Using the config.toml File

Admins can edit a config.toml file when starting the Driverless AI Docker image. The config.toml file includes all possible configuration options that would otherwise be specified in the nvidia-docker run command. This file is located in a folder on the container. You can make updates to environment variables directly in this file. Driverless AI will use the updated config.toml file when starting from native installs. Docker users can specify that updated config.toml file when starting Driverless AI Docker image.

Configuration Override Chain

The configuration engine reads and overrides variables in the following order:

  1. h2oai/config/config.toml - This is an internal file that is not visible.

  2. config.toml - Place this file in a folder or mount it in a Docker container and specify the path in the “DRIVERLESS_AI_CONFIG_FILE” environment variable.

  3. Environment variable - Configuration variables can also be provided as environment variables. They must have the prefix DRIVERLESS_AI_ followed by the variable name in all caps. For example, “authentication_method” can be provided as “DRIVERLESS_AI_AUTHENTICATION_METHOD”.

Docker Image Users

  1. Copy the config.toml file from inside the Docker image to your local filesystem.

# Make a config directory
mkdir config

# Copy the config.toml file to the new config directory.
nvidia-docker run \
  --pid=host \
  --rm \
  --init \
  -u `id -u`:`id -g` \
  -v `pwd`/config:/config \
  --entrypoint bash \
  h2oai/dai-centos7-x86_64:TAG
  -c "cp /etc/dai/config.toml /config"
  1. Edit the desired variables in the config.toml file. Save your changes when you are done.

  2. Start Driverless AI with the DRIVERLESS_AI_CONFIG_FILE environment variable. Make sure this points to the location of the edited config.toml file so that the software finds the configuration file.

nvidia-docker run \
  --pid=host \
  --init \
  --rm \
  --shm-size=256m \
  -u `id -u`:`id -g` \
  -p 12345:12345 \
  -e DRIVERLESS_AI_CONFIG_FILE="/config/config.toml" \
  -v `pwd`/config:/config \
  -v `pwd`/data:/data \
  -v `pwd`/log:/log \
  -v `pwd`/license:/license \
  -v `pwd`/tmp:/tmp \
  h2oai/dai-centos7-x86_64:TAG

Native Install Users

Native installs include DEBs, RPMs, and TAR SH installs.

  1. Export the Driverless AI config.toml file or add it to ~/.bashrc. For example:

export DRIVERLESS_AI_CONFIG_FILE=“/config/config.toml”
  1. Edit the desired variables in the config.toml file. Save your changes when you are done.

  2. Start Driverless AI. Note that the command used to start Driverless AI varies depending on your install type.

For reference, below is a copy of the standard config.toml file included with this version of Driverless AI. The sections that follow describe some examples showing how to set different environment variables, data connectors, authentication, and notifications.

Sample Config.toml File

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270

##############################################################################
#                        DRIVERLESS AI CONFIGURATION FILE
#
# Comments:
# This file is authored in TOML (see https://github.com/toml-lang/toml)
#
# Config Override Chain
# Configuration variables for Driverless AI can be provided in several ways,
# the config engine reads and overrides variables in the following order
#
# 1. h2oai/config/config.toml
# [internal not visible to users]
#
# 2. config.toml
# [place file in a folder/mount file in docker container and provide path
# in "DRIVERLESS_AI_CONFIG_FILE" environment variable]
#
# 3. Keystore file
# [set keystore_file parameter in config.toml, or environment variable
# "DRIVERLESS_AI_KEYSTORE_FILE" to point to a valid DAI keystore file 
# generated using h2oai.keystore tool
#
# 4. Environment variable
# [configuration variables can also be provided as environment variables
# they must have the prefix "DRIVERLESS_AI_" followed by
# variable name in caps e.g "authentication_method" can be provided as
# "DRIVERLESS_AI_AUTHENTICATION_METHOD"]
##############################################################################

# Whether to allow user to change non-server toml parameters per experiment in expert page.
#allow_config_overrides_in_expert_page = true

# Every *.toml file is read from this directory and process the same way as main config file.
#user_config_directory = ""

# Keystore file that contains secure config.toml items like passwords, secret keys etc. Ketstore is managed by h2oai.keystore tool.
#keystore_file = ""

# IP address and port of autoviz process.
#vis_server_ip = "127.0.0.1"

# IP and port of autoviz process.
#vis_server_port = 12346

# IP address and port of procsy process.
#procsy_ip = "127.0.0.1"

# IP address and port of procsy process.
#procsy_port = 12347

# IP address and port of H2O instance.
#h2o_ip = "127.0.0.1"

# IP address and port of H2O instance for use by MLI.
#h2o_port = 12348

# Enable h2o recipes server.
#enable_h2o_recipes = true

# URL of H2O instance for use by transformers, models, or scorers.
#h2o_recipes_url = "None"

# IP of H2O instance for use by transformers, models, or scorers.
#h2o_recipes_ip = "None"

# Port of H2O instance for use by transformers, models, or scorers.  No other instances must be on that port or on next port.
#h2o_recipes_port = 50341

# Name of H2O instance for use by transformers, models, or scorers.
#h2o_recipes_name = "None"

# Number of threads for H2O instance for use by transformers, models, or scorers.
#h2o_recipes_nthreads = 4

# Log Level of H2O instance for use by transformers, models, or scorers.
#h2o_recipes_log_level = "None"

# Maximum memory size of H2O instance for use by transformers, models, or scorers.
#h2o_recipes_max_mem_size = "None"

# Minimum memory size of H2O instance for use by transformers, models, or scorers.
#h2o_recipes_min_mem_size = "None"

# General user overrides of kwargs dict to pass to h2o.init() for recipe server
#h2o_recipes_kwargs = "{}"

# Lock source for recipes to a specific github repo.
# If True then all custom recipes must come from the repo specified in setting: custom_recipes_git_repo
#custom_recipes_lock_to_git_repo = false

# If custom_recipes_lock_to_git_repo is set to True, only this repo can be used to pull recipes from
#custom_recipes_git_repo = "https://github.com/h2oai/driverlessai-recipes"

# Branch constraint for recipe source repo. Any branch allowed if unset or None
#custom_recipes_git_branch = "None"

# IP address and port for Driverless AI HTTP server.
#ip = "127.0.0.1"

# IP address and port for Driverless AI HTTP server.
#port = 12345

# A list of two integers indicating the port range to search over, and dynamically find an open port to bind to (e.g., [11111,20000]).
#port_range = "[]"

# File upload limit (default 100GB)
#max_file_upload_size = 104857600000

# Verbosity of logging
# 0: quiet   (CRITICAL, ERROR, WARNING)
# 1: default (CRITICAL, ERROR, WARNING, INFO, DATA)
# 2: verbose (CRITICAL, ERROR, WARNING, INFO, DATA, DEBUG)
# Affects server and all experiments
#log_level = 1

