public static final class PCAV3.PCAParametersV3 extends water.api.schemas3.ModelParametersSchemaV3<PCAModel.PCAParameters,PCAV3.PCAParametersV3>
Modifier and Type | Field and Description |
---|---|
boolean |
compute_metrics |
static java.lang.String[] |
fields |
boolean |
impute_missing |
int |
k |
int |
max_iterations |
PCAImplementation |
pca_impl |
PCAModel.PCAParameters.Method |
pca_method |
long |
seed |
DataInfo.TransformType |
transform |
boolean |
use_all_factor_levels |
auc_type, categorical_encoding, checkpoint, custom_distribution_func, custom_metric_func, distribution, export_checkpoints_dir, fold_assignment, fold_column, gainslift_bins, huber_alpha, ignore_const_cols, ignored_columns, keep_cross_validation_fold_assignment, keep_cross_validation_models, keep_cross_validation_predictions, max_categorical_levels, max_runtime_secs, model_id, nfolds, offset_column, parallelize_cross_validation, quantile_alpha, response_column, score_each_iteration, stopping_metric, stopping_rounds, stopping_tolerance, training_frame, tweedie_power, validation_frame, weights_column
Constructor and Description |
---|
PCAParametersV3() |
append_field_arrays, extractDeclaredApiParameters, fields, fillFromImpl, fillImpl, getAdditionalParameters, writeParametersJSON
createAndFillImpl, createImpl, extractVersionFromSchemaName, fillFromAny, fillFromBody, fillFromImpl, fillFromImpl, fillFromParms, fillFromParms, fillFromParms, fillImpl, getImplClass, getImplClass, getSchemaName, getSchemaType, getSchemaVersion, init_meta, markdown, markdown, newInstance, newInstance, setField, setSchemaType_doNotCall
public static java.lang.String[] fields
@API(help="Transformation of training data", values={"NONE","STANDARDIZE","NORMALIZE","DEMEAN","DESCALE"}, gridable=true) public DataInfo.TransformType transform
@API(help="Specify the algorithm to use for computing the principal components: GramSVD - uses a distributed computation of the Gram matrix, followed by a local SVD; Power - computes the SVD using the power iteration method (experimental); Randomized - uses randomized subspace iteration method; GLRM - fits a generalized low-rank model with L2 loss function and no regularization and solves for the SVD using local matrix algebra (experimental)", values={"GramSVD","Power","Randomized","GLRM"}) public PCAModel.PCAParameters.Method pca_method
@API(help="Specify the implementation to use for computing PCA (via SVD or EVD): MTJ_EVD_DENSEMATRIX - eigenvalue decompositions for dense matrix using MTJ; MTJ_EVD_SYMMMATRIX - eigenvalue decompositions for symmetric matrix using MTJ; MTJ_SVD_DENSEMATRIX - singular-value decompositions for dense matrix using MTJ; JAMA - eigenvalue decompositions for dense matrix using JAMA. References: JAMA - http://math.nist.gov/javanumerics/jama/; MTJ - https://github.com/fommil/matrix-toolkits-java/", values={"MTJ_EVD_DENSEMATRIX","MTJ_EVD_SYMMMATRIX","MTJ_SVD_DENSEMATRIX","JAMA"}) public PCAImplementation pca_impl
@API(help="Rank of matrix approximation", required=true, direction=INOUT, gridable=true) public int k
@API(help="Maximum training iterations", direction=INOUT, gridable=true) public int max_iterations
@API(help="RNG seed for initialization", direction=INOUT) public long seed
@API(help="Whether first factor level is included in each categorical expansion", direction=INOUT) public boolean use_all_factor_levels
@API(help="Whether to compute metrics on the training data", direction=INOUT) public boolean compute_metrics
@API(help="Whether to impute missing entries with the column mean", direction=INOUT) public boolean impute_missing