
_initial_score_interval - Variable in class hex.tree.isoforextended.ExtendedIsolationForestModel.ExtendedIsolationForestParameters
For _initial_score_interval milliseconds - score each iteration of the algorithm.
_initial_score_interval - Variable in class hex.tree.SharedTreeModel.SharedTreeParameters
 
_initial_t_matrix - Variable in class hex.hglm.HGLMModel.HGLMParameters
 
_initial_weight_distribution - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
The distribution from which initial weights are to be drawn.
_initial_weight_scale - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
The scale of the distribution function for Uniform or Normal distributions.
_initial_weights - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
Frame keys for initial weight matrices
_initialPrediction - Variable in class hex.tree.SharedTree
 
_initNA - Variable in class hex.tree.DHistogram
 
_input - Variable in class hex.deeplearning.Neurons
 
_input_dropout_ratio - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
A fraction of the features for each training row to be omitted from training in order to improve generalization (dimension sampling).
_interaction_constraints - Variable in class hex.tree.gbm.GBMModel.GBMParameters
 
_interaction_pairs - Variable in class hex.coxph.CoxPHModel.CoxPHParameters
 
_interaction_pairs - Variable in class hex.gam.GAMModel.GAMParameters
 
_interaction_pairs - Variable in class hex.glm.GLMModel.GLMParameters
 
_interactions - Variable in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
 
_interactions - Variable in class hex.coxph.CoxPHModel.CoxPHParameters
 
_interactions - Variable in class hex.DataInfo
 
_interactions - Variable in class hex.gam.GAMModel.GAMParameters
 
_interactions - Variable in class hex.glm.GLMModel.GLMParameters
 
_interactions - Variable in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
_interactions_only - Variable in class hex.coxph.CoxPHModel.CoxPHParameters
 
_interactionSpec - Variable in class hex.DataInfo
 
_interactionVecs - Variable in class hex.DataInfo
 
_intercept - Variable in class hex.DataInfo
 
_intercept - Variable in class hex.gam.GAMModel.GAMParameters
 
_intercept - Variable in class hex.glm.GLMModel.GLMParameters
 
_intercept - Variable in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
_intercept - Variable in class hex.rulefit.RuleFitModel.RuleFitOutput
 
_intLvls - Variable in class hex.DataInfo
 
_intOpt - Variable in class hex.tree.DHistogram
 
_invTheta - Variable in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
 
_invTheta - Variable in class hex.glm.GLMModel.GLMParameters
 
_isInt - Variable in class hex.tree.DHistogram
 
_iSplineNum - Variable in class hex.gam.GAMModel
 
_iterations - Variable in class hex.glrm.GLRMModel.GLRMOutput
 
_iterations - Variable in class hex.hglm.HGLMModel.HGLMModelOutput
 
_iterations - Variable in class hex.kmeans.KMeansModel.KMeansOutput
 
_iterations - Variable in class hex.svd.SVDModel.SVDOutput
 
_iTreeKeys - Variable in class hex.tree.isoforextended.ExtendedIsolationForestModel.ExtendedIsolationForestOutput
 
_job - Variable in class hex.ensemble.Metalearner
 
_jobKey - Variable in class hex.FrameTask
 
_k - Variable in class hex.aggregator.AggregatorModel.AggregatorParameters
 
_k - Variable in class hex.glrm.GLRMModel.GLRMParameters
 
_k - Variable in class hex.kmeans.KMeansModel.KMeansOutput
 
_k - Variable in class hex.pca.PCAModel.PCAParameters
 
_keep_base_model_predictions - Variable in class hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters
 
_keep_gam_cols - Variable in class hex.gam.GAMModel.GAMParameters
 
_keep_levelone_frame - Variable in class hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters
 
_keep_orig_histo_precision - Variable in class hex.tree.SharedTree.SharedTreeDebugParams
 
_keep_u - Variable in class hex.svd.SVDModel.SVDParameters
 
_keepBetaDiffVar - Variable in class hex.glm.GLMModel.GLMParameters
 
_kernel_type - Variable in class hex.psvm.PSVMModel.PSVMParameters
 
_knot_ids - Variable in class hex.gam.GAMModel.GAMParameters
 
_knot_locations - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_knots - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_knots - Variable in class hex.gam.GamSplines.CubicRegressionSplines
 
_knots - Variable in class hex.gam.MatrixFrameUtils.GenCSSplineGamOneColumn
 
_l1 - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
A regularization method that constrains the absolute value of the weights and has the net effect of dropping some weights (setting them to zero) from a model to reduce complexity and avoid overfitting.
_l2 - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
A regularization method that constrains the sum of the squared weights.
_lambda - Variable in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
 
_lambda - Variable in class hex.gam.GAMModel.GAMParameters
 
_lambda - Variable in class hex.glm.GLMModel.GLMParameters
 
_lambda - Variable in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
_lambda - Variable in class hex.rulefit.RuleFitModel.RuleFitParameters
 
_lambda_1se - Variable in class hex.glm.GLMModel.GLMOutput
 
_lambda_max - Variable in class hex.glm.GLMModel
 
_lambda_max - Variable in class hex.glm.GLMModel.GLMOutput
 
_lambda_min - Variable in class hex.glm.GLMModel.GLMOutput
 
_lambda_min_ratio - Variable in class hex.gam.GAMModel.GAMParameters
 
_lambda_min_ratio - Variable in class hex.glm.GLMModel.GLMParameters
 
_lambda_search - Variable in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
 
_lambda_search - Variable in class hex.gam.GAMModel.GAMParameters
 
_lambda_search - Variable in class hex.glm.GLMModel.GLMParameters
 
_lambda_search - Variable in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
_lambdaLS - Variable in class hex.optimization.OptimizationUtils.ExactLineSearch
 
_lambdas - Variable in class hex.glm.GLMModel.RegularizationPath
 
_laplace - Variable in class hex.naivebayes.NaiveBayesModel.NaiveBayesParameters
 
_lastScoredTree - Variable in class hex.tree.SharedTree
 
_leafNodeAssignments - Variable in class hex.tree.TreeHandler.TreeProperties
 
_learn_rate - Variable in class hex.adaboost.AdaBoostModel.AdaBoostParameters
Specify how quickly the training converge.
_learn_rate - Variable in class hex.tree.gbm.GBMModel.GBMParameters
 
_learn_rate_annealing - Variable in class hex.tree.gbm.GBMModel.GBMParameters
 
_leaves - Variable in class hex.tree.DTree
 
_leftChildren - Variable in class hex.tree.TreeHandler.TreeProperties
 
_leftCount - Variable in class hex.tree.dt.binning.SplitStatistics
 
_leftCount0 - Variable in class hex.tree.dt.binning.SplitStatistics
 
_len - Variable in class hex.tree.DTree
 
_lessThanEqualToConstraintsBeta - Variable in class hex.glm.GLMModel.GLMOutput
 
_lessThanEqualToConstraintsLinear - Variable in class hex.glm.GLMModel.GLMOutput
 
_levelone_frame_id - Variable in class hex.ensemble.StackedEnsembleModel.StackedEnsembleOutput
 
_levelOneTrainingFrame - Variable in class hex.ensemble.Metalearner
 
_levelOneValidationFrame - Variable in class hex.ensemble.Metalearner
 
_levels - Variable in class hex.naivebayes.NaiveBayesModel.NaiveBayesOutput
 
_likelihood - Variable in class hex.glm.GLMTask.GLMIterationTask
 
_limitNumSamplesForSplit - Variable in class hex.tree.dt.DTModel.DTOutput
 
_linear_constraint_states - Variable in class hex.glm.GLMModel.GLMOutput
 
_linear_constraints - Variable in class hex.glm.GLMModel.GLMParameters
 
_linear_constraints_table - Variable in class hex.glm.GLMModel.GLMOutput
 
_link - Variable in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
 
_link - Variable in class hex.gam.GAMModel.GAMParameters
 
_link - Variable in class hex.glm.GLMModel.GLMParameters
 
_link - Variable in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
_loading_name - Variable in class hex.glrm.GLRMModel.GLRMParameters
Deprecated.
_log_likelihood - Variable in class hex.hglm.HGLMModel.HGLMModelOutput
 