# Whether to collect relevant server logs (h2oai_server.log, dai.log from systemctl or docker, and h2o log)
# Useful for when sending logs to H2O.ai
#collect_server_logs_in_experiment_logs = false

# Redis settings
#redis_ip = "127.0.0.1"

# Redis settings
#redis_port = 6379

# Redis settings
#master_redis_password = ""

# https settings
# You can make a self-signed certificate for testing with the following commands:
# sudo openssl req -x509 -newkey rsa:4096 -keyout private_key.pem -out cert.pem -days 3650 -nodes -subj '/O=Driverless AI'
# sudo chown dai:dai cert.pem private_key.pem
# sudo chmod 600 cert.pem private_key.pem
# sudo mv cert.pem private_key.pem /etc/dai
#enable_https = false

# https settings
# You can make a self-signed certificate for testing with the following commands:
# sudo openssl req -x509 -newkey rsa:4096 -keyout private_key.pem -out cert.pem -days 3650 -nodes -subj '/O=Driverless AI'
# sudo chown dai:dai cert.pem private_key.pem
# sudo chmod 600 cert.pem private_key.pem
# sudo mv cert.pem private_key.pem /etc/dai
#ssl_key_file = "/etc/dai/private_key.pem"

# https settings
# You can make a self-signed certificate for testing with the following commands:
# sudo openssl req -x509 -newkey rsa:4096 -keyout private_key.pem -out cert.pem -days 3650 -nodes -subj '/O=Driverless AI'
# sudo chown dai:dai cert.pem private_key.pem
# sudo chmod 600 cert.pem private_key.pem
# sudo mv cert.pem private_key.pem /etc/dai
#ssl_crt_file = "/etc/dai/cert.pem"

# SSL TLS
#ssl_no_sslv2 = true

# SSL TLS
#ssl_no_sslv3 = true

# SSL TLS
#ssl_no_tlsv1 = true

# SSL TLS
#ssl_no_tlsv1_1 = true

# SSL TLS
#ssl_no_tlsv1_2 = false

# SSL TLS
#ssl_no_tlsv1_3 = false

# https settings
# Sets the client verification mode.
# CERT_NONE: Client does not need to provide the certificate and if it does any
# verification errors are ignored.
# CERT_OPTIONAL: Client does not need to provide the certificate and if it does
# certificate is verified agains set up CA chains.
# CERT_REQUIRED: Client needs to provide a certificate and certificate is
# verified.
# You'll need to set 'ssl_client_key_file' and 'ssl_client_crt_file'
# When this mode is selected for Driverless to be able to verify
# it's own callback requests.
# 
#ssl_client_verify_mode = "CERT_NONE"

# https settings
# Path to the Certification Authority certificate file. This certificate will be
# used when to verify client certificate when client authentication is turned on.
# If this is not set, clients are verified using default system certificates.
# 
#ssl_ca_file = ""

# https settings
# path to the private key that Driverless will use to authenticate itself when
# CERT_REQUIRED mode is set.
# 
#ssl_client_key_file = ""

# https settings
# path to the client certificate that Driverless will use to authenticate itself
# when CERT_REQUIRED mode is set.
# 
#ssl_client_crt_file = ""

# Data directory. All application data and files related datasets and
# experiments are stored in this directory.
#data_directory = "./tmp"

# Whether to run quick performance benchmark at start of application
#enable_quick_benchmark = true

# Whether to run extended performance benchmark at start of application
#enable_extended_benchmark = false

# Scaling factor for number of rows for extended performance benchmark. For rigorous performance benchmarking,
# values of 1 or larger are recommended.
#extended_benchmark_scale_num_rows = 0.1

# Whether to run quick startup checks at start of application
#enable_startup_checks = true

# Whether to opt in to usage statistics and bug reporting
#usage_stats_opt_in = false

# authentication_method
# unvalidated : Accepts user id and password. Does not validate password.
# none: Does not ask for user id or password. Authenticated as admin.
# openid: Users OpenID Connect provider for authentication. See additional OpenID settings below.
# pam: Accepts user id and password. Validates user with operating system.
# ldap: Accepts user id and password. Validates against an ldap server. Look
# for additional settings under LDAP settings.
# local: Accepts a user id and password. Validated against an htpasswd file provided in local_htpasswd_file.
# ibm_spectrum_conductor: Authenticate with IBM conductor auth api.
# tls_certificate: Authenticate with Driverless by providing a TLS certificate.
# 
#authentication_method = "unvalidated"

# Additional authentication methods that will be enabled for for the clients. Login forms for each method will be available on the '/login/<authentication_method>' path. Comma separated list. For example: additional_authentication_methods = "['tls_certificate', 'ldap']"
#additional_authentication_methods = "[]"

# default amount of time in hours before we force user to login again (if not provided by authentication_method)
#authentication_default_timeout_hours = 72

# OpenID Connect Settings:
# Refer to OpenID Connect Basic Client Implementation Guide for details on how OpenID authentication flow works
# https://openid.net/specs/openid-connect-basic-1_0.html
# base server uri to the OpenID Provider server (ex: https://oidp.ourdomain.com
#auth_openid_provider_base_uri = ""

# uri to pull OpenID config data from (you can extract most of required OpenID config from this url)
# usually located at: /auth/realms/master/.well-known/openid-configuration
#auth_openid_configuration_uri = ""

# uri to start authentication flow
#auth_openid_auth_uri = ""

# uri to make request for token after callback from OpenID server was received
#auth_openid_token_uri = ""

# uri to get user information once access_token has been acquired (ex: list of groups user belongs to will be provided here)
#auth_openid_userinfo_uri = ""

# uri to logout user
#auth_openid_logout_uri = ""

# callback uri that OpenID provide will use to send 'authentication_code'
# This is OpenID callback endpoint in Driverless AI. Most OpenID providers need this to be HTTPs.
# (ex. https://driverless.ourdomin.com/openid/callback)
#auth_openid_redirect_uri = ""

# OAuth2 grant type (usually authorization_code for OpenID, can be access_token also)
#auth_openid_grant_type = ""

# OAuth2 response type (usually code)
#auth_openid_response_type = ""

# Client ID registered with OpenID provider
#auth_openid_client_id = ""

# Client secret provided by OpenID provider when registering Client ID
#auth_openid_client_secret = ""

# Scope of info (usually openid). Can be list of more than one, space delimited, possible
# values listed at https://openid.net/specs/openid-connect-basic-1_0.html#Scopes
#auth_openid_scope = ""

# What key in user_info json should we check to authorize user
#auth_openid_userinfo_auth_key = ""

# What value should the key have in user_info json in order to authorize user
#auth_openid_userinfo_auth_value = ""

# Key that specifies username in user_info json (we will use the value of this key as username in Driverless AI)
#auth_openid_userinfo_username_key = ""

# Quote method from urllib.parse used to encode payload dict in Authentication Request
#auth_openid_urlencode_quote_via = "quote"

# Key in Token Response JSON that holds the value for access token expiry
#auth_openid_access_token_expiry_key = "expires_in"

