java.lang.String[] _names
java.lang.String[][] _domains
java.lang.String _responseColumn
java.lang.String _offsetColumn
java.lang.String _foldColumn
java.lang.String _treatmentColumn
GenMunger.Step<T>[] _steps
java.lang.String[] _names
java.lang.String[] _types
java.lang.String[] _outNames
java.util.HashMap<K,V> _params
java.lang.String _algoName
java.lang.String _h2oVersion
ModelCategory _category
java.lang.String _uuid
boolean _supervised
int _nfeatures
int _nclasses
boolean _balanceClasses
double _defaultThreshold
double[] _priorClassDistrib
double[] _modelClassDistrib
double _mojo_version
ModelDescriptor _modelDescriptor
ModelAttributes _modelAttributes
Table[] _reproducibilityInformation
double[] _coef
java.util.HashMap<K,V> _strata
int _strata_len
double[][] _x_mean_cat
double[][] _x_mean_num
int[] _cat_offsets
int _cats
double[] _lpBase
boolean _useAllFactorLevels
int _nums
int[] _interactions_1
int[] _interactions_2
int[] _interaction_targets
boolean[] _is_enum_1
java.util.HashSet<E> _interaction_column_index
java.util.HashMap<K,V> _interaction_column_domains
hex.genmodel.algos.coxph.CoxPHMojoModel.InteractionTypes[] _interaction_types
int[] _num_offsets
int _mini_batch_size
int _nums
int _cats
int[] _catoffsets
double[] _normmul
double[] _normsub
double[] _normrespmul
double[] _normrespsub
boolean _use_all_factor_levels
java.lang.String _activation
java.lang.String[] _allActivations
boolean _imputeMeans
int[] _units
double[] _all_drop_out_ratios
DeeplearningMojoModel.StoreWeightsBias[] _weightsAndBias
int[] _catNAFill
int _numLayers
DistributionFamily _family
java.lang.String _genmodel_encoding
java.lang.String[] _orig_names
java.lang.String[][] _orig_domain_values
double[] _orig_projection_array
float[] _wValues
double[] _bValues
boolean _binomial_double_trees
MojoModel _metaLearner
boolean _useLogitMetaLearnerTransform
hex.genmodel.algos.ensemble.StackedEnsembleMojoModel.StackedEnsembleMojoSubModel[] _baseModels
int _baseModelNum
boolean _classifier
LinkFunctionType _link_function
boolean _useAllFactorLevels
int _cats
int[] _catNAFills
int[] _catOffsets
int _nums
int _numsCenter
double[] _numNAFillsCenter
boolean _meanImputation
double[] _beta_no_center
double[] _beta_center
double[][] _beta_multinomial
double[][] _beta_multinomial_no_center
double[][] _beta_multinomial_center
int[] _spline_orders
int[] _spline_orders_sorted
DistributionFamily _family
java.lang.String[][] _gam_columns
java.lang.String[][] _gam_columns_sorted
int[] _d
int[] _m
int[] _M
int[] _gamPredSize
int _num_gam_columns
int[] _bs
int[] _bs_sorted
int[] _num_knots
int[] _num_knots_sorted
int[] _num_knots_sorted_minus1
int[] _numBasisSize
int[] _numMSBasisSize
int[] _num_knots_TP
double[][][] _knots
double[][][] _binvD
double[][][] _zTranspose
double[][][] _zTransposeCS
java.lang.String[][] _gamColNames
java.lang.String[][] _gamColNamesCenter
java.lang.String[] _names_no_centering
int _totFeatureSize
int _betaSizePerClass
int _betaCenterSizePerClass
double _tweedieLinkPower
double[][] _hj
int _numExpandedGamCols
int _numExpandedGamColsCenter
int _lastClass
int[][][] _allPolyBasisList
int _numTPCol
int _numCSCol
int _numISCol
int _numMSCol
int[] _tpDistzCSSize
boolean[] _dEven
double[] _constantTerms
double[][] _gamColMeansRaw
double[][] _oneOGamColStd
boolean _standardize
ISplines[] _iSplineBasis
MSplines[] _mSplineBasis
boolean _trueMultinomial
GamMojoModelBase _m
double[] _knotsWDuplicates
int _order
int _numIBasis
NBSplinesTypeII _bSplines
hex.genmodel.algos.gam.ISplines.ISplineBasis[] _iSplines
double[] _knotsWDuplicates
int _order
int _numMBasis
NBSplinesTypeI.MSplineBasis[] _mSplines
int _order
double[][] _nodeCoeffs
