public static class HGLMModel.HGLMParameters
extends hex.Model.Parameters
Modifier and Type | Class and Description |
---|---|
static class |
HGLMModel.HGLMParameters.Method |
Modifier and Type | Field and Description |
---|---|
double |
_em_epsilon |
GLMModel.GLMParameters.Family |
_family |
boolean |
_gen_syn_data |
java.lang.String |
_group_column |
double[] |
_initial_fixed_effects |
water.Key |
_initial_random_effects |
water.Key |
_initial_t_matrix |
int |
_max_iterations |
HGLMModel.HGLMParameters.Method |
_method |
java.io.Serializable |
_missing_values_handling |
water.Key<water.fvec.Frame> |
_plug_values |
java.lang.String[] |
_random_columns |
GLMModel.GLMParameters.Family |
_random_family |
boolean |
_random_intercept |
boolean |
_score_each_iteration |
int |
_score_iteration_interval |
long |
_seed |
boolean |
_showFixedMatVecs |
double |
_tau_e_var_init |
double |
_tau_u_var_init |
boolean |
_use_all_factor_levels |
_auc_type, _auto_rebalance, _auuc_nbins, _auuc_type, _balance_classes, _categorical_encoding, _check_constant_response, _checkpoint, _class_sampling_factors, _custom_distribution_func, _custom_metric_func, _cv_fold, _distribution, _export_checkpoints_dir, _fold_assignment, _fold_column, _gainslift_bins, _huber_alpha, _ignore_const_cols, _ignored_columns, _is_cv_model, _keep_cross_validation_fold_assignment, _keep_cross_validation_models, _keep_cross_validation_predictions, _keep_cross_validation_predictions_precision, _main_model_time_budget_factor, _max_after_balance_size, _max_categorical_levels, _max_confusion_matrix_size, _max_runtime_secs, _nfolds, _offset_column, _parallelize_cross_validation, _preprocessors, _pretrained_autoencoder, _quantile_alpha, _response_column, _stopping_metric, _stopping_rounds, _stopping_tolerance, _train, _treatment_column, _tweedie_power, _valid, _weights_column, MAX_SUPPORTED_LEVELS
Constructor and Description |
---|
HGLMParameters() |
Modifier and Type | Method and Description |
---|---|
java.lang.String |
algoName() |
java.lang.String |
fullName() |
boolean |
imputeMissing() |
java.lang.String |
javaName() |
DataInfo.Imputer |
makeImputer() |
GLMModel.GLMParameters.MissingValuesHandling |
missingValuesHandling() |
long |
progressUnits() |
checksum, checksum, defaultDropConsCols, defaultStoppingTolerance, getCategoricalEncoding, getDependentKeys, getDistributionFamily, getFoldColumn, getMaxCategoricalLevels, getNonPredictors, getOffsetColumn, getOrMakeRealSeed, getResponseColumn, getTreatmentColumn, getUsedColumns, getWeightsColumn, hasCheckpoint, hasCustomMetricFunc, missingColumnsType, read_lock_frames, read_unlock_frames, setDistributionFamily, setTrain, train, valid
public long _seed
public GLMModel.GLMParameters.Family _family
public int _max_iterations
public double[] _initial_fixed_effects
public water.Key _initial_random_effects
public water.Key _initial_t_matrix
public double _tau_u_var_init
public double _tau_e_var_init
public GLMModel.GLMParameters.Family _random_family
public java.lang.String[] _random_columns
public HGLMModel.HGLMParameters.Method _method
public double _em_epsilon
public boolean _random_intercept
public java.lang.String _group_column
public java.io.Serializable _missing_values_handling
public water.Key<water.fvec.Frame> _plug_values
public boolean _use_all_factor_levels
public boolean _showFixedMatVecs
public int _score_iteration_interval
public boolean _score_each_iteration
public boolean _gen_syn_data
public java.lang.String algoName()
algoName
in class hex.Model.Parameters
public java.lang.String fullName()
fullName
in class hex.Model.Parameters
public java.lang.String javaName()
javaName
in class hex.Model.Parameters
public long progressUnits()
progressUnits
in class hex.Model.Parameters
public GLMModel.GLMParameters.MissingValuesHandling missingValuesHandling()
public boolean imputeMissing()
public DataInfo.Imputer makeImputer()