# Key in Token Response JSON that holds the value for access token expiry
#auth_openid_refresh_token_expiry_key = "refresh_expires_in"

# Expiration time in seconds for access token
#auth_openid_token_expiration_secs = 3600

# Enables advanced matching for OpenID Connect authentication.
# When enabled ObjectPath (<http://objectpath.org/>) expression is used to
# evaluate the user identity.
# 
#auth_openid_use_objectpath_match = false

# ObjectPath (<http://objectpath.org/>) expression that will be used
# to evaluate whether user is allowed to login into Driverless.
# Any expression that evaluates to True means user is allowed to log in.
# Examples:
# Simple claim equality: `$.our_claim is "our_value"`
# List of claims contains required value: `"expected_role" in @.roles`
# 
#auth_openid_use_objectpath_expression = ""

# ldap server domain or ip
#ldap_server = ""

# ldap server port
#ldap_port = ""

# Complete DN of the LDAP bind user
#ldap_bind_dn = ""

# Password for the LDAP bind
#ldap_bind_password = ""

# Provide Cert file location
#ldap_tls_file = ""

# use true to use ssl or false
#ldap_use_ssl = false

# the location in the DIT where the search will start
#ldap_search_base = ""

# A string that describes what you are searching for. You can use Pythonsubstitution to have this constructed dynamically.(only {{DAI_USERNAME}} is supported)
#ldap_search_filter = ""

# ldap attributes to return from search
#ldap_search_attributes = ""

# specify key to find user name
#ldap_user_name_attribute = ""

# When using this recipe, needs to be set to "1"
#ldap_recipe = "0"

# Deprecated do not use
#ldap_user_prefix = ""

# Deprecated, Use ldap_bind_dn
#ldap_search_user_id = ""

# Deprecated, ldap_bind_password
#ldap_search_password = ""

# Deprecated, use ldap_search_base instead
#ldap_ou_dn = ""

# Deprecated, use ldap_base_dn
#ldap_dc = ""

# Deprecated, use ldap_search_base
#ldap_base_dn = ""

# Deprecated, use ldap_search_filter
#ldap_base_filter = ""

# Path to the CRL file that will be used to verify client certificate.
#auth_tls_crl_file = ""

# What field of the subject would used as source for username or other values used for further validation.
#auth_tls_subject_field = "CN"

# Regular expression that will be used to parse subject field to obtain the username or other values used for further validation.
#auth_tls_field_parse_regexp = "(?P<username>.*)"

# Sets up the way how user identity would be obtained
# REGEXP_ONLY: Will use 'auth_tls_subject_field' and 'auth_tls_field_parse_regexp'
# to extract the username from the client certificate.
# LDAP_LOOKUP: Will use LDAP server to lookup for the username.
# 'auth_tls_ldap_server', 'auth_tls_ldap_port',
# 'auth_tls_ldap_use_ssl', 'auth_tls_ldap_tls_file',
# 'auth_tls_ldap_bind_dn', 'auth_tls_ldap_bind_password'
# options are used to establish the connection with the LDAP server.
# 'auth_tls_subject_field' and 'auth_tls_field_parse_regexp'
# options are used to parse the certificate.
# 'auth_tls_ldap_search_base', 'auth_tls_ldap_search_filter', and
# 'auth_tls_ldap_username_attribute' options are used to do the
# lookup.
# 
#auth_tls_user_lookup = "REGEXP_ONLY"

# Hostname or IP address of the LDAP server used with LDAP_LOOKUP with 'tls_certificate' authentication method.
#auth_tls_ldap_server = ""

# Port of the LDAP server used with LDAP_LOOKUP with 'tls_certificate' authentication method.
#auth_tls_ldap_port = ""

# Whether to SSL to when connecting to the LDAP server used with LDAP_LOOKUP with 'tls_certificate' authentication method.
#auth_tls_ldap_use_ssl = false

# Path to the SSL certificate used with LDAP_LOOKUP with 'tls_certificate' authentication method.
#auth_tls_ldap_tls_file = ""

# Complete DN of the LDAP bind user used with LDAP_LOOKUP with 'tls_certificate' authentication method.
#auth_tls_ldap_bind_dn = ""

# Password for the LDAP bind used with LDAP_LOOKUP with 'tls_certificate' authentication method.
#auth_tls_ldap_bind_password = ""

# Location in the DIT where the search will start used with LDAP_LOOKUP with 'tls_certificate' authentication method.
#auth_tls_ldap_search_base = ""

# LDAP filter that will be used to lookup for the user
# with LDAP_LOOKUP with 'tls_certificate' authentication method.
# Can be built dynamically using the named capturing groups from the
# 'auth_tls_field_parse_regexp' for substitution.
# Example:
# auth_tls_field_parse_regexp = "\w+ (?P<id>\d+)"
# auth_tls_ldap_search_filter = "(&(objectClass=person)(id={{id}}))"
# 
#auth_tls_ldap_search_filter = ""

# Specified what LDAP record attribute will be used as username with LDAP_LOOKUP with 'tls_certificate' authentication method.
#auth_tls_ldap_username_attribute = ""

# Sets optional additional lookup filter that is performed after the
# user is found. This can be used for example to check whether the is member of
# particular group.
# Filter can be built dynamically from the attributes returned by the lookup.
# Authorization fails when search does not return any entry. If one ore more
# entries are returned authorization succeeds.
# Example:
# auth_tls_field_parse_regexp = "\w+ (?P<id>\d+)"
# ldap_search_filter = "(&(objectClass=person)(id={{id}}))"
# auth_tls_ldap_authorization_lookup_filter = "(&(objectClass=group)(member=uid={{uid}},dc=example,dc=com))"
# If this option is empty no additional lookup is done and just a successful user
# lookup is enough to authorize the user.
# 
#auth_tls_ldap_authorization_lookup_filter = ""

# Base DN where to start the Authorization lookup. Used when 'auth_tls_ldap_authorization_lookup_filter' is set.
#auth_tls_ldap_authorization_search_base = ""

# Local password file
# Generating a htpasswd file: see syntax below
# htpasswd -B '<location_to_place_htpasswd_file>' '<username>'
# note: -B forces use of brcypt, a secure encryption method
#local_htpasswd_file = ""

# Supported file formats (file name endings must match for files to show up in file browser)
#supported_file_types = "csv, tsv, txt, dat, tgz, gz, bz2, zip, xz, xls, xlsx, jay, feather, bin, arff, parquet, pkl, orc"

# Supported file formats of data recipe files (file name endings must match for files to show up in file browser)
#recipe_supported_file_types = "py, pyc"

# By default, only supported file types (based on the file extensions listed above) will be listed for import into DAI
# Some data pipelines generate parquet files without any extensions. Enabling the below option will cause files
# without an extension to be listed in the file import dialog.
# DAI will import files without extensions as parquet files; if cannot be imported, an error is generated
# 
#list_files_without_extensions = false