double[] _coeffLeft
double[] _coeffRight
double[] _knots
double _commonConst
NBSplinesTypeI _left
NBSplinesTypeI _right
int _totBasisFuncs
int _nKnots
double[] _knots
double[] _numerator
double[] _oneOverDenominator
NBSplinesTypeI.MSplineBasis _first
NBSplinesTypeI.MSplineBasis _second
double _constant
int _order
int _nKnots
double[] _knots
int _totBasisFuncs
NBSplinesTypeII.BSplineBasis[] _basisFuncs
double[] _knots
double[] _numerator
double[] _oneOverDenominator
NBSplinesTypeII.BSplineBasis _first
NBSplinesTypeII.BSplineBasis _second
DistributionFamily _family
LinkFunctionType _link_function
double _init_f
java.lang.String _link
double _tweedieLinkPower
hex.genmodel.algos.glm.GlmMojoModel.Function1 _linkFn
boolean _binomial
boolean _useAllFactorLevels
int _cats
int[] _catModes
int[] _catOffsets
int _nums
double[] _numMeans
boolean _meanImputation
double[] _beta
java.lang.String _family
boolean _versionSupportOffset
double _dispersion_estimated
int P
int noff
int P
int noff
int lastClass
int[] icptIndices
int _ncolA
int _ncolX
int _ncolY
int _nrowY
double[][] _archetypes
double[][] _archetypes_raw
int[] _numLevels
int[] _catOffsets
int[] _permutation
GlrmLoss[] _losses
GlrmRegularizer _regx
double _gammax
GlrmInitialization _init
int _ncats
int _nnums
double[] _normSub
double[] _normMul
long _seed
boolean _transposed
boolean _reverse_transform
double _accuracyEps
int _iterNumber
long _rcnt
int _numAlphaFactors
double[] _allAlphas
int _min_path_length
int _max_path_length
boolean _outputAnomalyFlag
int _ntrees
long _sample_size
byte[][] _compressedTrees
ScoreIsolationTree _scoreIsolationTree
double _min_x
double _max_x
double[] _thresholds_x
double[] _thresholds_y
IsotonicCalibrator _isotonic_calibrator
boolean _standardize
double[][] _centers
double[] _means
double[] _mults
int[] _modes
double[][] _eigenvectors_raw
int[] _catOffsets
int[] _permutation
int _ncats
int _nnums
double[] _normSub
double[] _normMul
boolean _use_all_factor_levels
java.lang.String _pca_method
java.lang.String _pca_impl
int _k
int _eigenVectorSize
MojoModel _mainModel
int[] _sourceRowIndices
int[] _targetMainModelRowIndices
int _generatedColumnCount
hex.genmodel.algos.pipeline.MojoPipeline.PipelineSubModel[] _models
double _gamma
int _featureIndex
MojoCondition.Type _type
MojoCondition.Operator _operator
java.lang.String _featureName
boolean _NAsIncluded
java.lang.String _languageCondition
double _numThreshold
java.lang.String[] _languageCatThreshold
int[] _catThreshold
MojoCondition[] _conditions
double _predictionValue
java.lang.String _languageRule
double _coefficient
java.lang.String _varName
double _support
MojoRule[][][] _orderedRules
MojoModel _linearModel
MojoRuleEnsemble _ruleEnsemble
int _depth
int _ntrees
RuleFitMojoModel.ModelType _modelType
java.lang.String[] _dataFromRulesCodes
java.lang.String _weightsColumn
java.lang.String[] _linearNames
boolean meanImputation
double[] weights
double[] means
double interceptor
double defaultThreshold
double threshold
java.lang.String[] _from
java.lang.String[] _to
java.util.Map<K,V> _encodingMap
java.util.Map<K,V> priors
int _nclasses
java.util.Map<K,V> _encodingMaps
java.util.Map<K,V> _columnNameToIdx
java.util.Map<K,V> _teColumn2HasNAs
boolean _withBlending
double _inflectionPoint
double _smoothing
java.util.List<E> _inencMapping
java.util.List<E> _inoutMapping
java.util.List<E> _nonPredictors
java.util.Map<K,V> _encodingsByCol
boolean _keepOriginalCategoricalColumns
boolean _imputeUnknownLevels
int _ncontribs
java.lang.String[] _contribution_names
TreeSHAPPredictor<R> _treeSHAPPredictor
int _workspaceSize
ScoreTree _scoreTree
int _ntree_groups
_ntree_groups
is the number of trees requested by the user. For
