public static final class ANOVAGLMV3.ANOVAGLMParametersV3 extends water.api.schemas3.ModelParametersSchemaV3<ANOVAGLMModel.ANOVAGLMParameters,ANOVAGLMV3.ANOVAGLMParametersV3>
Modifier and Type | Field and Description |
---|---|
double[] |
alpha |
boolean |
balance_classes
For imbalanced data, balance training data class counts via
over/under-sampling.
|
float[] |
class_sampling_factors
Desired over/under-sampling ratios per class (lexicographic order).
|
boolean |
compute_p_values |
boolean |
early_stopping |
GLMModel.GLMParameters.Family |
family |
static java.lang.String[] |
fields |
int |
highest_interaction_term |
double[] |
lambda |
boolean |
lambda_search |
GLMModel.GLMParameters.Link |
link |
float |
max_after_balance_size
When classes are balanced, limit the resulting dataset size to the
specified multiple of the original dataset size.
|
int |
max_iterations |
GLMModel.GLMParameters.MissingValuesHandling |
missing_values_handling |
boolean |
non_negative |
int |
nparallelism |
water.api.schemas3.KeyV3.FrameKeyV3 |
plug_values |
double |
prior |
boolean |
save_transformed_framekeys |
long |
seed |
GLMModel.GLMParameters.Solver |
solver |
boolean |
standardize |
double |
theta |
double |
tweedie_link_power |
double |
tweedie_variance_power |
int |
type |
auc_type, categorical_encoding, checkpoint, custom_distribution_func, custom_metric_func, distribution, export_checkpoints_dir, fold_assignment, fold_column, gainslift_bins, huber_alpha, ignore_const_cols, ignored_columns, keep_cross_validation_fold_assignment, keep_cross_validation_models, keep_cross_validation_predictions, max_categorical_levels, max_runtime_secs, model_id, nfolds, offset_column, parallelize_cross_validation, quantile_alpha, response_column, score_each_iteration, stopping_metric, stopping_rounds, stopping_tolerance, training_frame, tweedie_power, validation_frame, weights_column
Constructor and Description |
---|
ANOVAGLMParametersV3() |
append_field_arrays, extractDeclaredApiParameters, fields, fillFromImpl, fillImpl, getAdditionalParameters, writeParametersJSON
createAndFillImpl, createImpl, extractVersionFromSchemaName, fillFromAny, fillFromBody, fillFromImpl, fillFromImpl, fillFromParms, fillFromParms, fillFromParms, fillImpl, getImplClass, getImplClass, getSchemaName, getSchemaType, getSchemaVersion, init_meta, markdown, markdown, newInstance, newInstance, setField, setSchemaType_doNotCall
public static final java.lang.String[] fields
@API(help="Seed for pseudo random number generator (if applicable)", gridable=true) public long seed
@API(help="Standardize numeric columns to have zero mean and unit variance", level=critical) public boolean standardize
@API(help="Family. Use binomial for classification with logistic regression, others are for regression problems.", values={"AUTO","gaussian","binomial","fractionalbinomial","quasibinomial","poisson","gamma","tweedie","negativebinomial"}, level=critical) public GLMModel.GLMParameters.Family family
@API(help="Tweedie variance power", level=critical, gridable=true) public double tweedie_variance_power
@API(help="Tweedie link power", level=critical, gridable=true) public double tweedie_link_power
@API(help="Theta", level=critical, gridable=true) public double theta
@API(help="Distribution of regularization between the L1 (Lasso) and L2 (Ridge) penalties. A value of 1 for alpha represents Lasso regression, a value of 0 produces Ridge regression, and anything in between specifies the amount of mixing between the two. Default value of alpha is 0 when SOLVER = \'L-BFGS\'; 0.5 otherwise.", level=critical, gridable=true) public double[] alpha
@API(help="Regularization strength", required=false, level=critical, gridable=true) public double[] lambda
@API(help="Use lambda search starting at lambda max, given lambda is then interpreted as lambda min", level=critical) public boolean lambda_search
@API(help="AUTO will set the solver based on given data and the other parameters. IRLSM is fast on on problems with small number of predictors and for lambda-search with L1 penalty, L_BFGS scales better for datasets with many columns.", values={"AUTO","IRLSM","L_BFGS","COORDINATE_DESCENT_NAIVE","COORDINATE_DESCENT","GRADIENT_DESCENT_LH","GRADIENT_DESCENT_SQERR"}, level=critical) public GLMModel.GLMParameters.Solver solver
@API(help="Handling of missing values. Either MeanImputation, Skip or PlugValues.", values={"MeanImputation","Skip","PlugValues"}, level=expert, direction=INOUT, gridable=true) public GLMModel.GLMParameters.MissingValuesHandling missing_values_handling
@API(help="Plug Values (a single row frame containing values that will be used to impute missing values of the training/validation frame, use with conjunction missing_values_handling = PlugValues)", direction=INPUT) public water.api.schemas3.KeyV3.FrameKeyV3 plug_values
@API(help="Restrict coefficients (not intercept) to be non-negative") public boolean non_negative
@API(help="Request p-values computation, p-values work only with IRLSM solver and no regularization", level=secondary, direction=INPUT) public boolean compute_p_values
@API(help="Maximum number of iterations", level=secondary) public int max_iterations
@API(help="Link function.", level=secondary, values={"family_default","identity","logit","log","inverse","tweedie","ologit"}) public GLMModel.GLMParameters.Link link
@API(help="Prior probability for y==1. To be used only for logistic regression iff the data has been sampled and the mean of response does not reflect reality.", level=expert) public double prior
@API(help="Balance training data class counts via over/under-sampling (for imbalanced data).", level=secondary, direction=INOUT) public boolean balance_classes
@API(help="Desired over/under-sampling ratios per class (in lexicographic order). If not specified, sampling factors will be automatically computed to obtain class balance during training. Requires balance_classes.", level=expert, direction=INOUT) public float[] class_sampling_factors
@API(help="Maximum relative size of the training data after balancing class counts (can be less than 1.0). Requires balance_classes.", level=expert, direction=INOUT) public float max_after_balance_size
@API(help="Limit the number of interaction terms, if 2 means interaction between 2 columns only, 3 for three columns and so on... Default to 2.", level=critical) public int highest_interaction_term
@API(help="Refer to the SS type 1, 2, 3, or 4. We are currently only supporting 3", level=critical) public int type
@API(help="Stop early when there is no more relative improvement on train or validation (if provided).") public boolean early_stopping
@API(help="true to save the keys of transformed predictors and interaction column.") public boolean save_transformed_framekeys
@API(help="Number of models to build in parallel. Default to 4. Adjust according to your system.") public int nparallelism