# File System Support
# upload : standard upload feature
# file : local file system/server file system
# hdfs : Hadoop file system, remember to configure the HDFS config folder path and keytab below
# dtap : Blue Data Tap file system, remember to configure the DTap section below
# s3 : Amazon S3, optionally configure secret and access key below
# gcs : Google Cloud Storage, remember to configure gcs_path_to_service_account_json below
# gbq : Google Big Query, remember to configure gcs_path_to_service_account_json below
# minio : Minio Cloud Storage, remember to configure secret and access key below
# snow : Snowflake Data Warehouse, remember to configure Snowflake credentials below (account name, username, password)
# kdb : KDB+ Time Series Database, remember to configure KDB credentials below (hostname and port, optionally: username, password, classpath, and jvm_args)
# azrbs : Azure Blob Storage, remember to configure Azure credentials below (account name, account key)
# jdbc: JDBC Connector, remember to configure JDBC below. (jdbc_app_configs)
# hive: Hive Connector, remember to configure Hive below. (hive_app_configs)
# recipe_file: Custom recipe file upload
# recipe_url: Custom recipe upload via url
# 
#enabled_file_systems = "upload, file, hdfs, s3, recipe_file, recipe_url"

#max_files_listed = 100

# do_not_log_list : add configurations that you do not wish to be recorded in logs here
#do_not_log_list = "['artifacts_git_password', 'auth_jwt_secret', 'auth_openid_client_id', 'auth_openid_client_secret', 'auth_openid_userinfo_auth_key', 'auth_openid_userinfo_auth_value', 'auth_openid_userinfo_username_key', 'auth_tls_ldap_bind_password', 'aws_access_key_id', 'aws_secret_access_key', 'azure_blob_account_key', 'azure_blob_account_name', 'azure_connection_string', 'deployment_aws_access_key_id', 'deployment_aws_secret_access_key', 'gcs_path_to_service_account_json', 'kaggle_key', 'kaggle_username', 'kdb_password', 'kdb_user', 'ldap_bind_password', 'ldap_search_password', 'local_htpasswd_file', 'master_minio_access_key_id', 'master_minio_secret_access_key', 'master_redis_password', 'minio_access_key_id', 'minio_endpoint_url', 'minio_secret_access_key', 'snowflake_account', 'snowflake_password', 'snowflake_url', 'snowflake_user']"

# Minio is used for file distribution on multinode architecture.
# These settings are used to specify the local Minio connection to master nodes.
#master_minio_address = "<URL>:<PORT>"

# Minio is used for file distribution on multinode architecture.
# These settings are used to specify the local Minio connection to master nodes.
#master_minio_access_key_id = ""

# Minio is used for file distribution on multinode architecture.
# These settings are used to specify the local Minio connection to master nodes.
#master_minio_secret_access_key = ""

# Allow using browser localstorage, to improve UX.
#allow_localstorage = true

# Allow original dataset columns to be present in downloaded predictions CSV
#allow_orig_cols_in_predictions = true

# If the experiment is not done after this many minutes, stop feature engineering and model tuning as soon as possible and proceed with building the final modeling pipeline and deployment artifacts, independent of model score convergence or pre-determined number of iterations. Only active is not in reproducible mode. Depending on the data and experiment settings, overall experiment runtime can differ significantly from this setting.
#max_runtime_minutes = 1440

# If the experiment is not done after this many minutes, push the abort button. Preserves experiment artifacts made so far for summary and log zip files, but further artifacts are made.
#max_runtime_minutes_until_abort = 10080

# Recipe type
# Recipes override any GUI settings
# 'auto' : all models and features automatically determined by experiment settings, toml settings, and feature_engineering_effort
# 'compliant' : like 'auto' except:
# * interpretability=10 (to avoid complexity, overrides GUI or python client chose for interpretability)
# * enable_glm='on' (rest 'off', to avoid complexity and be compatible with algorithms supported by MLI)
# * fixed_ensemble_level=0: Don't use any ensemble (to avoid complexity)
# * feature_brain_level=0: No feature brain used (to ensure every restart is identical)
# * max_feature_interaction_depth=1: interaction depth is set to 1 (no multi-feature interactions to avoid complexity)
# * target_transformer='identity': for regression (to avoid complexity)
# * check_distribution_shift_drop='off': Don't use distribution shift between train, valid, and test to drop features (bit risky without fine-tuning
# 'kaggle' : like 'auto' except:
# * external validation set is concatenated with train set, with target marked as missing
# * test set is concatenated with train set, with target marked as missing
# * transformers that do not use the target are allowed to fit_transform across entire train + validation + test
# * several config toml expert options open-up limits (e.g. more numerics are treated as categoricals)
# Note: If plentiful memory, can:
# * choose kaggle mode and then change fixed_feature_interaction_depth to large negative number,
# otherwise default number of features given to transformer is limited to 50 by default
# * choose mutation_mode = "full", so even more types are transformations are done at once per transformer
# 
#recipe = "auto"

# Kaggle username for automatic submission and scoring of test set predictions.
# See https://github.com/Kaggle/kaggle-api#api-credentials for details on how to obtain Kaggle API credentials",
# 
#kaggle_username = ""

# Kaggle key for automatic submission and scoring of test set predictions.
# See https://github.com/Kaggle/kaggle-api#api-credentials for details on how to obtain Kaggle API credentials",
# 
#kaggle_key = ""

# Max. number of seconds to wait for Kaggle API call to return scores for given predictions
#kaggle_timeout = 120

#kaggle_keep_submission = false

# If provided, can extend the list to arbitrary and potentially future Kaggle competitions to make
# submissions for. Only used if kaggle_key and kaggle_username are provided.
# Provide a quoted comma-separated list of tuples (target column name, number of test rows, competition, metric) like this:
# kaggle_competitions='("target", 200000, "santander-customer-transaction-prediction", "AUC"), ("TARGET", 75818, "santander-customer-satisfaction", "AUC")'
# 
#kaggle_competitions = ""

# How much effort to spend on feature engineering (0...10)
# Heuristic combination of various developer-level toml parameters
# 0   : keep only numeric features, only model tuning during evolution
# 1   : keep only numeric features and frequency-encoded categoricals, only model tuning during evolution
# 2   : Like #1 but instead just no Text features.  Some feature tuning before evolution.
# 3   : Like #5 but only tuning during evolution.  Mixed tuning of features and model parameters.
# 4   : Like #5, but slightly more focused on model tuning
# 5   : Default.  Balanced feature-model tuning
# 6-7 : Like #5, but slightly more focused on feature engineering
# 8   : Like #6-7, but even more focused on feature engineering with high feature generation rate, no feature dropping even if high interpretability
# 9-10: Like #8, but no model tuning during feature evolution
#feature_engineering_effort = 5

# Whether to enable train/valid and train/test distribution shift detection ('auto'/'on'/'off')
#check_distribution_shift = "auto"

