public class KMeans extends hex.ClusteringModelBuilder<KMeansModel,KMeansModel.KMeansParameters,KMeansModel.KMeansOutput>
Modifier and Type | Class and Description |
---|---|
static class |
KMeans.Initialization |
static class |
KMeans.IterationTask |
_coordinator, _desc, _eventPublisher, _fold, _input_parms, _job, _messages, _nclass, _offset, _orig_projection_array, _origDomains, _origNames, _origTrain, _parms, _priorClassDist, _removedCols, _response, _result, _startUpOnceModelBuilder, _train, _treatment, _valid, _vresponse, _weights
Constructor and Description |
---|
KMeans(boolean startup_once) |
KMeans(KMeansModel.KMeansParameters parms) |
KMeans(KMeansModel.KMeansParameters parms,
water.Job job) |
Modifier and Type | Method and Description |
---|---|
hex.ModelCategory[] |
can_build() |
protected void |
checkMemoryFootPrint_impl() |
void |
cv_makeAggregateModelMetrics(hex.ModelMetrics.MetricBuilder[] mbs) |
hex.ToEigenVec |
getToEigenVec() |
boolean |
haveMojo() |
boolean |
havePojo() |
void |
init(boolean expensive)
Initialize the ModelBuilder, validating all arguments and preparing the
training frame.
|
protected hex.kmeans.KMeans.KMeansDriver |
trainModelImpl()
Start the KMeans training Job on an F/J thread.
|
algoName, algos, builderVisibility, canLearnFromNAs, checkCustomMetricForEarlyStopping, checkDistributions, checkEarlyStoppingReproducibility, checkMemoryFootPrint, checkResponseVariable, clearInitState, clearValidationErrors, computeCrossValidation, computePriorClassDistribution, cv_buildModels, cv_canBuildMainModelInParallel, cv_computeAndSetOptimalParameters, cv_initStoppingParameters, cv_mainModelScores, cv_scoreCVModels, cv_updateOptimalParameters, defaultKey, desiredChunks, dest, error_count, error, get, getMessagesByFieldAndSeverity, getName, getSysProperty, hasFoldCol, hasOffsetCol, hasTreatmentCol, hasWeightCol, hide, ignoreBadColumns, ignoreConstColumns, ignoreInvalidColumns, ignoreStringColumns, ignoreUuidColumns, info, init_adaptFrameToTrain, init_getNClass, initWorkspace, isClassifier, isResponseOptional, isStopped, javaName, logMe, make, make, make, makeCVMetrics, makeCVModelBuilder, makeParameters, makePojoWriter, message, nclasses, nFoldCV, nFoldWork, nModelsInParallel, nModelsInParallel, nModelsInParallel, numSpecialCols, paramName, raiseReproducibilityWarning, rebalance, remainingTimeSecs, response, schemaDirectory, separateFeatureVecs, setMaxRuntimeSecsForMainModel, setTrain, setValid, shouldReorder, smallDataSize, stop_requested, timeout, train, trainModel, trainModel, trainModelNested, trainModelNested, trainModelOnH2ONode, valid, validateBinaryResponse, validateStoppingMetric, validationErrors, validationWarnings, vresponse, warn
public KMeans(KMeansModel.KMeansParameters parms)
public KMeans(KMeansModel.KMeansParameters parms, water.Job job)
public KMeans(boolean startup_once)
public hex.ToEigenVec getToEigenVec()
getToEigenVec
in class hex.ModelBuilder<KMeansModel,KMeansModel.KMeansParameters,KMeansModel.KMeansOutput>
public hex.ModelCategory[] can_build()
can_build
in class hex.ModelBuilder<KMeansModel,KMeansModel.KMeansParameters,KMeansModel.KMeansOutput>
public boolean havePojo()
havePojo
in class hex.ModelBuilder<KMeansModel,KMeansModel.KMeansParameters,KMeansModel.KMeansOutput>
public boolean haveMojo()
haveMojo
in class hex.ModelBuilder<KMeansModel,KMeansModel.KMeansParameters,KMeansModel.KMeansOutput>
protected hex.kmeans.KMeans.KMeansDriver trainModelImpl()
trainModelImpl
in class hex.ModelBuilder<KMeansModel,KMeansModel.KMeansParameters,KMeansModel.KMeansOutput>
protected void checkMemoryFootPrint_impl()
checkMemoryFootPrint_impl
in class hex.ModelBuilder<KMeansModel,KMeansModel.KMeansParameters,KMeansModel.KMeansOutput>
public void init(boolean expensive)
init
in class hex.ClusteringModelBuilder<KMeansModel,KMeansModel.KMeansParameters,KMeansModel.KMeansOutput>
public void cv_makeAggregateModelMetrics(hex.ModelMetrics.MetricBuilder[] mbs)
cv_makeAggregateModelMetrics
in class hex.ModelBuilder<KMeansModel,KMeansModel.KMeansParameters,KMeansModel.KMeansOutput>