public class ModelMetricsRegression extends ModelMetricsSupervised
Modifier and Type | Class and Description |
---|---|
static class |
ModelMetricsRegression.MetricBuilderRegression<T extends ModelMetricsRegression.MetricBuilderRegression<T>> |
ModelMetricsSupervised.MetricBuilderSupervised<T extends ModelMetricsSupervised.MetricBuilderSupervised<T>>
ModelMetrics.MetricBuilder<T extends ModelMetrics.MetricBuilder<T>>
Modifier and Type | Field and Description |
---|---|
double |
_AIC |
double |
_loglikelihood |
double |
_mean_absolute_error |
double |
_mean_residual_deviance |
double |
_root_mean_squared_log_error |
_domain, _sigma
_custom_metric, _description, _MSE, _nobs, _scoring_time
Constructor and Description |
---|
ModelMetricsRegression(Model model,
Frame frame,
long nobs,
double mse,
double sigma,
double mae,
double rmsle,
double meanResidualDeviance,
CustomMetric customMetric) |
ModelMetricsRegression(Model model,
Frame frame,
long nobs,
double mse,
double sigma,
double mae,
double rmsle,
double meanResidualDeviance,
CustomMetric customMetric,
double loglikelihood,
double aic) |
Modifier and Type | Method and Description |
---|---|
double |
aic() |
static double |
computeHuberDelta(Vec actual,
Vec preds,
Vec weight,
double huberAlpha) |
static ModelMetricsRegression |
getFromDKV(Model model,
Frame frame) |
double |
loglikelihood() |
double |
mae() |
static ModelMetricsRegression |
make(Vec predicted,
Vec actual,
hex.genmodel.utils.DistributionFamily family) |
static ModelMetricsRegression |
make(Vec predicted,
Vec actual,
Vec weights,
hex.genmodel.utils.DistributionFamily family)
Build a Regression ModelMetrics object from predicted and actual targets
|
double |
mean_residual_deviance() |
double |
residual_deviance() |
double |
rmsle() |
java.lang.String |
toString() |
r2
appendToStringMetrics, auc_obj, buildKey, buildKey, calcVarImp, calcVarImp, calcVarImp, calcVarImp, checksum_impl, cm, custom_increasing, custom, deepCloneWithDifferentModelAndFrame, defaultModelMetrics, frame, getAllowedMetrics, getMetricFromModel, getMetricFromModelMetric, hr, isForFrame, isForModel, model, mse, residual_degrees_of_freedom, rmse, setModelKey, sortModelsByMetric, sortModelsByMetric, withDescription, withModelAndFrame
checksum_impl, checksum, checksum, getKey, makeSchema, readAll_impl, readAll, remove_impl, remove_impl, remove_self_key_impl, remove, remove, remove, remove, remove, remove, removeQuietly, writeAll_impl, writeAll
asBytes, clone, copyOver, frozenType, read, readExternal, readJSON, reloadFromBytes, toJsonBytes, toJsonString, write, writeExternal, writeJSON
public final double _mean_residual_deviance
public final double _AIC
public final double _loglikelihood
public final double _mean_absolute_error
public final double _root_mean_squared_log_error
public ModelMetricsRegression(Model model, Frame frame, long nobs, double mse, double sigma, double mae, double rmsle, double meanResidualDeviance, CustomMetric customMetric, double loglikelihood, double aic)
public ModelMetricsRegression(Model model, Frame frame, long nobs, double mse, double sigma, double mae, double rmsle, double meanResidualDeviance, CustomMetric customMetric)
public double residual_deviance()
mean_residual_deviance()
for all algos except GLM, for which it means "total residual deviance".public double loglikelihood()
public double aic()
public double mean_residual_deviance()
public double mae()
public double rmsle()
public static ModelMetricsRegression getFromDKV(Model model, Frame frame)
public java.lang.String toString()
toString
in class ModelMetricsSupervised
public static ModelMetricsRegression make(Vec predicted, Vec actual, hex.genmodel.utils.DistributionFamily family)
public static ModelMetricsRegression make(Vec predicted, Vec actual, Vec weights, hex.genmodel.utils.DistributionFamily family)
predicted
- A Vec containing predicted valuesactual
- A Vec containing the actual target valuesweights
- A Vec containing the observation weights (optional)