# Whether to drop high-shift features ('auto'/'on'/'off').  Auto disables for time series.
#check_distribution_shift_drop = "auto"

# If distribution shift detection is enabled, drop features (except ID, text, date/datetime, time, weight) for
# which shift AUC, GINI, or Spearman correlation is above this value
# (e.g. AUC of a binary classifier that predicts whether given feature value
# belongs to train or test data)
#drop_features_distribution_shift_threshold_auc = 0.999

# Whether to check leakage for each feature (True/False).
# If fold column, this checks leakage without fold column used.
#check_leakage = "auto"

# If leakage detection is enabled,
# drop features for which AUC (R2 for regression), GINI,
# or Spearman correlation is above this value.
# If fold column present, features are not dropped,
# because leakage test applies without fold column used.
# 
#drop_features_leakage_threshold_auc = 0.999

# Max number of rows x number of columns to trigger (stratified) sampling for leakage checks
#leakage_max_data_size = 10000000

# Whether to create the Python scoring pipeline at the end of each experiment.
#make_python_scoring_pipeline = "auto"

# Whether to create the MOJO scoring pipeline at the end of each experiment. If set to "auto", will attempt to
# create it if possible (without dropping capabilities). If set to "on", might need to drop some models,
# transformers or custom recipes.
#make_mojo_scoring_pipeline = "auto"

# Whether to attempt to reduce the size of the MOJO scoring pipeline. A smaller MOJO will also lead to
# less memory footprint during scoring. It is achieved by reducing some other settings like interaction depth, and
# hence can affect the predictive accuracy of the model.
# 
#reduce_mojo_size = false

# Whether to measure the MOJO scoring latency at the time of MOJO creation.
#benchmark_mojo_latency = "auto"

# Max size of pipeline.mojo file (in MB) for automatic mode of MOJO scoring latency measurement
#benchmark_mojo_latency_auto_size_limit = 100

# If MOJO creation times out at end of experiment, can still make MOJO from the GUI or from the R/Py clients (timeout doesn't apply there).
#mojo_building_timeout = 1800.0

# If MOJO creation is too slow, increase this value. Higher values can finish faster, but use more memory.
# If MOJO creation fails due to an out-of-memory error, reduce this value to 1.
# Set to -1 for all physical cores.
# 
#mojo_building_parallelism = -1

# Whether to create the pipeline visualization at the end of each experiment.
#make_pipeline_visualization = "auto"

# Whether to create the experiment Autoreport after end of experiment.
# 
#make_autoreport = true

# Max number of CPU cores to use per experiment. Set to <= 0 to use all cores.
# One can also set environment variable 'OMP_NUM_THREADS' to number of cores to use for OpenMP
# (e.g., in bash: 'export OMP_NUM_THREADS=32' and 'export OPENBLAS_NUM_THREADS=32').
#max_cores = 0

# Max number of CPU cores to use across all of DAI experiments and tasks.
# -1 is all available, with stall_subprocess_submission_dai_fork_threshold_count=0 means restricted to core count.
# 
#max_cores_dai = -1

# Stall submission of tasks if total DAI fork count exceeds count (-1 to disable, 0 for automatic of max_cores_dai)
#stall_subprocess_submission_dai_fork_threshold_count = 0

# Stall submission of tasks if system memory available is less than this threshold in percent (set to 0 to disable).
# Above this threshold, the number of workers in any pool of workers is linearly reduced down to 1 once hitting this threshold.
# 
#stall_subprocess_submission_mem_threshold_pct = 2

# Whether to set automatic number of cores by physical (True) or logical (False) count.
# Using all logical cores can lead to poor performance due to cache thrashing.
#max_cores_by_physical = true

# Absolute limit to core count
#max_cores_limit = 100

# Control maximum number of cores to use for a model's fit call (0 = all physical cores >= 1 that count)
#max_fit_cores = 10

# Control maximum number of cores to use for a model's predict call (0 = all physical cores >= 1 that count)
#max_predict_cores = 0

# Control maximum number of cores to use for a model's transform and predict call when doing operations inside DAI-MLI GUI and R/Py client (0 = all physical cores >= 1 that count)
#max_predict_cores_in_dai = 4

# Control number of workers used in CPU mode for tuning (0 = socket count -1 = all physical cores >= 1 that count).  More workers will be more parallel but models learn less from each other.
#batch_cpu_tuning_max_workers = 0

# Control number of workers used in CPU mode for training (0 = socket count -1 = all physical cores >= 1 that count)
#cpu_max_workers = 0

# Number of GPUs to use per experiment for training task.  Set to -1 for all GPUs.
# An experiment will generate many different models.
# Currently num_gpus_per_experiment!=-1 disables GPU locking, so is only recommended for
# single experiments and single users.
# Ignored if GPUs disabled or no GPUs on system.
# More info at: https://github.com/NVIDIA/nvidia-docker/wiki/nvidia-docker#gpu-isolation
#num_gpus_per_experiment = -1

# Number of CPU cores per GPU. Limits number of GPUs in order to have sufficient cores per GPU.
# Set to -1 to disable.
#min_num_cores_per_gpu = 2

# Number of GPUs to use per model training task.  Set to -1 for all GPUs.
# For example, when this is set to -1 and there are 4 GPUs available, all of them can be used for the training of a single model.
# Currently num_gpus_per_model!=1 disables GPU locking, so is only recommended for single
# experiments and single users.
# Ignored if GPUs disabled or no GPUs on system.
# More info at: https://github.com/NVIDIA/nvidia-docker/wiki/nvidia-docker#gpu-isolation
#num_gpus_per_model = 1

# Number of GPUs to use for predict for models and transform for transformers when running outside of fit/fit_transform.
# If predict/transform are called in same process as fit/fit_transform, number of GPUs will match,
# while new processes will use this count for number of GPUs for applicable models/transformers.
# If tensorflow_nlp_have_gpus_in_production=true, then that overrides this setting for relevant
# TensorFflow NLP transformers.
# 
#num_gpus_for_prediction = 0

# Minimum number of threads for datatable (and OpenMP) during data munging (per process).
# datatable is the main data munging tool used within Driverless ai (source :
# https://github.com/h2oai/datatable)
#min_dt_threads_munging = 1

# Like min_datatable (and OpenMP)_threads_munging but for final pipeline munging
#min_dt_threads_final_munging = 1

# Maximum number of threads for datatable during data munging (per process) (0 = all, -1 = auto).
#max_dt_threads_munging = -1

# Maximum number of threads for datatable during data reading and writing (per process) (0 = all, -1 = auto).
#max_dt_threads_readwrite = -1

# Maximum number of threads for datatable stats and openblas (per process) (0 = all, -1 = auto).
#max_dt_threads_stats_openblas = -1

# Maximum number of threads for datatable during TS properties preview panel computations).
#max_dt_threads_do_timeseries_split_suggestion = 1