binomial case or regression this is also the total number of trees
trained; however in multinomial case each requested "tree" is actually
represented as a group of trees, with _ntrees_per_group
trees
in each group. Each of these individual trees assesses the likelihood
that a given observation belongs to class A, B, C, etc. of a
multiclass response.int _ntrees_per_group
byte[][] _compressed_trees
byte[]
array. The
trees are logically grouped into a rectangular grid of dimensions
SharedTreeMojoModel._ntree_groups
x SharedTreeMojoModel._ntrees_per_group
, however physically
they are stored as 1-dimensional list, and an [i, j]
logical
tree is mapped to the index SharedTreeMojoModel.treeIndex(int, int)
.byte[][] _compressed_trees_aux
byte[]
array.double[] _calib_glm_beta
IsotonicCalibrator _isotonic_calibrator
java.lang.String _genmodel_encoding
java.lang.String[] _orig_names
java.lang.String[][] _orig_domain_values
double[] _orig_projection_array
int rootNodeId
ai.h2o.algos.tree.INode<T>[] nodes
ai.h2o.algos.tree.INodeStat[] stats
float expectedTreeValue
TreeSHAPPredictor<R>[] _predictors
float _initPred
int _wsMakerIndex
double[] _thresholds
int _vecSize
java.util.HashMap<K,V> _embeddings
VariableImportances _variableImportances
Table _modelSummary
Table _scoring_history
MojoModelMetrics _trainingMetrics
MojoModelMetrics _validation_metrics
MojoModelMetrics _cross_validation_metrics
Table _cross_validation_metrics_summary
ModelParameter[] _model_parameters
Table _coefficients_table
VariableImportances _variableImportances
VariableImportances _variableImportances
java.lang.String _tableHeader
java.lang.String _tableDescription
java.lang.String[] _rowHeaders
java.lang.String[] _colHeaders
Table.ColumnType[] _colTypes
java.lang.Object[][] _cellValues
java.lang.String _colHeaderForRowHeaders
java.lang.String[] _colFormats
java.lang.String[] _variables
double[] _importances
long _frame_checksum
java.lang.String _description
java.lang.String _model_category
long _scoring_time
java.lang.String _custom_metric_name
double _custom_metric_value
double _r2
double _mae
double _MSE
double _RMSE
long _nobs
double _mean_score
double _mean_normalized_score
double _auc
double _pr_auc
double _gini
double _mean_per_class_error
double _logloss
Table _gains_lift_table
Table _thresholds_and_metric_scores
Table _max_criteria_and_metric_scores
Table _confusion_matrix
long _nullDegreesOfFreedom
long _residualDegreesOfFreedom
double _resDev
double _nullDev
double _AIC
double _loglikelihood
long _nullDegreesOfFreedom
long _residualDegreesOfFreedom
double _resDev
double _nullDev
double _AIC
double _loglikelihood
long _nullDegreesOfFreedom
long _residualDegreesOfFreedom
double _resDev
double _nullDev
double _AIC
double _loglikelihood
double _mean_residual_deviance
double _root_mean_squared_log_error
double _concordance
long _concordant
long _discordant
long _tied_y
long _nullDegreesOfFreedom
long _residualDegreesOfFreedom
double _resDev
double _nullDev
double _AIC
double _loglikelihood
double _sigma
java.lang.String columnName
java.lang.String[] is_member_of_frames
java.lang.String columnName
double shapleyContribution
java.lang.String key
double value
java.lang.String name
java.lang.String label
java.lang.String help
boolean required
java.lang.String type
java.lang.Object default_value
java.lang.Object actual_value
java.lang.Object input_value
java.lang.String level
java.lang.String[] values
java.lang.String[] is_member_of_frames
java.lang.String[] is_mutually_exclusive_with
boolean gridable
java.lang.String name
ParameterKey.Type type
java.lang.String URL
java.lang.String _a
java.lang.String _b
java.lang.String _h2oVersion
