Neurons.ExpRectifier, Neurons.ExpRectifierDropout, Neurons.Input, Neurons.Linear, Neurons.Maxout, Neurons.MaxoutDropout, Neurons.Output, Neurons.Rectifier, Neurons.RectifierDropout, Neurons.Softmax, Neurons.Tanh, Neurons.TanhDropout| Modifier and Type | Method and Description |
|---|---|
protected void |
bprop(int n)
Back propagation of error terms stored in _e (for non-final layers)
|
protected void |
fprop(long seed,
boolean training,
int n)
Forward propagation
|
void |
setInput(long seed,
double[] data,
int mb)
One of two methods to set layer input values.
|
void |
setInput(long seed,
int[] numIds,
double[] nums,
int numcat,
int[] cats,
int mb)
The second method used to set input layer values.
|
autoEncoderGradient, bpropOutputLayer, init, momentum, momentum, rate, setOutputLayerGradient, toStringprotected void bprop(int n)
Neuronsprotected void fprop(long seed,
boolean training,
int n)
Neuronspublic void setInput(long seed,
double[] data,
int mb)
seed - For seeding the RNG inside (for input dropout)data - Data (training columns and responses) to extract the training columns
from to be mapped into the input neuron layermb - Mini-Batch index (which point inside this mini-batch)public void setInput(long seed,
int[] numIds,
double[] nums,
int numcat,
int[] cats,
int mb)
seed - For seeding the RNG inside (for input dropout)nums - Array containing numerical values, can be NaNnumcat - Number of horizontalized categorical non-zero values (i.e., those not being the first factor of a class)cats - Array of indices, the first numcat values are the input layer unit (==column) indices for the non-zero categorical values
(This allows this array to be re-usable by the caller, without re-allocating each time)mb - Mini-Batch index (which point inside this mini-batch)