public static class ExtendedIsolationForestModel.ExtendedIsolationForestParameters
extends hex.Model.Parameters
Modifier and Type | Field and Description |
---|---|
boolean |
_disable_training_metrics
Disable calculating training metrics (expensive on large datasets).
|
int |
_extension_level
Maximum is N - 1 (N = numCols).
|
int |
_initial_score_interval
For _initial_score_interval milliseconds - score each iteration of the algorithm.
|
int |
_ntrees
Number of trees in the forest
|
int |
_sample_size
Number of randomly selected rows from original data before each tree build.
|
int |
_score_interval
After each _score_interval milliseconds - run scoring
But limit the scoring time consumption to 10% of whole training time.
|
int |
_score_tree_interval
Score every so many trees (no matter what)
|
_auc_type, _auto_rebalance, _auuc_nbins, _auuc_type, _balance_classes, _categorical_encoding, _check_constant_response, _checkpoint, _class_sampling_factors, _custom_distribution_func, _custom_metric_func, _cv_fold, _distribution, _export_checkpoints_dir, _fold_assignment, _fold_column, _gainslift_bins, _huber_alpha, _ignore_const_cols, _ignored_columns, _is_cv_model, _keep_cross_validation_fold_assignment, _keep_cross_validation_models, _keep_cross_validation_predictions, _keep_cross_validation_predictions_precision, _main_model_time_budget_factor, _max_after_balance_size, _max_categorical_levels, _max_confusion_matrix_size, _max_runtime_secs, _nfolds, _offset_column, _parallelize_cross_validation, _preprocessors, _pretrained_autoencoder, _quantile_alpha, _response_column, _score_each_iteration, _seed, _stopping_metric, _stopping_rounds, _stopping_tolerance, _train, _treatment_column, _tweedie_power, _valid, _weights_column, MAX_SUPPORTED_LEVELS
Constructor and Description |
---|
ExtendedIsolationForestParameters() |
Modifier and Type | Method and Description |
---|---|
java.lang.String |
algoName() |
java.lang.String |
fullName() |
java.lang.String |
javaName() |
long |
progressUnits() |
checksum, checksum, defaultDropConsCols, defaultStoppingTolerance, getCategoricalEncoding, getDependentKeys, getDistributionFamily, getFoldColumn, getMaxCategoricalLevels, getNonPredictors, getOffsetColumn, getOrMakeRealSeed, getResponseColumn, getTreatmentColumn, getUsedColumns, getWeightsColumn, hasCheckpoint, hasCustomMetricFunc, missingColumnsType, read_lock_frames, read_unlock_frames, setDistributionFamily, setTrain, train, valid
public int _ntrees
public int _extension_level
public int _sample_size
public int _score_tree_interval
public boolean _disable_training_metrics
public int _initial_score_interval
public int _score_interval
public java.lang.String algoName()
algoName
in class hex.Model.Parameters
public java.lang.String fullName()
fullName
in class hex.Model.Parameters
public java.lang.String javaName()
javaName
in class hex.Model.Parameters
public long progressUnits()
progressUnits
in class hex.Model.Parameters