_log_likelihood_valid - Variable in class hex.hglm.HGLMModel.HGLMModelOutput
 
_loss - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
The loss (error) function to be minimized by the model.
_loss - Variable in class hex.glrm.GLRMModel.GLRMParameters
 
_loss_by_col - Variable in class hex.glrm.GLRMModel.GLRMParameters
 
_loss_by_col_idx - Variable in class hex.glrm.GLRMModel.GLRMParameters
 
_lossFunc - Variable in class hex.glrm.GLRMModel.GLRMOutput
 
_lre_min - Variable in class hex.coxph.CoxPHModel.CoxPHParameters
 
_lsNeeded - Variable in class hex.glm.ComputationState
 
_m - Variable in class hex.gam.GAMModel
 
_M - Variable in class hex.gam.GAMModel
 
_m - Variable in class hex.gam.GAMModel.GAMParameters
 
_M - Variable in class hex.gam.GAMModel.GAMParameters
 
_mapping_frame - Variable in class hex.aggregator.AggregatorModel.AggregatorOutput
 
_mask - Variable in class hex.tree.dt.CategoricalFeatureLimits
 
_matches - Variable in class hex.grep.GrepModel.GrepOutput
 
_max - Variable in class hex.tree.dt.binning.NumericBin
 
_max - Variable in class hex.tree.dt.NumericFeatureLimits
 
_max_abs_leafnode_pred - Variable in class hex.tree.gbm.GBMModel.GBMParameters
 
_max_active_predictors - Variable in class hex.gam.GAMModel.GAMParameters
 
_max_active_predictors - Variable in class hex.glm.GLMModel.GLMParameters
 
_max_categorical_features - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
Max.
_max_depth - Variable in class hex.tree.dt.DTModel.DTOutput
 
_max_depth - Variable in class hex.tree.dt.DTModel.DTParameters
Depth (max depth) of the tree
_max_depth - Variable in class hex.tree.SharedTreeModel.SharedTreeParameters
 
_max_depth - Variable in class hex.tree.TreeStats
 
_max_iter - Variable in class hex.psvm.psvm.PrimalDualIPM.Parms
 
_max_iterations - Variable in class hex.coxph.CoxPHModel.CoxPHParameters
 
_max_iterations - Variable in class hex.gam.GAMModel.GAMParameters
 
_max_iterations - Variable in class hex.glm.GLMModel.GLMParameters
 
_max_iterations - Variable in class hex.glrm.GLRMModel.GLRMParameters
 
_max_iterations - Variable in class hex.hglm.HGLMModel.HGLMParameters
 
_max_iterations - Variable in class hex.kmeans.KMeansModel.KMeansParameters
 
_max_iterations - Variable in class hex.pca.PCAModel.PCAParameters
 
_max_iterations - Variable in class hex.psvm.PSVMModel.PSVMParameters
 
_max_iterations - Variable in class hex.svd.SVDModel.SVDParameters
 
_max_iterations_dispersion - Variable in class hex.glm.GLMModel.GLMParameters
 
_max_leaves - Variable in class hex.tree.TreeStats
 
_max_num_rules - Variable in class hex.rulefit.RuleFitModel.RuleFitParameters
 
_max_path_length - Variable in class hex.tree.isofor.IsolationForestModel.IsolationForestOutput
 
_max_predictor_number - Variable in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
_max_rule_length - Variable in class hex.rulefit.RuleFitModel.RuleFitParameters
 
_max_series_index - Variable in class hex.glm.GLMModel.GLMParameters
 
_max_updates - Variable in class hex.glrm.GLRMModel.GLRMParameters
 
_max_w2 - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
A maximum on the sum of the squared incoming weights into any one neuron.
_max_x - Variable in class hex.isotonic.IsotonicRegressionModel.IsotonicRegressionOutput
 
_maxDepth - Variable in class hex.tree.isoforextended.isolationtree.IsolationTreeStats
 
_maxEx - Variable in class hex.tree.DHistogram
 
_maxIn - Variable in class hex.tree.DHistogram
 
_maxIndex - Variable in class hex.util.LinearAlgebraUtils.FindMaxIndex
 
_maxIsolated - Variable in class hex.tree.isoforextended.isolationtree.IsolationTreeStats
 
_maxIteration - Variable in class hex.optimization.OptimizationUtils.ExactLineSearch
 
_maxLeaves - Variable in class hex.tree.isoforextended.isolationtree.IsolationTreeStats
 
_maxNotIsolated - Variable in class hex.tree.isoforextended.isolationtree.IsolationTreeStats
 
_maxRuntimeSecs - Variable in class hex.ensemble.Metalearner
 
_maxZeroSplits - Variable in class hex.tree.isoforextended.isolationtree.IsolationTreeStats
 
_mean_depth - Variable in class hex.tree.TreeStats
 
_mean_leaves - Variable in class hex.tree.TreeStats
 
_mean_normalized_score - Variable in class hex.tree.isofor.ModelMetricsAnomaly
Mean normalized score should be (but not necessary is) a number between 0 and 1.
_mean_score - Variable in class hex.tree.isofor.ModelMetricsAnomaly
The raw number that an algorithm is using to count final anomaly score.
_meanDepth - Variable in class hex.tree.isoforextended.isolationtree.IsolationTreeStats
 
_meanIsolated - Variable in class hex.tree.isoforextended.isolationtree.IsolationTreeStats
 
_meanLeaves - Variable in class hex.tree.isoforextended.isolationtree.IsolationTreeStats
 
_meanNotIsolated - Variable in class hex.tree.isoforextended.isolationtree.IsolationTreeStats
 
_meanZeroSplits - Variable in class hex.tree.isoforextended.isolationtree.IsolationTreeStats
 
_metalearner - Variable in class hex.ensemble.StackedEnsembleModel.StackedEnsembleOutput
 
_metalearner_algorithm - Variable in class hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters
 
_metalearner_fold_assignment - Variable in class hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters
 
_metalearner_fold_column - Variable in class hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters
 
_metalearner_nfolds - Variable in class hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters
 
_metalearner_parameters - Variable in class hex.ensemble.Metalearner
 
_metalearner_parameters - Variable in class hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters
 
_metalearner_params - Variable in class hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters
 
_metalearner_transform - Variable in class hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters
 
_metalearnerJob - Variable in class hex.ensemble.Metalearner
 
_metalearnerKey - Variable in class hex.ensemble.Metalearner
 
_metalearnerSeed - Variable in class hex.ensemble.Metalearner
 
_method - Variable in class hex.glm.TweedieEstimator
 
_method - Variable in class hex.hglm.HGLMModel.HGLMParameters
 
_min - Variable in class hex.tree.DHistogram
 
_min - Variable in class hex.tree.dt.binning.NumericBin
 
_min - Variable in class hex.tree.dt.NumericFeatureLimits
 
_min2 - Variable in class hex.tree.DHistogram
 
_min_depth - Variable in class hex.tree.TreeStats
 
_min_leaves - Variable in class hex.tree.TreeStats
 
_min_path_length - Variable in class hex.tree.isofor.IsolationForestModel.IsolationForestOutput
 
_min_predictor_number - Variable in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
_min_prob - Variable in class hex.naivebayes.NaiveBayesModel.NaiveBayesParameters
 
