public class GLRM extends hex.ModelBuilder<GLRMModel,GLRMModel.GLRMParameters,GLRMModel.GLRMOutput>
Modifier and Type | Class and Description |
---|---|
protected static class |
GLRM.Archetypes |
static class |
GLRM.updateXVecs |
_coordinator, _desc, _eventPublisher, _fold, _input_parms, _job, _messages, _nclass, _offset, _orig_projection_array, _origDomains, _origNames, _origTrain, _parms, _priorClassDist, _removedCols, _response, _result, _startUpOnceModelBuilder, _train, _treatment, _valid, _vresponse, _weights
Constructor and Description |
---|
GLRM(boolean startup_once) |
GLRM(GLRMModel.GLRMParameters parms) |
GLRM(GLRMModel.GLRMParameters parms,
water.Job<GLRMModel> job) |
Modifier and Type | Method and Description |
---|---|
hex.ModelCategory[] |
can_build() |
protected void |
checkMemoryFootPrint_impl() |
static double[][] |
expandCats(double[][] sdata,
DataInfo dinfo) |
static void |
findGoodCidx(water.fvec.Frame xVecs,
java.util.ArrayList<java.lang.Integer> currentList,
boolean addIndex,
int taIndex,
int xNChunks,
int startTAcidx) |
static java.util.ArrayList<java.lang.Integer> |
findtAChunkIndices(water.fvec.Frame tAVecs,
int xStart,
int xEnd,
GLRM.Archetypes yt) |
static java.util.ArrayList<java.lang.Integer> |
findXChunkIndices(water.fvec.Frame xVecs,
int taStart,
int taEnd,
GLRM.Archetypes yt) |
static double |
frobenius2(double[][] x) |
static void |
getXChunk(water.fvec.Frame xVecs,
int chunkIdx,
water.fvec.Chunk[] xChunks) |
boolean |
hasClosedForm(long na_cnt) |
boolean |
haveMojo() |
boolean |
havePojo() |
protected static int |
idx_xnew(int c,
int ncolA,
int ncolX) |
protected static int |
idx_xold(int c,
int ncolA) |
void |
init(boolean expensive)
Validate all parameters, and prepare the model for training.
|
boolean |
isSupervised() |
void |
setWideDataset(boolean isWide) |
protected hex.glrm.GLRM.GLRMDriver |
trainModelImpl() |
static double[][] |
transform(double[][] centers,
double[] normSub,
double[] normMul,
int ncats,
int nnums) |
static water.fvec.Chunk |
xFrameVec(water.fvec.Chunk[] chks,
int c,
int offset) |
static double |
yArcheTypeVal(GLRM.Archetypes yt,
int j,
int k) |
algoName, algos, builderVisibility, canLearnFromNAs, checkCustomMetricForEarlyStopping, checkDistributions, checkEarlyStoppingReproducibility, checkMemoryFootPrint, checkResponseVariable, clearInitState, clearValidationErrors, computeCrossValidation, computePriorClassDistribution, cv_buildModels, cv_canBuildMainModelInParallel, cv_computeAndSetOptimalParameters, cv_initStoppingParameters, cv_mainModelScores, cv_makeAggregateModelMetrics, cv_scoreCVModels, cv_updateOptimalParameters, defaultKey, desiredChunks, dest, error_count, error, get, getMessagesByFieldAndSeverity, getName, getSysProperty, getToEigenVec, hasFoldCol, hasOffsetCol, hasTreatmentCol, hasWeightCol, hide, ignoreBadColumns, ignoreConstColumns, ignoreInvalidColumns, ignoreStringColumns, ignoreUuidColumns, info, init_adaptFrameToTrain, init_getNClass, initWorkspace, isClassifier, isResponseOptional, isStopped, javaName, logMe, make, make, make, makeCVMetrics, makeCVModelBuilder, makeParameters, makePojoWriter, message, nclasses, nFoldCV, nFoldWork, nModelsInParallel, nModelsInParallel, nModelsInParallel, numSpecialCols, paramName, raiseReproducibilityWarning, rebalance, remainingTimeSecs, response, schemaDirectory, separateFeatureVecs, setMaxRuntimeSecsForMainModel, setTrain, setValid, shouldReorder, smallDataSize, stop_requested, timeout, train, trainModel, trainModel, trainModelNested, trainModelNested, trainModelOnH2ONode, valid, validateBinaryResponse, validateStoppingMetric, validationErrors, validationWarnings, vresponse, warn
public GLRM(GLRMModel.GLRMParameters parms)
public GLRM(GLRMModel.GLRMParameters parms, water.Job<GLRMModel> job)
public GLRM(boolean startup_once)
protected hex.glrm.GLRM.GLRMDriver trainModelImpl()
trainModelImpl
in class hex.ModelBuilder<GLRMModel,GLRMModel.GLRMParameters,GLRMModel.GLRMOutput>
public hex.ModelCategory[] can_build()
can_build
in class hex.ModelBuilder<GLRMModel,GLRMModel.GLRMParameters,GLRMModel.GLRMOutput>
public boolean isSupervised()
isSupervised
in class hex.ModelBuilder<GLRMModel,GLRMModel.GLRMParameters,GLRMModel.GLRMOutput>
public boolean havePojo()
havePojo
in class hex.ModelBuilder<GLRMModel,GLRMModel.GLRMParameters,GLRMModel.GLRMOutput>
public boolean haveMojo()
haveMojo
in class hex.ModelBuilder<GLRMModel,GLRMModel.GLRMParameters,GLRMModel.GLRMOutput>
protected void checkMemoryFootPrint_impl()
checkMemoryFootPrint_impl
in class hex.ModelBuilder<GLRMModel,GLRMModel.GLRMParameters,GLRMModel.GLRMOutput>
public void setWideDataset(boolean isWide)
public void init(boolean expensive)
init
in class hex.ModelBuilder<GLRMModel,GLRMModel.GLRMParameters,GLRMModel.GLRMOutput>
public static double frobenius2(double[][] x)
public final boolean hasClosedForm(long na_cnt)
public static double[][] transform(double[][] centers, double[] normSub, double[] normMul, int ncats, int nnums)
public static double[][] expandCats(double[][] sdata, DataInfo dinfo)
protected static int idx_xold(int c, int ncolA)
protected static int idx_xnew(int c, int ncolA, int ncolX)
public static double yArcheTypeVal(GLRM.Archetypes yt, int j, int k)
public static water.fvec.Chunk xFrameVec(water.fvec.Chunk[] chks, int c, int offset)
public static void getXChunk(water.fvec.Frame xVecs, int chunkIdx, water.fvec.Chunk[] xChunks)
public static java.util.ArrayList<java.lang.Integer> findtAChunkIndices(water.fvec.Frame tAVecs, int xStart, int xEnd, GLRM.Archetypes yt)
public static java.util.ArrayList<java.lang.Integer> findXChunkIndices(water.fvec.Frame xVecs, int taStart, int taEnd, GLRM.Archetypes yt)
public static void findGoodCidx(water.fvec.Frame xVecs, java.util.ArrayList<java.lang.Integer> currentList, boolean addIndex, int taIndex, int xNChunks, int startTAcidx)