public static class ModelMetricsRegression.MetricBuilderRegression<T extends ModelMetricsRegression.MetricBuilderRegression<T>> extends ModelMetricsSupervised.MetricBuilderSupervised<T>
Modifier and Type | Field and Description |
---|---|
protected double |
_loglikelihood |
_domain, _nclasses
_CMetricScoringTask, _count, _customMetric, _sumsqe, _wcount, _work, _wY, _wYY
Constructor and Description |
---|
MetricBuilderRegression() |
MetricBuilderRegression(Distribution dist) |
Modifier and Type | Method and Description |
---|---|
ModelMetricsRegression |
makeModelMetrics(Model m,
Frame f,
Frame adaptedFrame,
Frame preds)
Having computed a MetricBuilder, this method fills in a ModelMetrics
|
double[] |
perRow(double[] ds,
float[] yact,
double w,
double o,
Model m) |
double[] |
perRow(double[] ds,
float[] yact,
Model m) |
void |
reduce(T mb) |
cachePrediction, makePredictionCache, postGlobal, postGlobal, reduce, reduceForCV, setCustomMetric, weightedSigma
asBytes, clone, copyOver, frozenType, read, readExternal, readJSON, reloadFromBytes, toJsonBytes, toJsonString, write, writeExternal, writeJSON
public MetricBuilderRegression()
public MetricBuilderRegression(Distribution dist)
public double[] perRow(double[] ds, float[] yact, Model m)
perRow
in class ModelMetrics.MetricBuilder<T extends ModelMetricsRegression.MetricBuilderRegression<T>>
public double[] perRow(double[] ds, float[] yact, double w, double o, Model m)
perRow
in class ModelMetrics.MetricBuilder<T extends ModelMetricsRegression.MetricBuilderRegression<T>>
public void reduce(T mb)
reduce
in class ModelMetrics.MetricBuilder<T extends ModelMetricsRegression.MetricBuilderRegression<T>>
public ModelMetricsRegression makeModelMetrics(Model m, Frame f, Frame adaptedFrame, Frame preds)
ModelMetrics.MetricBuilder
makeModelMetrics
in class ModelMetrics.MetricBuilder<T extends ModelMetricsRegression.MetricBuilderRegression<T>>
m
- Modelf
- Scored FrameadaptedFrame
- Adapted Framepreds
- Predictions of m on f (optional) @return Filled Model Metrics object