_min_rows - Variable in class hex.tree.dt.DTModel.DTParameters
 
_min_rows - Variable in class hex.tree.SharedTreeModel.SharedTreeParameters
 
_min_rule_length - Variable in class hex.rulefit.RuleFitModel.RuleFitParameters
 
_min_sdev - Variable in class hex.naivebayes.NaiveBayesModel.NaiveBayesParameters
 
_min_split_improvement - Variable in class hex.tree.SharedTreeModel.SharedTreeParameters
 
_min_step_size - Variable in class hex.glrm.GLRMModel.GLRMParameters
 
_min_word_freq - Variable in class hex.word2vec.Word2VecModel.Word2VecParameters
 
_min_x - Variable in class hex.isotonic.IsotonicRegressionModel.IsotonicRegressionOutput
 
_minDepth - Variable in class hex.tree.isoforextended.isolationtree.IsolationTreeStats
 
_mini_batch_size - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
 
_minInt - Variable in class hex.tree.DHistogram
 
_minIsolated - Variable in class hex.tree.isoforextended.isolationtree.IsolationTreeStats
 
_minLeaves - Variable in class hex.tree.isoforextended.isolationtree.IsolationTreeStats
 
_minNotIsolated - Variable in class hex.tree.isoforextended.isolationtree.IsolationTreeStats
 
_minSplitImprovement - Variable in class hex.tree.DHistogram
 
_minZeroSplits - Variable in class hex.tree.isoforextended.isolationtree.IsolationTreeStats
 
_miscls - Variable in class hex.glrm.ModelMetricsGLRM.GlrmModelMetricsBuilder
 
_missing_values_handling - Variable in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
 
_missing_values_handling - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
 
_missing_values_handling - Variable in class hex.gam.GAMModel.GAMParameters
 
_missing_values_handling - Variable in class hex.glm.GLMModel.GLMParameters
 
_missing_values_handling - Variable in class hex.hglm.HGLMModel.HGLMParameters
 
_missing_values_handling - Variable in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
_mode - Variable in class hex.modelselection.ModelSelectionModel.ModelSelectionModelOutput
 
_mode - Variable in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
_model - Variable in class hex.ensemble.Metalearner
 
_model - Variable in class hex.ensemble.StackedEnsemble
 
_model - Variable in class hex.tree.SharedTree
 
_model - Variable in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsTask
 
_model - Variable in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsWithBackgroundTask
 
_model_beta - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_model_beta_multinomial - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_model_beta_multinomial_no_centering - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_model_beta_no_centering - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_model_key - Variable in class hex.generic.GenericModelParameters
Key to the file with embedded model
_model_type - Variable in class hex.rulefit.RuleFitModel.RuleFitParameters
 
_modelCategory - Variable in class hex.generic.GenericModelOutput
 
_modelKey - Variable in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsTask
 
_modelKey - Variable in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsWithBackgroundTask
 
_modelKey - Variable in class hex.tree.SharedTreePojoWriter
 
_modelParameters - Variable in class hex.generic.GenericModelParameters
Generic model parameters - might contain any parameters based on the state of the model in the training phase.
_momentum_ramp - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
The momentum_ramp parameter controls the amount of learning for which momentum increases (assuming momentum_stable is larger than momentum_start).
_momentum_stable - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
The momentum_stable parameter controls the final momentum value reached after momentum_ramp training samples.
_momentum_start - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
The momentum_start parameter controls the amount of momentum at the beginning of training.
_monotone_constraints - Variable in class hex.tree.gbm.GBMModel.GBMParameters
 
_mSplineNum - Variable in class hex.gam.GAMModel
 
_mtries - Variable in class hex.tree.drf.DRFModel.DRFParameters
 
_mtries - Variable in class hex.tree.isofor.IsolationForestModel.IsolationForestParameters
 
_mtries - Variable in class hex.tree.uplift.UpliftDRFModel.UpliftDRFParameters
 
_mtry - Variable in class hex.tree.SharedTree
 
_mtry_per_tree - Variable in class hex.tree.SharedTree
 
_mtrys - Variable in class hex.tree.DTree
 
_mtrys_per_tree - Variable in class hex.tree.DTree
 
_mu_factor - Variable in class hex.psvm.psvm.PrimalDualIPM.Parms
 
_mu_factor - Variable in class hex.psvm.PSVMModel.PSVMParameters
 
_multi_loss - Variable in class hex.glrm.GLRMModel.GLRMParameters
 
_multinode_mode - Variable in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
_multinomial - Variable in class hex.glm.GLMModel.GLMOutput
 
_name - Variable in class hex.tree.DHistogram
 
_names_expanded - Variable in class hex.glrm.GLRMModel.GLRMOutput
 
_names_expanded - Variable in class hex.svd.SVDModel.SVDOutput
 
_nas - Variable in class hex.tree.TreeHandler.TreeProperties
 
_nBetas - Variable in class hex.glm.GLM.BetaInfo
 
_nbin - Variable in class hex.tree.DHistogram
 
_nbins - Variable in class hex.tree.SharedTreeModel.SharedTreeParameters
 
_nbins_cats - Variable in class hex.tree.SharedTreeModel.SharedTreeParameters
 
_nbins_top_level - Variable in class hex.tree.SharedTreeModel.SharedTreeParameters
 
_ncats - Variable in class hex.glrm.GLRMModel.GLRMOutput
 
_ncats - Variable in class hex.naivebayes.NaiveBayesModel.NaiveBayesOutput
 
_ncats - Variable in class hex.pca.PCAModel.PCAOutput
 
_ncats - Variable in class hex.svd.SVDModel.SVDOutput
 
_nclass - Variable in class hex.gam.GAMModel
 
_nclass - Variable in class hex.tree.DTreeScorer
 
_ncols - Variable in class hex.tree.DTreeScorer
 
_ncols - Variable in class hex.tree.SharedTree
 
_negative_weight - Variable in class hex.psvm.PSVMModel.PSVMParameters
 
_nesterov_accelerated_gradient - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
The Nesterov accelerated gradient descent method is a modification to traditional gradient descent for convex functions.
_newBeta - Variable in class hex.optimization.OptimizationUtils.ExactLineSearch
 
_newColNumber - Variable in class hex.anovaglm.GenerateTransformColumns
 
_nfeatures - Variable in class hex.generic.GenericModelOutput
 
_nfolds - Variable in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
 
_nfolds - Variable in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
_nid - Variable in class hex.tree.DTree.Node
 
_nids - Variable in class hex.tree.DTree.DecidedNode
 
_nlambdas - Variable in class hex.gam.GAMModel.GAMParameters
 
_nlambdas - Variable in class hex.glm.GLMModel.GLMParameters
 
_nlearners - Variable in class hex.adaboost.AdaBoostModel.AdaBoostParameters
Number of weak learners to train.
_nnums - Variable in class hex.glrm.GLRMModel.GLRMOutput
 
_nnums - Variable in class hex.pca.PCAModel.PCAOutput
 
_nnums - Variable in class hex.svd.SVDModel.SVDOutput
 
_nobs - Variable in class hex.gam.GAMModel
 
_nobs - Variable in class hex.glm.GLMModel
 
_nobs - Variable in class hex.glrm.GLRMModel.GLRMOutput
 
_nobs - Variable in class hex.gram.Gram.GramTask
 
_nobs - Variable in class hex.gram.Gram.OuterGramTask
 
_nobs - Variable in class hex.hglm.HGLMModel.HGLMModelOutput
 
_nobs - Variable in class hex.hglm.MetricBuilderHGLM
 
_nobs - Variable in class hex.isotonic.IsotonicRegressionModel.IsotonicRegressionOutput
 