# Which gpu_id to start with
# If using CUDA_VISIBLE_DEVICES=... to control GPUs (preferred method), gpu_id=0 is the
# first in that restricted list of devices.
# E.g. if CUDA_VISIBLE_DEVICES='4,5' then gpu_id_start=0 will refer to the
# device #4.
# E.g. from expert mode, to run 2 experiments, each on a distinct GPU out of 2 GPUs:
# Experiment#1: num_gpus_per_model=1, num_gpus_per_experiment=1, gpu_id_start=0
# Experiment#2: num_gpus_per_model=1, num_gpus_per_experiment=1, gpu_id_start=1
# E.g. from expert mode, to run 2 experiments, each on a distinct GPU out of 8 GPUs:
# Experiment#1: num_gpus_per_model=1, num_gpus_per_experiment=4, gpu_id_start=0
# Experiment#2: num_gpus_per_model=1, num_gpus_per_experiment=4, gpu_id_start=4
# E.g. Like just above, but now run on all 4 GPUs/model
# Experiment#1: num_gpus_per_model=4, num_gpus_per_experiment=4, gpu_id_start=0
# Experiment#2: num_gpus_per_model=4, num_gpus_per_experiment=4, gpu_id_start=4
# If num_gpus_per_model!=1, global GPU locking is disabled
# (because underlying algorithms don't support arbitrary gpu ids, only sequential ids),
# so must setup above correctly to avoid overlap across all experiments by all users
# More info at: https://github.com/NVIDIA/nvidia-docker/wiki/nvidia-docker#gpu-isolation
# Note that gpu selection does not wrap, so gpu_id_start + num_gpus_per_model must be less than number of visibile gpus
#gpu_id_start = 0

# Maximum number of workers for Driverless AI server pool (only 1 needed currently)
#max_workers = 1

# Period (in seconds) of ping by Driverless AI server to each experiment
# (in order to get logger info like disk space and memory usage).
# 0 means don't print anything.
#ping_period = 60

# Period between checking DAI status.
#ping_sleep_period = 1

# Minimum amount of disk space in GB needed to run experiments.
# Experiments will fail if this limit is crossed.
# This limit exists because Driverless AI needs to generate data for model training
# feature engineering, documentation and other such processes.
#disk_limit_gb = 5

# Minimum amount of disk space in GB needed to before stall forking of new processes during an experiment.
#stall_disk_limit_gb = 1

# Minimum amount of system memory in GB needed to start experiments.
# Similarly with disk space, a certain amount of system memory is needed to run some basic
# operations.
#memory_limit_gb = 5

# Minimum number of rows needed to run experiments (values lower than 100 might not work).
# A minimum threshold is set to ensure there is enough data to create a statistically
# reliable model and avoid other small-data related failures.
#min_num_rows = 100

# Minimum required number of rows (in the training data) for each class label for classification problems.
#min_rows_per_class = 5

# Minimum required number of rows for each split when generating validation samples.
#min_rows_per_split = 5

# Precision of how data is stored
# 'float32' best for speed, 'float64' best for accuracy or very large input values
# 'float32' allows numbers up to about +-3E38 with relative error of about 1E-7
# 'float64' allows numbers up to about +-1E308 with relative error of about 1E-16
# Some calculations, like the GLM standardization, can only handle up to sqrt() of these maximums for data values,
# So GLM with 32-bit precision can only handle up to about a value of 1E19 before standardization generates inf values.
# If you see "Best individual has invalid score" you may require higher precision.
#data_precision = "float32"

# Precision of most data transformers (same options and notes as data_precision).
# Useful for higher precision in transformers with numerous operations that can accumulate error.
# Also useful if want faster performance for transformers but otherwise want data stored in high precision.
#transformer_precision = "float32"

# Whether to change ulimit soft limits up to hard limits (for DAI server app, which is not a generic user app).
# Prevents resource limit problems in some cases.
# Restricted to no more than limit_nofile and limit_nproc for those resources.
#ulimit_up_to_hard_limit = true

#disable_core_files = false

# number of file limit
# Below should be consistent with start-dai.sh
#limit_nofile = 65535

# number of threads limit
# Below should be consistent with start-dai.sh
#limit_nproc = 16384

# Level of reproducibility desired (for same data and same inputs).
# Only active if 'reproducible' mode is enabled (GUI button enabled or a seed is set from the client API).
# Supported levels are:
# reproducibility_level = 1 for same experiment results as long as same O/S, same CPU(s) and same GPU(s)
# reproducibility_level = 2 for same experiment results as long as same O/S, same CPU architecture and same GPU architecture
# reproducibility_level = 3 for same experiment results as long as same O/S, same CPU architecture, not using GPUs
# reproducibility_level = 4 for same experiment results as long as same O/S, (best effort)
#reproducibility_level = 1

# Seed for random number generator to make experiments reproducible, to a certain reproducibility level (see above).
# Only active if 'reproducible' mode is enabled (GUI button enabled or a seed is set from the client API).
#seed = 1234

# The list of values that should be interpreted as missing values during data import.
# This applies to both numeric and string columns. Note that the dataset must be reloaded after applying changes to this config via the expert settings.
# Also note that 'nan' is always interpreted as a missing value for numeric columns.
#missing_values = "['', '?', 'None', 'nan', 'NA', 'N/A', 'unknown', 'inf', '-inf', '1.7976931348623157e+308', '-1.7976931348623157e+308']"

# For tensorflow, what numerical value to give to missing values, where numeric values are standardized.
# So 0 is center of distribution, and if Normal distribution then +-5 is 5 standard deviations away from the center.
# In many cases, an out of bounds value is a good way to represent missings, but in some cases the mean (0) may be better.
#tf_nan_impute_value = -5

# Internal threshold for number of rows x number of columns to trigger certain statistical
# techniques (small data recipe like including one hot encoding for all model types, and smaller learning rate)
# to increase model accuracy
#statistical_threshold_data_size_small = 100000

# Internal threshold for number of rows x number of columns to trigger certain statistical
# techniques (fewer genes created, removal of high max_depth for tree models, etc.) that can speed up modeling.
# Also controls maximum rows used in training final model,
# by sampling statistical_threshold_data_size_large / columns number of rows
#statistical_threshold_data_size_large = 500000000

# Internal threshold for number of rows x number of columns to trigger sampling for auxiliary data uses,
# like imbalanced data set detection and bootstrap scoring sample size and iterations
#aux_threshold_data_size_large = 10000000

# Internal threshold for number of rows x number of columns to trigger certain changes in performance
# (fewer threads if beyond large value) to help avoid OOM or unnecessary slowdowns
# (fewer threads if lower than small value) to avoid excess forking of tasks
#performance_threshold_data_size_small = 100000

# Internal threshold for number of rows x number of columns to trigger certain changes in performance
# (fewer threads if beyond large value) to help avoid OOM or unnecessary slowdowns
# (fewer threads if lower than small value) to avoid excess forking of tasks
#performance_threshold_data_size_large = 100000000

