public static final class StackedEnsembleV99.StackedEnsembleParametersV99 extends water.api.schemas3.ModelParametersSchemaV3<StackedEnsembleModel.StackedEnsembleParameters,StackedEnsembleV99.StackedEnsembleParametersV99>
Modifier and Type | Class and Description |
---|---|
static class |
StackedEnsembleV99.StackedEnsembleParametersV99.AlgorithmValuesProvider |
Modifier and Type | Field and Description |
---|---|
water.api.schemas3.KeyV3[] |
base_models |
water.api.schemas3.KeyV3.FrameKeyV3 |
blending_frame |
static java.lang.String[] |
fields |
boolean |
keep_levelone_frame |
Metalearner.Algorithm |
metalearner_algorithm |
hex.Model.Parameters.FoldAssignmentScheme |
metalearner_fold_assignment |
water.api.schemas3.FrameV3.ColSpecifierV3 |
metalearner_fold_column |
int |
metalearner_nfolds |
java.lang.String |
metalearner_params |
StackedEnsembleModel.StackedEnsembleParameters.MetalearnerTransform |
metalearner_transform |
long |
score_training_samples |
long |
seed |
auc_type, categorical_encoding, checkpoint, custom_distribution_func, custom_metric_func, distribution, export_checkpoints_dir, fold_assignment, fold_column, gainslift_bins, huber_alpha, ignore_const_cols, ignored_columns, keep_cross_validation_fold_assignment, keep_cross_validation_models, keep_cross_validation_predictions, max_categorical_levels, max_runtime_secs, model_id, nfolds, offset_column, parallelize_cross_validation, quantile_alpha, response_column, score_each_iteration, stopping_metric, stopping_rounds, stopping_tolerance, training_frame, tweedie_power, validation_frame, weights_column
Constructor and Description |
---|
StackedEnsembleParametersV99() |
Modifier and Type | Method and Description |
---|---|
StackedEnsembleV99.StackedEnsembleParametersV99 |
fillFromImpl(StackedEnsembleModel.StackedEnsembleParameters impl) |
StackedEnsembleModel.StackedEnsembleParameters |
fillImpl(StackedEnsembleModel.StackedEnsembleParameters impl) |
append_field_arrays, extractDeclaredApiParameters, fields, getAdditionalParameters, writeParametersJSON
createAndFillImpl, createImpl, extractVersionFromSchemaName, fillFromAny, fillFromBody, fillFromImpl, fillFromImpl, fillFromParms, fillFromParms, fillFromParms, fillImpl, getImplClass, getImplClass, getSchemaName, getSchemaType, getSchemaVersion, init_meta, markdown, markdown, newInstance, newInstance, setField, setSchemaType_doNotCall
public static java.lang.String[] fields
@API(level=critical, direction=INOUT, help="List of models or grids (or their ids) to ensemble/stack together. Grids are expanded to individual models. If not using blending frame, then models must have been cross-validated using nfolds > 1, and folds must be identical across models.", required=true) public water.api.schemas3.KeyV3[] base_models
@API(level=critical, direction=INOUT, valuesProvider=StackedEnsembleV99.StackedEnsembleParametersV99.AlgorithmValuesProvider.class, help="Type of algorithm to use as the metalearner. Options include \'AUTO\' (GLM with non negative weights; if validation_frame is present, a lambda search is performed), \'deeplearning\' (Deep Learning with default parameters), \'drf\' (Random Forest with default parameters), \'gbm\' (GBM with default parameters), \'glm\' (GLM with default parameters), \'naivebayes\' (NaiveBayes with default parameters), or \'xgboost\' (if available, XGBoost with default parameters).") public Metalearner.Algorithm metalearner_algorithm
@API(level=critical, direction=INOUT, help="Number of folds for K-fold cross-validation of the metalearner algorithm (0 to disable or >= 2).") public int metalearner_nfolds
@API(level=secondary, direction=INOUT, values={"AUTO","Random","Modulo","Stratified"}, help="Cross-validation fold assignment scheme for metalearner cross-validation. Defaults to AUTO (which is currently set to Random). The \'Stratified\' option will stratify the folds based on the response variable, for classification problems.") public hex.Model.Parameters.FoldAssignmentScheme metalearner_fold_assignment
@API(level=secondary, direction=INOUT, is_member_of_frames="training_frame", is_mutually_exclusive_with={"ignored_columns","response_column"}, help="Column with cross-validation fold index assignment per observation for cross-validation of the metalearner.") public water.api.schemas3.FrameV3.ColSpecifierV3 metalearner_fold_column
@API(level=critical, direction=INOUT, help="Transformation used for the level one frame.", values={"NONE","Logit"}) public StackedEnsembleModel.StackedEnsembleParameters.MetalearnerTransform metalearner_transform
@API(level=secondary, help="Keep level one frame used for metalearner training.") public boolean keep_levelone_frame
@API(help="Parameters for metalearner algorithm", direction=INOUT) public java.lang.String metalearner_params
@API(help="Frame used to compute the predictions that serve as the training frame for the metalearner (triggers blending mode if provided)", direction=INOUT) public water.api.schemas3.KeyV3.FrameKeyV3 blending_frame
@API(help="Seed for random numbers; passed through to the metalearner algorithm. Defaults to -1 (time-based random number)", gridable=true) public long seed
@API(help="Specify the number of training set samples for scoring. The value must be >= 0. To use all training samples, enter 0.", level=secondary, direction=INOUT) public long score_training_samples
public StackedEnsembleV99.StackedEnsembleParametersV99 fillFromImpl(StackedEnsembleModel.StackedEnsembleParameters impl)
fillFromImpl
in class water.api.schemas3.ModelParametersSchemaV3<StackedEnsembleModel.StackedEnsembleParameters,StackedEnsembleV99.StackedEnsembleParametersV99>
public StackedEnsembleModel.StackedEnsembleParameters fillImpl(StackedEnsembleModel.StackedEnsembleParameters impl)
fillImpl
in class water.api.schemas3.ModelParametersSchemaV3<StackedEnsembleModel.StackedEnsembleParameters,StackedEnsembleV99.StackedEnsembleParametersV99>