_nobs - Variable in class hex.pca.PCAModel.PCAOutput
 
_nobs - Variable in class hex.svd.SVDModel.SVDOutput
 
_nobs_valid - Variable in class hex.hglm.HGLMModel.HGLMModelOutput
 
_nodes - Variable in class hex.tree.TreeVisitor
 
_non_negative - Variable in class hex.gam.GAMModel.GAMParameters
 
_non_negative - Variable in class hex.glm.GLMModel.GLMParameters
 
_noReg - Variable in class hex.glm.ComputationState
 
_norm_model - Variable in class hex.word2vec.Word2VecModel.Word2VecParameters
 
_normMul - Variable in class hex.DataInfo
 
_normMul - Variable in class hex.glrm.GLRMModel.GLRMOutput
 
_normMul - Variable in class hex.pca.PCAModel.PCAOutput
 
_normMul - Variable in class hex.svd.SVDModel.SVDOutput
 
_normMulnew - Variable in class hex.glm.GLMTask.GLMCoordinateDescentTaskSeqNaive
 
_normMulold - Variable in class hex.glm.GLMTask.GLMCoordinateDescentTaskSeqNaive
 
_normRespMul - Variable in class hex.DataInfo
 
_normRespSub - Variable in class hex.DataInfo
 
_normSigmaStandardizationOff - Variable in class hex.DataInfo
 
_normSub - Variable in class hex.DataInfo
 
_normSub - Variable in class hex.glrm.GLRMModel.GLRMOutput
 
_normSub - Variable in class hex.pca.PCAModel.PCAOutput
 
_normSub - Variable in class hex.svd.SVDModel.SVDOutput
 
_normSubnew - Variable in class hex.glm.GLMTask.GLMCoordinateDescentTaskSeqNaive
 
_normSubold - Variable in class hex.glm.GLMTask.GLMCoordinateDescentTaskSeqNaive
 
_normSubStandardizationOff - Variable in class hex.DataInfo
 
_nparallelism - Variable in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
 
_nparallelism - Variable in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
_nrows - Variable in class hex.DataInfo.Rows
 
_nrows - Variable in class hex.tree.drf.TreeMeasuresCollector.TreeMeasures
Number of processed row per tree.
_ntrees - Variable in class hex.tree.drf.TreeMeasuresCollector.TreeMeasures
Actual number of trees which votes are stored in this object
_ntrees - Variable in class hex.tree.isoforextended.ExtendedIsolationForestModel.ExtendedIsolationForestOutput
 
_ntrees - Variable in class hex.tree.isoforextended.ExtendedIsolationForestModel.ExtendedIsolationForestParameters
Number of trees in the forest
_ntrees - Variable in class hex.tree.SharedTree
 
_ntrees - Variable in class hex.tree.SharedTreeModel.SharedTreeOutput
Number of trees actually in the model (as opposed to requested)
_ntrees - Variable in class hex.tree.SharedTreeModel.SharedTreeParameters
 
_nullDOF - Variable in class hex.gam.GAMModel
 
_nullDOF - Variable in class hex.glm.GLMModel
 
_num_fixed_coeffs - Variable in class hex.hglm.HGLMModel.HGLMModelOutput
 
_num_iteration_without_new_exemplar - Variable in class hex.aggregator.AggregatorModel.AggregatorParameters
 
_num_knots - Variable in class hex.gam.GAMModel.GAMParameters
 
_num_knots_sorted - Variable in class hex.gam.GAMModel.GAMParameters
 
_num_knots_tp - Variable in class hex.gam.GAMModel.GAMParameters
 
_num_random_coeffs - Variable in class hex.hglm.HGLMModel.HGLMModelOutput
 
_num_trees - Variable in class hex.tree.TreeStats
 
_numBasis - Variable in class hex.gam.MatrixFrameUtils.GenISplineGamOneColumn
 
_numBasis - Variable in class hex.gam.MatrixFrameUtils.GenMSplineGamOneColumn
 
_numberOfModels - Variable in class hex.anovaglm.ANOVAGLM
 
_numberOfPredCombo - Variable in class hex.anovaglm.ANOVAGLM
 
_numberOfPredictors - Variable in class hex.anovaglm.ANOVAGLM
 
_numClasses - Variable in class hex.tree.dt.mrtasks.GetClassCountsMRTask
 
_numcnt - Variable in class hex.glrm.ModelMetricsGLRM
 
_numcnt - Variable in class hex.glrm.ModelMetricsGLRM.GlrmModelMetricsBuilder
 
_numerr - Variable in class hex.glrm.ModelMetricsGLRM
 
_numGAMcols - Variable in class hex.gam.MatrixFrameUtils.AddCSGamColumns
 
_numGAMCols - Variable in class hex.gam.MatrixFrameUtils.AddISGamColumns
 
_numGAMCols - Variable in class hex.gam.MatrixFrameUtils.AddMSGamColumns
 
_numKnots - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_numKnots - Variable in class hex.gam.MatrixFrameUtils.GenCSSplineGamOneColumn
 
_numMeans - Variable in class hex.DataInfo
 
_numNAFill - Variable in class hex.DataInfo
 
_numNAFills - Variable in class hex.anovaglm.GenerateTransformColumns
 
_numOffsets - Variable in class hex.DataInfo
 
_numPredictors - Variable in class hex.modelselection.ModelSelection
 
_nums - Variable in class hex.DataInfo
 
_numTrees - Variable in class hex.tree.isoforextended.isolationtree.IsolationTreeStats
 
_nv - Variable in class hex.svd.SVDModel.SVDParameters
 
_obj_reg - Variable in class hex.gam.GAMModel.GAMParameters
 
_obj_reg - Variable in class hex.glm.GLMModel.GLMParameters
 
_obj_reg - Variable in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
_objective - Variable in class hex.glrm.GLRMModel.GLRMOutput
 
_objective - Variable in class hex.pca.PCAModel.PCAOutput
 
_objective_epsilon - Variable in class hex.gam.GAMModel.GAMParameters
 
_objective_epsilon - Variable in class hex.glm.GLMModel.GLMParameters
 
_objective_epsilon - Variable in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
_objVal - Variable in class hex.optimization.OptimizationUtils.GradientInfo
 
_offset - Variable in class hex.DataInfo
 
_offsets - Variable in class hex.grep.GrepModel.GrepOutput
 
_OneOEPS - Static variable in class hex.glm.GLMModel
 
_oneOGamColStd - Variable in class hex.gam.GAM
 
_oneOGamColStd - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_only_v - Variable in class hex.svd.SVDModel.SVDParameters
 
_OOBEnabled - Variable in class hex.tree.ReconstructTreeState
 
_ordinal - Variable in class hex.glm.GLMModel.GLMOutput
 
_origa - Variable in class hex.deeplearning.Neurons
Layer state (one per neuron): activity, error
_original_model_full_name - Variable in class hex.generic.GenericModelOutput
 
_original_model_identifier - Variable in class hex.generic.GenericModelOutput
 
_originalBeta - Variable in class hex.optimization.OptimizationUtils.ExactLineSearch
 
_originalImplementation - Variable in class hex.util.LinearAlgebraUtils.BMulInPlaceTask
 
_out_of_bounds - Variable in class hex.isotonic.IsotonicRegressionModel.IsotonicRegressionParameters
 
_output - Variable in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsTask
 
_output - Variable in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsWithBackgroundTask
 
_output - Variable in class hex.tree.SharedTreePojoWriter
 
_output_frame - Variable in class hex.aggregator.AggregatorModel.AggregatorOutput
 
_outputSpace - Variable in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsWithBackgroundTask
 
_overwrite_with_best_model - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
If enabled, store the best model under the destination key of this model at the end of training.
_p_values - Variable in class hex.glm.GLMModel.RegularizationPath
 
_p_values_threshold - Variable in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
_parallel_main_model_building - Variable in class hex.tree.SharedTreeModel.SharedTreeParameters
 