# Maximum number of columns to start an experiment. This threshold exists to constraint the # complexity and the length of the Driverless AI's processes.
#max_cols = 10000

# Largest number of rows to use for column stats, otherwise sample randomly
#max_rows_col_stats = 1000000

# Whether to obtain permutation feature importance on original features for reporting in logs and file.
# 
#orig_features_fs_report = false

# Maximum number of rows when doing permutation feature importance, reduced by (stratified) random sampling.
# 
#max_rows_fs = 500000

# How many workers to use for feature selection by permutation for predict phase
# (0 = auto, > 0: min of DAI value and this value, < 0: exactly negative of this value)
# 
#max_workers_fs = 0

# Maximum number of columns selected out of original set of original columns, using feature selection
# The selection is based upon how well target encoding (or frequency encoding if not available) on categoricals and numerics treated as categoricals
# This is useful to reduce the final model complexity. First the best
# [max_orig_cols_selected] are found through feature selection methods and then
# these features are used in feature evolution (to derive other features) and in modelling.
#max_orig_cols_selected = 10000

# Maximum number of numeric columns selected, above which will do feature selection
# same as above (max_orig_cols_selected) but for numeric columns.
#max_orig_numeric_cols_selected = 10000

# Maximum number of non-numeric columns selected, above which will do feature selection on all features and avoid treating numerical as categorical
# same as above (max_orig_numeric_cols_selected) but for categorical columns.
#max_orig_nonnumeric_cols_selected = 300

# The factor times max_orig_cols_selected, by which column selection is based upon no target encoding and no treating numerical as categorical
# in order to limit performance cost of feature engineering
#max_orig_cols_selected_simple_factor = 2

# Like max_orig_cols_selected, but columns above which add special individual with original columns reduced.
# 
#fs_orig_cols_selected = 500

# Like max_orig_numeric_cols_selected, but applicable to special individual with original columns reduced.
# A separate individual in the genetic algorithm is created by doing feature selection by permutation importance on original features.
# 
#fs_orig_numeric_cols_selected = 500

# Like max_orig_nonnumeric_cols_selected, but applicable to special individual with original columns reduced.
# A separate individual in the genetic algorithm is created by doing feature selection by permutation importance on original features.
# 
#fs_orig_nonnumeric_cols_selected = 200

# Like max_orig_cols_selected_simple_factor, but applicable to special individual with original columns reduced.
#fs_orig_cols_selected_simple_factor = 2

# Maximum allowed fraction of unique values for integer and categorical columns (otherwise will treat column as ID and drop)
#max_relative_cardinality = 0.95

# Maximum allowed number of unique values for integer and categorical columns (otherwise will treat column as ID and drop)
#max_absolute_cardinality = 1000000

# Whether to treat some numerical features as categorical.
# For instance, sometimes an integer column may not represent a numerical feature but
# represent different numerical codes instead.
#num_as_cat = true

# Max number of unique values for integer/real columns to be treated as categoricals (test applies to first statistical_threshold_data_size_small rows only)
#max_int_as_cat_uniques = 50

# Number of folds for models used during the feature engineering process.
# Increasing this will put a lower fraction of data into validation and more into training
# (e.g., num_folds=3 means 67%/33% training/validation splits).
# Actual value will vary for small or big data cases.
#num_folds = 3

# For multiclass problems only. Whether to allow different sets of target classes across (cross-)validation
# fold splits. Especially important when passing a fold column that isn't balanced w.r.t class distribution.
# 
#allow_different_classes_across_fold_splits = true

# Accuracy setting equal and above which enables full cross-validation (multiple folds) during feature evolution
# as opposed to only a single holdout split (e.g. 2/3 train and 1/3 validation holdout)
#full_cv_accuracy_switch = 8

# Accuracy setting equal and above which enables stacked ensemble as final model.
# Stacking commences at the end of the feature evolution process..
# It quite often leads to better model performance, but it does increase the complexity
# and execution time of the final model.
#ensemble_accuracy_switch = 5

# Number of fold splits to use for ensemble_level >= 2.
# The ensemble modelling may require predictions to be made on out-of-fold samples
# hence the data needs to be split on different folds to generate these predictions.
# Less folds (like 2 or 3) normally create more stable models, but may be less accurate
# More folds can get to higher accuracy at the expense of more time, but the performance
# may be less stable when the training data is not enough (i.e. higher chance of overfitting).
# Actual value will vary for small or big data cases.
#num_ensemble_folds = 5

# Number of repeats for each fold for all validation
# (modified slightly for small or big data cases)
#fold_reps = 1

#max_num_classes_hard_limit = 10000

# Maximum number of classes to allow for a classification problem.
# High number of classes may make certain processes of Driverless AI time-consuming.
# Memory requirements also increase with higher number of classes
#max_num_classes = 200

# Maximum number of classes to compute ROC and CM for,
# beyond which roc_reduce_type choice for reduction is applied.
# Too many classes can take much longer than model building time.
#max_num_classes_compute_roc = 200

# Maximum number of classes to show in GUI for confusion matrix, showing first max_num_classes_client_and_gui labels.
# The number 20 is default, but beyond 6 classes the diagnostics launched from GUI are visually truncated.
# This will only modify client-GUI launched diagnostics if changed in config.toml and server is restarted,
# while this value can be changed in expert settings to control experiment plots.
#max_num_classes_client_and_gui = 10

# If too many classes when computing roc,
# reduce by "rows" by randomly sampling rows,
# or reduce by truncating classes to no more than max_num_classes_compute_roc.
# If have sufficient rows for class count, can reduce by rows.
#roc_reduce_type = "rows"

#min_roc_sample_size = 1

# Number of actuals vs. predicted data points to use in order to generate in the relevant
# plot/graph which is shown at the right part of the screen within an experiment.
#num_actuals_vs_predicted = 100

