public final class ExtendedIsolationForestMojoModel extends MojoModel
| Modifier and Type | Field and Description | 
|---|---|
static int | 
LEAF  | 
static int | 
NODE  | 
_algoName, _balanceClasses, _category, _defaultThreshold, _h2oVersion, _modelAttributes, _modelClassDistrib, _modelDescriptor, _mojo_version, _nclasses, _nfeatures, _priorClassDistrib, _reproducibilityInformation, _supervised, _uuid_domains, _foldColumn, _names, _offsetColumn, _responseColumn, _treatmentColumn| Constructor and Description | 
|---|
ExtendedIsolationForestMojoModel(java.lang.String[] columns,
                                java.lang.String[][] domains,
                                java.lang.String responseColumn)  | 
| Modifier and Type | Method and Description | 
|---|---|
static double | 
anomalyScore(double pathLength,
            long sample_size)
Anomaly score computation comes from Equation 1 in paper 
 | 
static double | 
averagePathLengthOfUnsuccessfulSearch(long n)
Gives the average path length of unsuccessful search in BST. 
 | 
java.lang.String[] | 
getOutputNames()  | 
int | 
getPredsSize()
Returns the expected size of preds array which is passed to `predict(double[], double[])` function. 
 | 
static int | 
leftChildIndex(int i)  | 
void | 
postInit()  | 
static int | 
rightChildIndex(int i)  | 
double[] | 
score0(double[] row,
      double[] preds)
Subclasses implement the scoring logic. 
 | 
double[] | 
score0(double[] row,
      double offset,
      double[] preds)  | 
static double | 
scoreTree0(byte[] isolationTree,
          double[] row)  | 
getModelCategory, getUUID, isSupervised, load, load, load, nclasses, nfeaturesbitSetContains, bitSetIsInRange, calibrateClassProbabilities, convertDouble2Float, correctProbabilities, createAuxKey, features, GBM_rescale, getCategoricalEncoding, getColIdx, getDomainValues, getDomainValues, getDomainValues, getHeader, getModelCategories, getNames, getNumClasses, getNumCols, getNumResponseClasses, getOffsetName, getOrigDomainValues, getOrigNames, getOrigNumCols, getOrigProjectionArray, getOutputDomains, getPrediction, getPredictionBinomial, getPredictionMultinomial, getPredsSize, getResponseIdx, getResponseName, GLM_identityInv, GLM_inverseInv, GLM_logInv, GLM_logitInv, GLM_ologitInv, GLM_tweedieInv, img2pixels, internal_threadSafeInstance, isAutoEncoder, isClassifier, KMeans_closest, KMeans_distance, KMeans_distance, KMeans_distances, Kmeans_preprocessData, Kmeans_preprocessData, KMeans_simplex, log_rescale, mapEnum, nCatFeatures, requiresOffset, setCats, setCats, setInput, setInputpublic static final int NODE
public static final int LEAF
public ExtendedIsolationForestMojoModel(java.lang.String[] columns,
                                        java.lang.String[][] domains,
                                        java.lang.String responseColumn)
public void postInit()
public double[] score0(double[] row,
                       double[] preds)
GenModelpublic double[] score0(double[] row,
                       double offset,
                       double[] preds)
public int getPredsSize()
GenModelgetPredsSize in interface IGeneratedModelgetPredsSize in class GenModelpublic java.lang.String[] getOutputNames()
getOutputNames in class GenModelpublic static double scoreTree0(byte[] isolationTree,
                                double[] row)
public static int leftChildIndex(int i)
public static int rightChildIndex(int i)
public static double anomalyScore(double pathLength,
                                  long sample_size)
pathLength - path from root to leafpublic static double averagePathLengthOfUnsuccessfulSearch(long n)
n - number of elements