_parms - Variable in class hex.ensemble.Metalearner
 
_parms - Variable in class hex.glm.ComputationState
 
_parms - Variable in class hex.hglm.ComputationStateHGLM
 
_parms - Variable in class hex.tree.DTree
 
_path - Variable in class hex.generic.GenericModelParameters
Path of the file with embedded model
_pca_implementation - Variable in class hex.pca.PCAModel.PCAParameters
 
_pca_method - Variable in class hex.aggregator.AggregatorModel.AggregatorParameters
 
_pca_method - Variable in class hex.pca.PCAModel.PCAParameters
 
_pcond - Variable in class hex.naivebayes.NaiveBayesModel.NaiveBayesOutput
 
_pcond_raw - Variable in class hex.naivebayes.NaiveBayesModel.NaiveBayesOutput
 
_penaltyMat - Variable in class hex.gam.GamSplines.ThinPlateRegressionUtils.ScaleTPPenalty
 
_penaltyMat - Variable in class hex.gam.MatrixFrameUtils.GenCSSplineGamOneColumn
 
_penaltyMat - Variable in class hex.gam.MatrixFrameUtils.GenISplineGamOneColumn
 
_penaltyMat - Variable in class hex.gam.MatrixFrameUtils.GenMSplineGamOneColumn
 
_penaltyMatrices - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_penaltyMatricesCenter - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_penaltyMatrix - Variable in class hex.glm.GLM
 
_penaltyScale - Variable in class hex.gam.GAM
 
_penaltyScale - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_period - Variable in class hex.glrm.GLRMModel.GLRMParameters
 
_permutation - Variable in class hex.DataInfo
 
_permutation - Variable in class hex.glrm.GLRMModel.GLRMOutput
 
_permutation - Variable in class hex.glrm.ModelMetricsGLRM.GlrmModelMetricsBuilder
 
_permutation - Variable in class hex.pca.PCAModel.PCAOutput
 
_permutation - Variable in class hex.svd.SVDModel.SVDOutput
 
_pid - Variable in class hex.tree.DTree.Node
 
_plug_values - Variable in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
 
_plug_values - Variable in class hex.gam.GAMModel.GAMParameters
 
_plug_values - Variable in class hex.glm.GLMModel.GLMParameters
 
_plug_values - Variable in class hex.hglm.HGLMModel.HGLMParameters
 
_plug_values - Variable in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
_pm - Variable in class hex.optimization.ADMM.L1Solver
 
_positive_weight - Variable in class hex.psvm.PSVMModel.PSVMParameters
 
_pre_trained - Variable in class hex.word2vec.Word2VecModel.Word2VecParameters
 
_pred - Variable in class hex.tree.DTree.LeafNode
 
_pred1 - Variable in class hex.tree.DHistogram
 
_pred2 - Variable in class hex.tree.DHistogram
 
_pred_indicator - Variable in class hex.kmeans.KMeansModel.KMeansParameters
 
_pred_noise_bandwidth - Variable in class hex.tree.gbm.GBMModel.GBMParameters
 
_predictions - Variable in class hex.tree.TreeHandler.TreeProperties
 
_predictor_transform - Variable in class hex.DataInfo
 
_predictorColumnStart - Variable in class hex.anovaglm.ANOVAGLM
 
_predictorNames - Variable in class hex.modelselection.ModelSelection
 
_predictorsAdd - Variable in class hex.modelselection.ModelSelection
 
_predictorsRemoved - Variable in class hex.modelselection.ModelSelection
 
_predsAryOffset - Variable in class hex.tree.Score.ScoreIncInfo
 
_previous - Variable in class hex.deeplearning.Neurons
References for feed-forward connectivity
_prior - Variable in class hex.gam.GAMModel.GAMParameters
 
_prior - Variable in class hex.glm.GLMModel.GLMParameters
 
_quasibinomialDomains - Variable in class hex.tree.gbm.GBMModel.GBMOutput
 
_quiet_mode - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
Enable quiet mode for less output to standard output.
_r2_stopping - Variable in class hex.tree.SharedTreeModel.SharedTreeParameters
 
_rand - Variable in class hex.tree.DTree
 
_rand - Variable in class hex.tree.SharedTree
 
_random_coefficient_names - Variable in class hex.hglm.HGLMModel.HGLMModelOutput
 
_random_columns - Variable in class hex.glm.GLMModel.GLMParameters
 
_random_columns - Variable in class hex.hglm.HGLMModel.HGLMParameters
 
_random_family - Variable in class hex.hglm.HGLMModel.HGLMParameters
 
_random_intercept - Variable in class hex.hglm.HGLMModel.HGLMParameters
 
_rank - Variable in class hex.gam.GAMModel
 
_rank_ratio - Variable in class hex.psvm.PSVMModel.PSVMParameters
 
_rate - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
When adaptive learning rate is disabled, the magnitude of the weight updates are determined by the user specified learning rate (potentially annealed), and are a function of the difference between the predicted value and the target value.
_rate - Variable in class hex.tree.ReconstructTreeState
 
_rate_annealing - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
Learning rate annealing reduces the learning rate to "freeze" into local minima in the optimization landscape.
_rate_decay - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
The learning rate decay parameter controls the change of learning rate across layers.
_realFeatureLimits - Variable in class hex.tree.dt.mrtasks.FeaturesLimitsMRTask
 
_reassigned_count - Variable in class hex.kmeans.KMeansModel.KMeansOutput
 
_recover_svd - Variable in class hex.glrm.GLRMModel.GLRMParameters
 
_regex - Variable in class hex.grep.GrepModel.GrepParameters
 
_regression_influence_diagnostics - Variable in class hex.glm.GLMModel.GLMOutput
 
_regression_stop - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
The stopping criteria in terms of regression error (MSE) on the training data scoring dataset.
_regularization_x - Variable in class hex.glrm.GLRMModel.GLRMParameters
 
_regularization_y - Variable in class hex.glrm.GLRMModel.GLRMParameters
 
_rel_tol_num_exemplars - Variable in class hex.aggregator.AggregatorModel.AggregatorParameters
 
_remove_collinear_columns - Variable in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
 
_remove_collinear_columns - Variable in class hex.gam.GAMModel.GAMParameters
 
_remove_collinear_columns - Variable in class hex.glm.GLMModel.GLMParameters
 
_remove_collinear_columns - Variable in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
_remove_duplicates - Variable in class hex.rulefit.RuleFitModel.RuleFitParameters
 
_replicate_training_data - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
Replicate the entire training dataset onto every node for faster training on small datasets.
_representation_key - Variable in class hex.glrm.GLRMModel.GLRMOutput
 
_representation_name - Variable in class hex.glrm.GLRMModel.GLRMOutput
 
_representation_name - Variable in class hex.glrm.GLRMModel.GLRMParameters
 
_reproducible - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
Force reproducibility on small data (will be slow - only uses 1 thread)
_reproducible_histos - Variable in class hex.tree.SharedTree.SharedTreeDebugParams
 
_rescnt - Variable in class hex.naivebayes.NaiveBayesModel.NaiveBayesOutput
 
_response_column - Variable in class hex.tree.isofor.IsolationForestModel.IsolationForestOutput
 
_response_domain - Variable in class hex.tree.isofor.IsolationForestModel.IsolationForestOutput
 
_response_transform - Variable in class hex.DataInfo
 
_responseDomains - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_responses - Variable in class hex.DataInfo
 
_rho - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
The first of two hyper parameters for adaptive learning rate (ADADELTA).
_rho - Variable in class hex.psvm.PSVMModel.PSVMModelOutput
 
