public class DimensionReductionUtils
extends java.lang.Object
Constructor and Description |
---|
DimensionReductionUtils() |
Modifier and Type | Method and Description |
---|---|
static water.util.TwoDimTable |
createScoringHistoryTableDR(java.util.LinkedHashMap<java.lang.String,java.util.ArrayList> scoreTable,
java.lang.String tableName,
long startTime)
Create the scoring history for dimension reduction algorithms like PCA/SVD.
|
static void |
generateIPC(double[] std_deviation,
double totVar,
double[] vars,
double[] prop_var,
double[] cum_var)
This method will calculate the importance of principal components for PCA/GLRM methods.
|
static double[][] |
getTransformedEigenvectors(DataInfo dinfo,
double[][] vEigenIn)
This function will tranform the eigenvectors calculated for a matrix T(A) to the ones calculated for
matrix A.
|
public static void generateIPC(double[] std_deviation, double totVar, double[] vars, double[] prop_var, double[] cum_var)
std_deviation:
- array of singular valuestotVar:
- sum of squared singular valuesvars:
- array of singular values squaredprop_var:
- var[i]/totVar for each icum_var:
- cumulative sum of var[i]/totVar from index 0 to index i.public static water.util.TwoDimTable createScoringHistoryTableDR(java.util.LinkedHashMap<java.lang.String,java.util.ArrayList> scoreTable, java.lang.String tableName, long startTime)
scoreTable:
- HashMap containing column headers and arraylist containing the history of values collected.tableName:
- title/name of your scoring tablestartTime:
- time your model building job was first started.public static double[][] getTransformedEigenvectors(DataInfo dinfo, double[][] vEigenIn)
dinfo
- vEigenIn
-