public static final class DRFV3.DRFParametersV3 extends SharedTreeV3.SharedTreeParametersV3<DRFModel.DRFParameters,DRFV3.DRFParametersV3>
Modifier and Type | Field and Description |
---|---|
boolean |
binomial_double_trees |
static java.lang.String[] |
fields |
int |
mtries |
double |
sample_rate |
balance_classes, build_tree_one_node, calibrate_model, calibration_frame, calibration_method, check_constant_response, class_sampling_factors, col_sample_rate_change_per_level, col_sample_rate_per_tree, histogram_type, in_training_checkpoints_dir, in_training_checkpoints_tree_interval, max_after_balance_size, max_confusion_matrix_size, max_depth, min_rows, min_split_improvement, nbins, nbins_cats, nbins_top_level, ntrees, r2_stopping, sample_rate_per_class, score_tree_interval, seed
auc_type, categorical_encoding, checkpoint, custom_distribution_func, custom_metric_func, distribution, export_checkpoints_dir, fold_assignment, fold_column, gainslift_bins, huber_alpha, ignore_const_cols, ignored_columns, keep_cross_validation_fold_assignment, keep_cross_validation_models, keep_cross_validation_predictions, max_categorical_levels, max_runtime_secs, model_id, nfolds, offset_column, parallelize_cross_validation, quantile_alpha, response_column, score_each_iteration, stopping_metric, stopping_rounds, stopping_tolerance, training_frame, tweedie_power, validation_frame, weights_column
Constructor and Description |
---|
DRFParametersV3() |
append_field_arrays, extractDeclaredApiParameters, fields, fillFromImpl, fillImpl, getAdditionalParameters, writeParametersJSON
createAndFillImpl, createImpl, extractVersionFromSchemaName, fillFromAny, fillFromBody, fillFromImpl, fillFromImpl, fillFromParms, fillFromParms, fillFromParms, fillImpl, getImplClass, getImplClass, getSchemaName, getSchemaType, getSchemaVersion, init_meta, markdown, markdown, newInstance, newInstance, setField, setSchemaType_doNotCall
public static java.lang.String[] fields
@API(help="Number of variables randomly sampled as candidates at each split. If set to -1, defaults to sqrt{p} for classification and p/3 for regression (where p is the # of predictors", gridable=true) public int mtries
@API(help="For binary classification: Build 2x as many trees (one per class) - can lead to higher accuracy.", level=expert) public boolean binomial_double_trees
@API(help="Row sample rate per tree (from 0.0 to 1.0)", gridable=true) public double sample_rate