_rightChildren - Variable in class hex.tree.TreeHandler.TreeProperties
 
_rightCount - Variable in class hex.tree.dt.binning.SplitStatistics
 
_rightCount0 - Variable in class hex.tree.dt.binning.SplitStatistics
 
_row - Variable in class hex.FrameTask.ExtractDenseRow
 
_rule_generation_ntrees - Variable in class hex.rulefit.RuleFitModel.RuleFitParameters
 
_rule_importance - Variable in class hex.rulefit.RuleFitModel.RuleFitOutput
 
_s_scale - Variable in class hex.gam.GamSplines.ThinPlateRegressionUtils.ScaleTPPenalty
 
_s_scale - Variable in class hex.gam.MatrixFrameUtils.GenCSSplineGamOneColumn
 
_s_scale - Variable in class hex.gam.MatrixFrameUtils.GenISplineGamOneColumn
 
_s_scale - Variable in class hex.gam.MatrixFrameUtils.GenMSplineGamOneColumn
 
_sample_rate - Variable in class hex.tree.SharedTreeModel.SharedTreeParameters
 
_sample_rate_per_class - Variable in class hex.tree.SharedTreeModel.SharedTreeParameters
 
_sample_size - Variable in class hex.tree.isofor.IsolationForestModel.IsolationForestParameters
 
_sample_size - Variable in class hex.tree.isoforextended.ExtendedIsolationForestModel.ExtendedIsolationForestOutput
 
_sample_size - Variable in class hex.tree.isoforextended.ExtendedIsolationForestModel.ExtendedIsolationForestParameters
Number of randomly selected rows from original data before each tree build.
_save_mapping_frame - Variable in class hex.aggregator.AggregatorModel.AggregatorParameters
 
_save_transformed_framekeys - Variable in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
 
_save_v_frame - Variable in class hex.svd.SVDModel.SVDParameters
 
_savePenaltyMat - Variable in class hex.gam.GAMModel.GAMParameters
 
_saveZMatrix - Variable in class hex.gam.GAMModel.GAMParameters
 
_scale - Variable in class hex.gam.GAMModel.GAMParameters
 
_scale_sorted - Variable in class hex.gam.GAMModel.GAMParameters
 
_scale_tp_penalty_mat - Variable in class hex.gam.GAMModel.GAMParameters
 
_score_duty_cycle - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
Maximum fraction of wall clock time spent on model scoring on training and validation samples, and on diagnostics such as computation of feature importances (i.e., not on training).
_score_each_iteration - Variable in class hex.hglm.HGLMModel.HGLMParameters
 
_score_interval - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
The minimum time (in seconds) to elapse between model scoring.
_score_interval - Variable in class hex.tree.isoforextended.ExtendedIsolationForestModel.ExtendedIsolationForestParameters
After each _score_interval milliseconds - run scoring But limit the scoring time consumption to 10% of whole training time.
_score_interval - Variable in class hex.tree.SharedTreeModel.SharedTreeParameters
 
_score_iteration_interval - Variable in class hex.glm.GLMModel.GLMParameters
 
_score_iteration_interval - Variable in class hex.hglm.HGLMModel.HGLMParameters
 
_score_training_samples - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
The number of training dataset points to be used for scoring.
_score_training_samples - Variable in class hex.ensemble.StackedEnsembleModel.StackedEnsembleParameters
 
_score_tree_interval - Variable in class hex.tree.isoforextended.ExtendedIsolationForestModel.ExtendedIsolationForestParameters
Score every so many trees (no matter what)
_score_tree_interval - Variable in class hex.tree.SharedTreeModel.SharedTreeParameters
 
_score_validation_samples - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
The number of validation dataset points to be used for scoring.
_score_validation_sampling - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
Method used to sample the validation dataset for scoring, see Score Validation Samples above.
_scoreCols - Variable in class hex.tree.DTree.UndecidedNode
 
_scored_train - Variable in class hex.tree.isoforextended.ExtendedIsolationForestModel.ExtendedIsolationForestOutput
 
_scored_train - Variable in class hex.tree.SharedTreeModel.SharedTreeOutput
 
_scored_valid - Variable in class hex.tree.SharedTreeModel.SharedTreeOutput
 
_scoring_history_valid - Variable in class hex.hglm.HGLMModel.HGLMModelOutput
 
_se_coef - Variable in class hex.coxph.CoxPHModel.CoxPHOutput
 
_second_diag - Variable in class hex.gam.MatrixFrameUtils.TriDiagonalMatrix
 
_seed - Variable in class hex.hglm.HGLMModel.HGLMParameters
 
_seed - Variable in class hex.psvm.PSVMModel.PSVMParameters
 
_seed - Variable in class hex.tree.DHistogram
 
_selected_alpha_idx - Variable in class hex.glm.GLMModel.GLMOutput
 
_selected_lambda_idx - Variable in class hex.glm.GLMModel.GLMOutput
 
_selected_submodel_idx - Variable in class hex.glm.GLMModel.GLMOutput
 
_sent_sample_rate - Variable in class hex.word2vec.Word2VecModel.Word2VecParameters
 
_separate_linear_beta - Variable in class hex.glm.GLMModel.GLMParameters
 
_sgap_threshold - Variable in class hex.psvm.psvm.PrimalDualIPM.Parms
 
_showFixedMatVecs - Variable in class hex.hglm.HGLMModel.HGLMParameters
 
_shuffle - Variable in class hex.FrameTask
 
_shuffle_training_data - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
Enable shuffling of training data (on each node).
_single_node_mode - Variable in class hex.coxph.CoxPHModel.CoxPHParameters
If true, computation is performed with local jobs.
_single_node_mode - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
Run on a single node for fine-tuning of model parameters.
_singular_vals - Variable in class hex.glrm.GLRMModel.GLRMOutput
 
_size - Variable in class hex.gam.MatrixFrameUtils.TriDiagonalMatrix
 
_skip - Variable in class hex.tree.DTreeScorer
 
_skipMissing - Variable in class hex.DataInfo
 
_skippedRows - Variable in class hex.glm.TweedieEstimator
 
_solver - Variable in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
 
_solver - Variable in class hex.gam.GAMModel.GAMParameters
 
_solver - Variable in class hex.glm.GLMModel.GLMParameters
 
_solver - Variable in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
_sparse - Variable in class hex.DataInfo.Rows
 
_sparse - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
 
_sparse - Variable in class hex.FrameTask
 
_sparse - Variable in class hex.FrameTask2
 
_sparsity_beta - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
 
_splat - Variable in class hex.tree.DTree.DecidedNode
 
_spline_orders - Variable in class hex.gam.GAMModel.GAMParameters
 
_spline_orders_sorted - Variable in class hex.gam.GAMModel.GAMParameters
 
_splines_non_negative - Variable in class hex.gam.GAMModel.GAMParameters
 
_splines_non_negative_sorted - Variable in class hex.gam.GAMModel.GAMParameters
 
_split - Variable in class hex.tree.DTree.DecidedNode
 
_splitCounts - Variable in class hex.tree.isofor.IsolationForest.VarSplits
 
_splitDepths - Variable in class hex.tree.isofor.IsolationForest.VarSplits
 
_splittingRule - Variable in class hex.tree.dt.binning.SplitStatistics
 
_sse - Variable in class hex.hglm.MetricBuilderHGLM
 
_sse - Variable in class hex.util.LinearAlgebraUtils.ForwardSolve
 
_st - Variable in class hex.tree.DTreeScorer
 
_stacking_strategy - Variable in class hex.ensemble.StackedEnsembleModel.StackedEnsembleOutput
 
_standardize - Variable in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
 
_standardize - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
If enabled, automatically standardize the data.
_standardize - Variable in class hex.gam.GAMModel.GAMParameters
 
_standardize - Variable in class hex.glm.GLMModel.GLMParameters
 
_standardize - Variable in class hex.kmeans.KMeansModel.KMeansParameters
 
_standardize - Variable in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
_standardize_tp_gam_cols - Variable in class hex.gam.GAMModel.GAMParameters
 
