public static final class PSVMV3.PSVMParametersV3 extends water.api.schemas3.ModelParametersSchemaV3<PSVMModel.PSVMParameters,PSVMV3.PSVMParametersV3>
Modifier and Type | Field and Description |
---|---|
boolean |
disable_training_metrics |
double |
fact_threshold |
double |
feasible_threshold |
static java.lang.String[] |
fields |
double |
gamma |
double |
hyper_param |
hex.genmodel.algos.psvm.KernelType |
kernel_type |
int |
max_iterations |
double |
mu_factor |
double |
negative_weight |
double |
positive_weight |
double |
rank_ratio |
long |
seed |
double |
surrogate_gap_threshold |
double |
sv_threshold |
auc_type, categorical_encoding, checkpoint, custom_distribution_func, custom_metric_func, distribution, export_checkpoints_dir, fold_assignment, fold_column, gainslift_bins, huber_alpha, ignore_const_cols, ignored_columns, keep_cross_validation_fold_assignment, keep_cross_validation_models, keep_cross_validation_predictions, max_categorical_levels, max_runtime_secs, model_id, nfolds, offset_column, parallelize_cross_validation, quantile_alpha, response_column, score_each_iteration, stopping_metric, stopping_rounds, stopping_tolerance, training_frame, tweedie_power, validation_frame, weights_column
Constructor and Description |
---|
PSVMParametersV3() |
append_field_arrays, extractDeclaredApiParameters, fields, fillFromImpl, fillImpl, getAdditionalParameters, writeParametersJSON
createAndFillImpl, createImpl, extractVersionFromSchemaName, fillFromAny, fillFromBody, fillFromImpl, fillFromImpl, fillFromParms, fillFromParms, fillFromParms, fillImpl, getImplClass, getImplClass, getSchemaName, getSchemaType, getSchemaVersion, init_meta, markdown, markdown, newInstance, newInstance, setField, setSchemaType_doNotCall
public static final java.lang.String[] fields
@API(help="Penalty parameter C of the error term", gridable=true) public double hyper_param
@API(help="Type of used kernel", values="gaussian") public hex.genmodel.algos.psvm.KernelType kernel_type
@API(help="Coefficient of the kernel (currently RBF gamma for gaussian kernel, -1 means 1/#features)", gridable=true) public double gamma
@API(help="Desired rank of the ICF matrix expressed as an ration of number of input rows (-1 means use sqrt(#rows)).", gridable=true) public double rank_ratio
@API(help="Weight of positive (+1) class of observations") public double positive_weight
@API(help="Weight of positive (-1) class of observations") public double negative_weight
@API(help="Disable calculating training metrics (expensive on large datasets)") public boolean disable_training_metrics
@API(help="Threshold for accepting a candidate observation into the set of support vectors", level=secondary) public double sv_threshold
@API(help="Maximum number of iteration of the algorithm", level=secondary) public int max_iterations
@API(help="Convergence threshold of the Incomplete Cholesky Factorization (ICF)", level=expert) public double fact_threshold
@API(help="Convergence threshold for primal-dual residuals in the IPM iteration", level=expert) public double feasible_threshold
@API(help="Feasibility criterion of the surrogate duality gap (eta)", level=expert) public double surrogate_gap_threshold
@API(help="Increasing factor mu", level=expert) public double mu_factor
@API(help="Seed for pseudo random number generator (if applicable)", gridable=true) public long seed