ModelCategory _category
java.lang.String _uuid
boolean _supervised
int _nfeatures
int _nclasses
boolean _balanceClasses
double _defaultThreshold
double[] _priorClassDistrib
double[] _modelClassDistrib
java.lang.String _offsetColumn
java.lang.String _foldColumn
java.lang.String _weightsColumn
java.lang.String _treatmentColumn
java.lang.String[][] _domains
java.lang.String[][] _origDomains
java.lang.String[] _names
java.lang.String[] _origNames
java.lang.String _algoName
java.lang.String _fullAlgoName
ModelCategory _category
boolean _supervised
int _nfeatures
int _nclasses
java.lang.String _offsetColumn
java.lang.String[][] _domains
java.lang.String[][] _origDomains
java.lang.String[] _names
java.lang.String[] _origNames
java.lang.String columnName
int targetIndex
java.util.Map<K,V> domainMap
int binaryCategorySizes
GenModel m
RowToRawDataConverter rowDataConverter
boolean useExtendedOutput
boolean enableLeafAssignment
boolean enableGLRMReconstruct
boolean enableStagedProbabilities
boolean enableContributions
int glrmIterNumber
PredictContributions predictContributions
java.lang.String columnName
int targetIndex
java.util.Map<K,V> domainMap
double[] projectionEigenVec
java.lang.String columnName
int targetIndex
java.util.Map<K,V> domainMap
java.lang.String columnName
int targetIndex
java.util.Map<K,V> domainMap
int targetIndex
java.util.Map<K,V> domainMap
java.lang.String columnName
int targetIndex
java.util.Map<K,V> domainMap
java.util.Map<K,V> _modelColumnNameToIndexMap
java.util.Map<K,V> _domainMap
EasyPredictModelWrapper.ErrorConsumer _errorConsumer
boolean _convertUnknownCategoricalLevelsToNa
boolean _convertInvalidNumbersToNa
java.util.Map<K,V> dataTransformationErrorsCountPerColumn
java.util.Map<K,V> unknownCategoricalsPerColumn
java.util.Map<K,V> unseenCategoricalsCollector
boolean collectUnseenCategoricals
java.lang.String columnName
java.lang.String unknownLevel
java.lang.Boolean isAnomaly
double score
double normalizedScore
java.lang.String[] leafNodeAssignments
int[] leafNodeAssignmentIds
double[] stageProbabilities
double[] original
double[] reconstructed
RowData reconstructedRowData
double mse
int labelIndex
java.lang.String label
double[] classProbabilities
model.getDomainValues(model.getResponseIdx())"Domain" is the internal H2O term for level names. The values in this array may be Double.NaN, which means NA (this will happen with GLM, for example, if one of the input values for a new data point is NA). If they are valid numeric values, then they will sum up to 1.0.
double[] calibratedClassProbabilities
java.lang.String[] leafNodeAssignments
int[] leafNodeAssignmentIds
double[] stageProbabilities
float[] contributions
int cluster
double[] distances
double value
double[] dimensions
double[] reconstructed
int cluster
double[] reasonCodes
int labelIndex
java.lang.String label
double[] classProbabilities
model.getDomainValues(model.getResponseIdx())"Domain" is the internal H2O term for level names. The values in this array may be Double.NaN, which means NA. If they are valid numeric values, then they will sum up to 1.0.
java.lang.String[] leafNodeAssignments
int[] leafNodeAssignmentIds
double[] stageProbabilities
int labelIndex
java.lang.String label
double[] classProbabilities
model.getDomainValues(model.getResponseIdx())"Domain" is the internal H2O term for level names. The values in this array may be Double.NaN, which means NA. If they are valid numeric values, then they will sum up to 1.0.
double value
java.lang.String[] leafNodeAssignments
int[] leafNodeAssignmentIds
double[] stageProbabilities
float[] contributions
double[] transformations
double[] predictions
java.util.HashMap<K,V> wordEmbeddings