_standardized_coefficient_magnitudes - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_standardized_model_beta - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_standardized_model_beta_multinomial - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_standardized_model_beta_multinomial_no_centering - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_standardized_model_beta_no_centering - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_starT - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_start_column - Variable in class hex.coxph.CoxPHModel.CoxPHParameters
 
_startTree - Variable in class hex.tree.Score.ScoreIncInfo
 
_startval - Variable in class hex.gam.GAMModel.GAMParameters
 
_startval - Variable in class hex.glm.GLMModel.GLMParameters
 
_std_deviation - Variable in class hex.glrm.GLRMModel.GLRMOutput
 
_std_deviation - Variable in class hex.pca.PCAModel.PCAOutput
 
_std_errs - Variable in class hex.glm.GLMModel.RegularizationPath
 
_stdOverride - Variable in class hex.glm.GLMModel.GLMParameters
 
_step - Variable in class hex.tree.DHistogram
 
_step_size - Variable in class hex.glrm.GLRMModel.GLRMOutput
 
_stop_column - Variable in class hex.coxph.CoxPHModel.CoxPHParameters
 
_store_knot_locations - Variable in class hex.gam.GAMModel.GAMParameters
 
_stratify_by - Variable in class hex.coxph.CoxPHModel.CoxPHParameters
 
_sumOfRowWeights - Variable in class hex.glm.ComputationState.GramGrad
 
_surrogate_gap_threshold - Variable in class hex.psvm.PSVMModel.PSVMParameters
 
_sv_threshold - Variable in class hex.psvm.PSVMModel.PSVMParameters
 
_svd_method - Variable in class hex.glrm.GLRMModel.GLRMParameters
 
_svd_method - Variable in class hex.svd.SVDModel.SVDParameters
 
_svs_count - Variable in class hex.psvm.PSVMModel.PSVMModelOutput
 
_target_num_exemplars - Variable in class hex.aggregator.AggregatorModel.AggregatorParameters
 
_target_ratio_comm_to_comp - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
 
_tau_e_var - Variable in class hex.hglm.HGLMModel.HGLMModelOutput
 
_tau_e_var_init - Variable in class hex.hglm.HGLMModel.HGLMParameters
 
_tau_u_var_init - Variable in class hex.hglm.HGLMModel.HGLMParameters
 
_tauEVar - Variable in class hex.hglm.ComputationStateHGLM.ComputationStateSimple
 
_temp - Variable in class hex.glm.GLMTask.GLMCoordinateDescentTaskSeqIntercept
 
_temp - Variable in class hex.glm.GLMTask.GLMCoordinateDescentTaskSeqNaive
 
_theta - Variable in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
 
_theta - Variable in class hex.gam.GAMModel.GAMParameters
 
_theta - Variable in class hex.glm.GLMModel.GLMParameters
 
_thinPlateSmoothersWithKnotsNum - Variable in class hex.gam.GAMModel
 
_third_diag - Variable in class hex.gam.MatrixFrameUtils.TriDiagonalMatrix
 
_thresholds - Variable in class hex.tree.TreeHandler.TreeProperties
 
_thresholds_x - Variable in class hex.isotonic.IsotonicRegressionModel.IsotonicRegressionOutput
 
_thresholds_y - Variable in class hex.isotonic.IsotonicRegressionModel.IsotonicRegressionOutput
 
_ties - Variable in class hex.coxph.CoxPHModel.CoxPHParameters
 
_timeLastIterationEnter - Variable in class hex.deeplearning.DeepLearningModel
 
_timeLastScoreStart - Variable in class hex.deeplearning.DeepLearningModel
 
_tmat - Variable in class hex.hglm.ComputationStateHGLM.ComputationStateSimple
 
_tmat - Variable in class hex.hglm.HGLMModel.HGLMModelOutput
 
_tmat - Variable in class hex.hglm.MetricBuilderHGLM
 
_tot_withinss - Variable in class hex.kmeans.KMeansModel.KMeansOutput
 
_total_variance - Variable in class hex.glrm.GLRMModel.GLRMOutput
 
_total_variance - Variable in class hex.pca.PCAModel.PCAOutput
 
_total_variance - Variable in class hex.svd.SVDModel.SVDOutput
 
_totalRows - Variable in class hex.glm.TweedieEstimator
 
_totGamifiedColCentered - Variable in class hex.gam.MatrixFrameUtils.AddISGamColumns
 
_totGamifiedColCentered - Variable in class hex.gam.MatrixFrameUtils.AddMSGamColumns
 
_totKnots - Variable in class hex.gam.MatrixFrameUtils.GenISplineGamOneColumn
 
_totKnots - Variable in class hex.gam.MatrixFrameUtils.GenMSplineGamOneColumn
 
_totss - Variable in class hex.kmeans.KMeansModel.KMeansOutput
 
_tradeoff - Variable in class hex.psvm.psvm.PrimalDualIPM.Parms
 
_train_samples_per_iteration - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
The number of training data rows to be processed per iteration.
_training_time_ms - Variable in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMModelOutput
 
_training_time_ms - Variable in class hex.glm.GLMModel.GLMOutput
 
_training_time_ms - Variable in class hex.glrm.GLRMModel.GLRMOutput
 
_training_time_ms - Variable in class hex.hglm.HGLMModel.HGLMModelOutput
 
_training_time_ms - Variable in class hex.kmeans.KMeansModel.KMeansOutput
 
_training_time_ms - Variable in class hex.pca.PCAModel.PCAOutput
 
_training_time_ms - Variable in class hex.svd.SVDModel.SVDOutput
 
_training_time_ms - Variable in class hex.tree.isoforextended.ExtendedIsolationForestModel.ExtendedIsolationForestOutput
 
_training_time_ms - Variable in class hex.tree.SharedTreeModel.SharedTreeOutput
Training time
_trainPredsCache - Variable in class hex.tree.SharedTree
 
_transform - Variable in class hex.aggregator.AggregatorModel.AggregatorParameters
 
_transform - Variable in class hex.glrm.GLRMModel.GLRMParameters
 
_transform - Variable in class hex.pca.PCAModel.PCAParameters
 
_transform - Variable in class hex.svd.SVDModel.SVDParameters
 
_transformed_columns_key - Variable in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMModelOutput
 
_transformedColNames - Variable in class hex.anovaglm.ANOVAGLM
 
_treatment - Variable in class hex.DataInfo
 
_tree - Variable in class hex.tree.DTree.Node
 
_treeDecisionPath - Variable in class hex.tree.TreeHandler.TreeProperties
 
_treeKey - Variable in class hex.tree.dt.DTModel.DTOutput
 
_treeKeys - Variable in class hex.tree.CompressedForest
 
_treeKeys - Variable in class hex.tree.SharedTreeModel.SharedTreeOutput
Trees get big, so store each one separately in the DKV.
_treeKeysAux - Variable in class hex.tree.SharedTreeModel.SharedTreeOutput
 
_trees - Variable in class hex.tree.CompressedForest.LocalCompressedForest
 
_trees - Variable in class hex.tree.SharedTreePojoWriter
 
_treeSHAP - Variable in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsTask
 
_treeSHAP - Variable in class hex.tree.SharedTreeModelWithContributions.ScoreContributionsWithBackgroundTask
 
_treeStats - Variable in class hex.tree.SharedTreeModel.SharedTreeOutput
More indepth tree stats
_treeStats - Variable in class hex.tree.SharedTreePojoWriter
 
_tweedie_epsilon - Variable in class hex.glm.GLMModel.GLMParameters
 
_tweedie_link_power - Variable in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
 
