public class GAM extends hex.ModelBuilder<GAMModel,GAMModel.GAMParameters,GAMModel.GAMModelOutput>
Modifier and Type | Field and Description |
---|---|
int |
_glmNFolds |
double[][] |
_oneOGamColStd |
double[] |
_penaltyScale |
_coordinator, _desc, _eventPublisher, _fold, _input_parms, _job, _messages, _nclass, _offset, _orig_projection_array, _origDomains, _origNames, _origTrain, _parms, _priorClassDist, _removedCols, _response, _result, _startUpOnceModelBuilder, _train, _treatment, _valid, _vresponse, _weights
Constructor and Description |
---|
GAM(boolean startup_once) |
GAM(GAMModel.GAMParameters parms) |
GAM(GAMModel.GAMParameters parms,
water.Key<GAMModel> key) |
Modifier and Type | Method and Description |
---|---|
void |
assertValidGAMColumnsCountSplineTypes()
Check and make sure correct BS type is assigned to the various gam_columns specified.
|
hex.ModelBuilder.BuilderVisibility |
builderVisibility() |
hex.ModelCategory[] |
can_build() |
void |
checkGAMParamsLengths()
Check and make sure if related parameters are defined, they must be of correct length.
|
void |
checkNFamilyNLinkAssignment()
check if _parms._family = AUTO, the correct link functions are assigned according to the response type.
|
void |
checkOrChooseNumKnots()
set default num_knots to 10 for gam_columns where there is no knot_id specified for CS smoothers
for TP smoothers, default is set to be max of 10 or _M+2.
|
void |
checkThinPlateParams()
verify and check thin plate regression smoothers specific parameters
|
void |
checkTrainRowNumKnots()
Check and make sure the there are enough number of rows in the training dataset to accomodate the num_knot
settings.
|
protected boolean |
computePriorClassDistribution() |
void |
failVerifyKnots(double[] knots,
int gam_column_index) |
double[][][] |
generateKnotsFromKeys()
This method will look at the keys of knots stored in _parms._knot_ids and copy them over to double[][][]
array.
|
boolean |
haveMojo() |
boolean |
havePojo() |
void |
init(boolean expensive) |
boolean |
isSupervised() |
protected int |
nModelsInParallel(int folds) |
protected hex.gam.GAM.GAMDriver |
trainModelImpl() |
algoName, algos, canLearnFromNAs, checkCustomMetricForEarlyStopping, checkDistributions, checkEarlyStoppingReproducibility, checkMemoryFootPrint_impl, checkMemoryFootPrint, checkResponseVariable, clearInitState, clearValidationErrors, computeCrossValidation, cv_buildModels, cv_canBuildMainModelInParallel, cv_computeAndSetOptimalParameters, cv_initStoppingParameters, cv_mainModelScores, cv_makeAggregateModelMetrics, cv_scoreCVModels, cv_updateOptimalParameters, defaultKey, desiredChunks, dest, error_count, error, get, getMessagesByFieldAndSeverity, getName, getSysProperty, getToEigenVec, hasFoldCol, hasOffsetCol, hasTreatmentCol, hasWeightCol, hide, ignoreBadColumns, ignoreConstColumns, ignoreInvalidColumns, ignoreStringColumns, ignoreUuidColumns, info, init_adaptFrameToTrain, init_getNClass, initWorkspace, isClassifier, isResponseOptional, isStopped, javaName, logMe, make, make, make, makeCVMetrics, makeCVModelBuilder, makeParameters, makePojoWriter, message, nclasses, nFoldCV, nFoldWork, nModelsInParallel, nModelsInParallel, numSpecialCols, paramName, raiseReproducibilityWarning, rebalance, remainingTimeSecs, response, schemaDirectory, separateFeatureVecs, setMaxRuntimeSecsForMainModel, setTrain, setValid, shouldReorder, smallDataSize, stop_requested, timeout, train, trainModel, trainModel, trainModelNested, trainModelNested, trainModelOnH2ONode, valid, validateBinaryResponse, validateStoppingMetric, validationErrors, validationWarnings, vresponse, warn
public double[][] _oneOGamColStd
public double[] _penaltyScale
public int _glmNFolds
public GAM(boolean startup_once)
public GAM(GAMModel.GAMParameters parms)
public GAM(GAMModel.GAMParameters parms, water.Key<GAMModel> key)
public hex.ModelCategory[] can_build()
can_build
in class hex.ModelBuilder<GAMModel,GAMModel.GAMParameters,GAMModel.GAMModelOutput>
public boolean isSupervised()
isSupervised
in class hex.ModelBuilder<GAMModel,GAMModel.GAMParameters,GAMModel.GAMModelOutput>
public hex.ModelBuilder.BuilderVisibility builderVisibility()
builderVisibility
in class hex.ModelBuilder<GAMModel,GAMModel.GAMParameters,GAMModel.GAMModelOutput>
public boolean havePojo()
havePojo
in class hex.ModelBuilder<GAMModel,GAMModel.GAMParameters,GAMModel.GAMModelOutput>
public boolean haveMojo()
haveMojo
in class hex.ModelBuilder<GAMModel,GAMModel.GAMParameters,GAMModel.GAMModelOutput>
public double[][][] generateKnotsFromKeys()
public void failVerifyKnots(double[] knots, int gam_column_index)
public void init(boolean expensive)
init
in class hex.ModelBuilder<GAMModel,GAMModel.GAMParameters,GAMModel.GAMModelOutput>
public void checkTrainRowNumKnots()
public void checkGAMParamsLengths()
public void checkNFamilyNLinkAssignment()
public void checkThinPlateParams()
public void checkOrChooseNumKnots()
public void assertValidGAMColumnsCountSplineTypes()
protected boolean computePriorClassDistribution()
computePriorClassDistribution
in class hex.ModelBuilder<GAMModel,GAMModel.GAMParameters,GAMModel.GAMModelOutput>
protected hex.gam.GAM.GAMDriver trainModelImpl()
trainModelImpl
in class hex.ModelBuilder<GAMModel,GAMModel.GAMParameters,GAMModel.GAMModelOutput>
protected int nModelsInParallel(int folds)
nModelsInParallel
in class hex.ModelBuilder<GAMModel,GAMModel.GAMParameters,GAMModel.GAMModelOutput>