public class GlrmMojoModel extends MojoModel
Modifier and Type | Field and Description |
---|---|
double |
_accuracyEps |
double[] |
_allAlphas |
double[][] |
_archetypes |
double[][] |
_archetypes_raw |
int[] |
_catOffsets |
double |
_gammax |
GlrmInitialization |
_init |
int |
_iterNumber |
GlrmLoss[] |
_losses |
int |
_ncats |
int |
_ncolA |
int |
_ncolX |
int |
_ncolY |
int |
_nnums |
double[] |
_normMul |
double[] |
_normSub |
int |
_nrowY |
int |
_numAlphaFactors |
int[] |
_numLevels |
int[] |
_permutation |
long |
_rcnt |
GlrmRegularizer |
_regx |
boolean |
_reverse_transform |
long |
_seed |
boolean |
_transposed |
_algoName, _balanceClasses, _category, _defaultThreshold, _h2oVersion, _modelAttributes, _modelClassDistrib, _modelDescriptor, _mojo_version, _nclasses, _nfeatures, _priorClassDistrib, _reproducibilityInformation, _supervised, _uuid
_domains, _foldColumn, _names, _offsetColumn, _responseColumn, _treatmentColumn
Constructor and Description |
---|
GlrmMojoModel(java.lang.String[] columns,
java.lang.String[][] domains,
java.lang.String responseColumn) |
Modifier and Type | Method and Description |
---|---|
double |
applyBestAlpha(double[] u,
double[] x,
double[] grad,
double[] a,
double oldObj,
java.util.Random random)
This method will try a bunch of arbitray alpha values and pick the best to return which get the best obj
improvement.
|
static int |
getCatCidx(int j,
int level,
int[] numLevels,
int[] catOffsets) |
java.util.EnumSet<ModelCategory> |
getModelCategories()
Override this for models that may produce results in different categories.
|
static int |
getNumCidx(int j,
int[] catOffsets) |
java.lang.String[] |
getOutputNames() |
int |
getPredsSize(ModelCategory mc) |
double[] |
getRowData(double[] row) |
static double[] |
impute_data(double[] xfactor,
double[] preds,
int nnums,
int ncats,
int[] permutation,
boolean reverse_transform,
double[] normMul,
double[] normSub,
GlrmLoss[] losses,
boolean transposed,
double[][] archetypes_raw,
int[] catOffsets,
int[] numLevels) |
static double[] |
initializeAlphas(int numAlpha) |
static double[] |
lmulCatBlock(double[] x,
int j,
int[] numLevels,
boolean transposed,
double[][] archetypes_raw,
int[] catOffsets) |
static double |
lmulNumCol(double[] x,
int j,
boolean transposed,
double[][] archetypes_raw,
int[] catOffsets) |
static int |
rank(boolean transposed,
double[][] archetypes_raw) |
double[] |
score0(double[] row,
double[] preds)
This function corresponds to the DimReduction model category
|
double[] |
score0(double[] row,
double[] preds,
long seedValue) |
getModelCategory, getUUID, isSupervised, load, load, load, nclasses, nfeatures
bitSetContains, bitSetIsInRange, calibrateClassProbabilities, convertDouble2Float, correctProbabilities, createAuxKey, features, GBM_rescale, getCategoricalEncoding, getColIdx, getDomainValues, getDomainValues, getDomainValues, getHeader, getNames, getNumClasses, getNumCols, getNumResponseClasses, getOffsetName, getOrigDomainValues, getOrigNames, getOrigNumCols, getOrigProjectionArray, getOutputDomains, getPrediction, getPredictionBinomial, getPredictionMultinomial, getPredsSize, getResponseIdx, getResponseName, GLM_identityInv, GLM_inverseInv, GLM_logInv, GLM_logitInv, GLM_ologitInv, GLM_tweedieInv, img2pixels, internal_threadSafeInstance, isAutoEncoder, isClassifier, KMeans_closest, KMeans_distance, KMeans_distance, KMeans_distances, Kmeans_preprocessData, Kmeans_preprocessData, KMeans_simplex, log_rescale, mapEnum, nCatFeatures, requiresOffset, score0, setCats, setCats, setInput, setInput
public int _ncolA
public int _ncolX
public int _ncolY
public int _nrowY
public double[][] _archetypes
public double[][] _archetypes_raw
public int[] _numLevels
public int[] _catOffsets
public int[] _permutation
public GlrmLoss[] _losses
public GlrmRegularizer _regx
public double _gammax
public GlrmInitialization _init
public int _ncats
public int _nnums
public double[] _normSub
public double[] _normMul
public long _seed
public boolean _transposed
public boolean _reverse_transform
public double _accuracyEps
public int _iterNumber
public long _rcnt
public int _numAlphaFactors
public double[] _allAlphas
public GlrmMojoModel(java.lang.String[] columns, java.lang.String[][] domains, java.lang.String responseColumn)
public java.util.EnumSet<ModelCategory> getModelCategories()
GenModel
getModelCategories
in interface IGenModel
getModelCategories
in class GenModel
public int getPredsSize(ModelCategory mc)
getPredsSize
in class GenModel
public static double[] initializeAlphas(int numAlpha)
public double[] score0(double[] row, double[] preds, long seedValue)
public double[] getRowData(double[] row)
public double applyBestAlpha(double[] u, double[] x, double[] grad, double[] a, double oldObj, java.util.Random random)
u
- x
- grad
- a
- oldObj
- random
- public double[] score0(double[] row, double[] preds)
public static double[] impute_data(double[] xfactor, double[] preds, int nnums, int ncats, int[] permutation, boolean reverse_transform, double[] normMul, double[] normSub, GlrmLoss[] losses, boolean transposed, double[][] archetypes_raw, int[] catOffsets, int[] numLevels)
public static int getNumCidx(int j, int[] catOffsets)
public static double lmulNumCol(double[] x, int j, boolean transposed, double[][] archetypes_raw, int[] catOffsets)
public static int getCatCidx(int j, int level, int[] numLevels, int[] catOffsets)
public static double[] lmulCatBlock(double[] x, int j, int[] numLevels, boolean transposed, double[][] archetypes_raw, int[] catOffsets)
public static int rank(boolean transposed, double[][] archetypes_raw)
public java.lang.String[] getOutputNames()
getOutputNames
in class GenModel