_tweedie_link_power - Variable in class hex.gam.GAMModel.GAMParameters
 
_tweedie_link_power - Variable in class hex.glm.GLMModel.GLMParameters
 
_tweedie_link_power - Variable in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
_tweedie_variance_power - Variable in class hex.anovaglm.ANOVAGLMModel.ANOVAGLMParameters
 
_tweedie_variance_power - Variable in class hex.gam.GAMModel.GAMParameters
 
_tweedie_variance_power - Variable in class hex.glm.GLMModel.GLMParameters
 
_tweedie_variance_power - Variable in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
_u - Variable in class hex.optimization.ADMM.L1Solver
 
_u_key - Variable in class hex.svd.SVDModel.SVDOutput
 
_u_name - Variable in class hex.svd.SVDModel.SVDParameters
 
_ubeta - Variable in class hex.hglm.ComputationStateHGLM.ComputationStateSimple
 
_ubeta - Variable in class hex.hglm.HGLMModel.HGLMModelOutput
 
_ubeta - Variable in class hex.hglm.HGLMTask.ResidualLLHTask
 
_ubeta - Variable in class hex.hglm.MetricBuilderHGLM
 
_updates - Variable in class hex.glrm.GLRMModel.GLRMOutput
 
_uplift_metric - Variable in class hex.tree.uplift.UpliftDRFModel.UpliftDRFParameters
 
_upliftMetric - Variable in class hex.tree.DHistogram
 
_use_all_factor_levels - Variable in class hex.aggregator.AggregatorModel.AggregatorParameters
 
_use_all_factor_levels - Variable in class hex.coxph.CoxPHModel.CoxPHParameters
 
_use_all_factor_levels - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
 
_use_all_factor_levels - Variable in class hex.gam.GAMModel.GAMParameters
 
_use_all_factor_levels - Variable in class hex.glm.GLMModel.GLMParameters
 
_use_all_factor_levels - Variable in class hex.hglm.HGLMModel.HGLMParameters
 
_use_all_factor_levels - Variable in class hex.modelselection.ModelSelectionModel.ModelSelectionParameters
 
_use_all_factor_levels - Variable in class hex.pca.PCAModel.PCAParameters
 
_use_all_factor_levels - Variable in class hex.svd.SVDModel.SVDParameters
 
_use_best_cv_iteration - Variable in class hex.tree.SharedTreeModel.SharedTreeParameters
 
_useAllFactorLevels - Variable in class hex.DataInfo
 
_useDispersion1 - Variable in class hex.glm.GLMModel.GLMParameters
 
_useFraction - Variable in class hex.FrameTask
 
_user_points - Variable in class hex.kmeans.KMeansModel.KMeansParameters
 
_user_x - Variable in class hex.glrm.GLRMModel.GLRMParameters
 
_user_y - Variable in class hex.glrm.GLRMModel.GLRMParameters
 
_useUplift - Variable in class hex.tree.DHistogram
 
_v - Variable in class hex.svd.SVDModel.SVDOutput
 
_v_key - Variable in class hex.svd.SVDModel.SVDOutput
 
_v_name - Variable in class hex.svd.SVDModel.SVDParameters
 
_valid - Variable in class hex.DataInfo
 
_validKeys - Variable in class hex.gam.GAMModel
 
_validPredsCache - Variable in class hex.tree.SharedTree
 
_validWorkspace - Variable in class hex.tree.SharedTree
 
_vals - Variable in class hex.tree.DHistogram
 
_vals_dim - Variable in class hex.tree.DHistogram
 
_valsDimUplift - Variable in class hex.tree.DHistogram
 
_valsUplift - Variable in class hex.tree.DHistogram
 
_var_splits - Variable in class hex.tree.isofor.IsolationForestModel.IsolationForestOutput
 
_variable_importances - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningModelOutput
 
_variable_importances - Variable in class hex.deeplearning.DeepLearningModel.DeepLearningParameters
Whether to compute variable importances for input features.
_variable_importances - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_variable_importances - Variable in class hex.generic.GenericModelOutput
 
_variable_importances - Variable in class hex.glm.GLMModel.GLMOutput
 
_variable_importances - Variable in class hex.tree.SharedTreeModel.SharedTreeOutput
Variable importances computed during training
_variable_splits - Variable in class hex.tree.isofor.IsolationForestModel.IsolationForestOutput
 
_varimp - Variable in class hex.gam.GAMModel.GAMModelOutput
 
_varimp - Variable in class hex.glm.GLMModel.GLMOutput
 
_varimp - Variable in class hex.tree.SharedTreeModel.SharedTreeOutput
 
_vec_size - Variable in class hex.word2vec.Word2VecModel.Word2VecParameters
 
_vecs - Variable in class hex.word2vec.Word2VecModel.Word2VecOutput
 
_vecSize - Variable in class hex.word2vec.Word2VecModel.Word2VecOutput
 
_verbose - Variable in class hex.glrm.GLRMModel.GLRMParameters
 
_vocab - Variable in class hex.word2vec.Word2VecModel.Word2VecOutput
 
_w - Variable in class hex.deeplearning.Neurons
 
_wEA - Variable in class hex.deeplearning.Neurons
 
_weak_learner - Variable in class hex.adaboost.AdaBoostModel.AdaBoostParameters
Choose a weak learner type.
_weak_learner_params - Variable in class hex.adaboost.AdaBoostModel.AdaBoostParameters
Custom _weak_learner parameters.
_weights - Variable in class hex.DataInfo
 
_window_size - Variable in class hex.word2vec.Word2VecModel.Word2VecParameters
 
_withinss - Variable in class hex.kmeans.KMeansModel.KMeansOutput
 
_word_model - Variable in class hex.word2vec.Word2VecModel.Word2VecParameters
 
_words - Variable in class hex.word2vec.Word2VecModel.Word2VecOutput
 
_workspaceColCnt - Variable in class hex.tree.Score.ScoreIncInfo
 
_workspaceColIdx - Variable in class hex.tree.Score.ScoreIncInfo
 
_x_epsilon - Variable in class hex.psvm.psvm.PrimalDualIPM.Parms
 
_x_factor_key - Variable in class hex.glrm.GLRMModel.GLRMOutput
 
_xx - Variable in class hex.gram.Gram
 
_xx - Variable in class hex.gram.Gram.Cholesky
 
_xxCache - Variable in class hex.gram.Gram
 
_xy - Variable in class hex.glm.ComputationState.GramGrad
 
_xy - Variable in class hex.glm.GLMTask.LSTask
 
_yMinusFixPredSquare - Variable in class hex.hglm.HGLMModel.HGLMModelOutput
 
_yMinusFixPredSquare - Variable in class hex.hglm.MetricBuilderHGLM
 
_yMinusFixPredSquareValid - Variable in class hex.hglm.HGLMModel.HGLMModelOutput
 
_yMinusXTimesZ - Variable in class hex.hglm.HGLMModel.HGLMModelOutput
 
_yMinusXTimesZ - Variable in class hex.hglm.HGLMScore
 
_yMinusXTimesZValid - Variable in class hex.hglm.HGLMModel.HGLMModelOutput
 
_ymu - Variable in class hex.gam.GAMModel
 
_ymu - Variable in class hex.glm.GLMModel
 
_ySigma - Variable in class hex.glm.GLMModel
 
_z_coef - Variable in class hex.coxph.CoxPHModel.CoxPHOutput
 
_z_values - Variable in class hex.glm.GLMModel.RegularizationPath
 
_zero_threshold - Variable in class hex.psvm.PSVMModel.PSVMParameters
 
_ZTransp - Variable in class hex.gam.MatrixFrameUtils.GenCSSplineGamOneColumn
 
_ZTransp - Variable in class hex.gam.MatrixFrameUtils.GenMSplineGamOneColumn
 
_zTranspose - Variable in class hex.gam.GAMModel.GAMModelOutput
 
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ 
Skip navigation links