# Whether to use H2O.ai brain: the local caching and smart re-use of prior experiments,
# in order to generate more useful features and models for new experiments.
# It can also be used to control checkpointing for experiments that have been paused or interrupted.
# DAI will use H2O.ai brain cache if cache file has
# a) any matching column names and types for a similar experiment type
# b) exactly matches classes
# c) exactly matches class labels
# d) matches basic time series choices
# e) interpretability of cache is equal or lower
# f) main model (booster) is allowed by new experiment.
# Level of brain to use (for chosen level, where higher levels will also do all lower level operations automatically)
# -1 = Don't use any brain cache and don't write any cache
# 0 = Don't use any brain cache but still write cache
# Use case: Want to save model for later use, but want current model to be built without any brain models
# 1 = smart checkpoint from latest best individual model
# Use case: Want to use latest matching model, but match can be loose, so needs caution
# 2 = smart checkpoint from H2O.ai brain cache of individual best models
# Use case: DAI scans through H2O.ai brain cache for best models to restart from
# 3 = smart checkpoint like level #1, but for entire population.  Tune only if brain population insufficient size
# (will re-score entire population in single iteration, so appears to take longer to complete first iteration)
# 4 = smart checkpoint like level #2, but for entire population.  Tune only if brain population insufficient size
# (will re-score entire population in single iteration, so appears to take longer to complete first iteration)
# 5 = like #4, but will scan over entire brain cache of populations to get best scored individuals
# (can be slower due to brain cache scanning if big cache)
# 1000 + feature_brain_level (above positive values) = use resumed_experiment_id and actual feature_brain_level,
# to use other specific experiment as base for individuals or population,
# instead of sampling from any old experiments
# GUI has 3 options and corresponding settings:
# 1) New Experiment: Uses feature brain level default of 2
# 2) New Model With Same Parameters: Re-uses the same feature brain level as parent experiment
# 3) Restart From Last Checkpoint: Resets feature brain level to 1003 and sets experiment ID to resume from
# (continued genetic algorithm iterations)
# 4) Retrain Final Pipeline:  Like Restart but also time=0 so skips any tuning and heads straight to final model
# (assumes had at least one tuning iteration in parent experiment)
# Other use cases:
# a) Restart on different data: Use same column names and fewer or more rows (applicable to 1 - 5)
# b) Re-fit only final pipeline: Like (a), but choose time=1 and feature_brain_level=3 - 5
# c) Restart with more columns: Add columns, so model builds upon old model built from old column names (1 - 5)
# d) Restart with focus on model tuning: Restart, then select feature_engineering_effort = 3 in expert settings
# e) can retrain final model but ignore any original features except those in final pipeline (normal retrain but set brain_add_features_for_new_columns=false)
# Notes:
# 1) In all cases, we first check the resumed experiment id if given, and then the brain cache
# 2) For Restart cases, may want to set min_dai_iterations to non-zero to force delayed early stopping, else may not be enough iterations to find better model.
# 3) A "New model with Same Params" of a Restart will use feature_brain_level=1003 for default Restart mode (revert to 2, or even 0 if want to start a fresh experiment otherwise)
#feature_brain_level = 2

# Relative number of columns that must match between current reference individual and brain individual.
# 0.0: perfect match
# 1.0: All columns are different, worst match
# e.g. 0.1 implies no more than 10% of columns mismatch between reference set of columns and brain individual.
# 
#brain_maximum_diff_score = 0.1

# Maximum number of brain individuals pulled from H2O.ai brain cache for feature_brain_level=1, 2
#max_num_brain_indivs = 3

# Save feature brain iterations every iter_num % feature_brain_iterations_save_every_iteration == 0, to be able to restart/refit with which_iteration_brain >= 0
# 0 means disable
#feature_brain_save_every_iteration = 0

# When doing restart or re-fit type feature_brain_level with resumed_experiment_id, choose which iteration to start from, instead of only last best
# -1 means just use last best
# Usage:
# 1) Run one experiment with feature_brain_iterations_save_every_iteration=1 or some other number
# 2) Identify which iteration brain dump one wants to restart/refit from
# 3) Restart/Refit from original experiment, setting which_iteration_brain to that number in expert settings
# Note: If restart from a tuning iteration, this will pull in entire scored tuning population and use that for feature evolution
#which_iteration_brain = -1

# When doing re-fit, if change columns or features, population of individuals used to refit from may change order of which was best,
# leading to better result chosen (False case).  But sometimes want to see exact same model/features with only one feature added,
# and then would need to set this to True case.
# E.g. if refit with just 1 extra column and have interpretability=1, then final model will be same features,
# with one more engineered feature applied to that new original feature.
# 
#refit_same_best_individual = false

# Directory, relative to data_directory, to store H2O.ai brain meta model files
#brain_rel_dir = "H2O.ai_brain"

# Maximum size in bytes the brain will store
# We reserve this memory to save data in order to ensure we can retrieve an experiment if
# for any reason it gets interrupted.
# -1: unlimited
# >=0 number of GB to limit brain to
#brain_max_size_GB = 20

# Whether to take any new columns and add additional features to pipeline, even if doing retrain final model.
# In some cases, one might have a new dataset but only want to keep same pipeline regardless of new columns,
# in which case one sets this to False.  For example, new data might lead to new dropped features,
# due to shift or leak detection.  To avoid change of feature set, one can disable all dropping of columns,
# but set this to False to avoid adding any columns as new features,
# so pipeline is perfectly preserved when changing data.
#brain_add_features_for_new_columns = true

# If restart/refit and no longer have the original model class available, be conservative
# and go back to defaults for that model class.  If False, then try to keep original hyperparameters,
# which can fail to work in general.
#force_model_restart_to_defaults = true

# Whether to enable early stopping
# Early stopping refers to stopping the feature evolution/engineering process
# when there is no performance uplift after a certain number of iterations.
# After early stopping has been triggered, Driverless AI will initiate the ensemble
# process if selected.
#early_stopping = true

# Whether to enable early stopping per individual
# Each individual in the generic algorithm will stop early if no improvement,
# and it will no longer be mutated.
# Instead, the best individual will be additionally mutated.
#early_stopping_per_individual = true

# Minimum number of Driverless AI iterations to stop the feature evolution/engineering
# process even if score is not improving. Driverless AI needs to run for at least that many
# iterations before deciding to stop. It can be seen a safeguard against suboptimal (early)
# convergence.
#min_dai_iterations = 0

# Maximum features per model (and each model within the final model if ensemble) kept just after scoring them
# Keeps top variable importance features, prunes rest away, after each scoring.
# Final ensemble will exclude any pruned-away features and only train on kept features,
# but may contain a few new features due to fitting on different data view (e.g. new clusters)
# Final scoring pipeline will exclude any pruned-away features,
# but may contain a few new features due to fitting on different data view (e.g. new clusters)
# -1 means no restrictions except internally-determined memory and interpretability restrictions
#nfeatures_max = -1

# Maximum genes (transformer instances) per model (and each model within the final model if ensemble) kept.
# Controls number of genes before features are scored, so just randomly samples genes if pruning occurs.
# If restriction occurs after scoring features, then aggregated gene importances are used for pruning genes.
# Instances includes all possible transformers, including original transformer for numeric features.
# -1 means no restrictions except internally-determined memory and interpretability restrictions
#ngenes_max = -1

# Whether to limit feature counts by interpretability setting via features_allowed_by_interpretability
#limit_features_by_interpretability = true

# Max. number of epochs for TensorFlow models for making NLP features
#tensorflow_max_epochs_nlp = 2

# Accuracy setting equal and above which will add all enabled TensorFlow NLP models below at start of experiment for text dominated problems
# when TensorFlow NLP transformers are set to auto.  If set to on, this parameter is ignored.
# Otherwise, at lower accuracy, TensorFlow NLP transformations will only be created as a mutation.
#enable_tensorflow_nlp_accuracy_switch = 5

# Whether to use Word-based CNN TensorFlow models for NLP if TensorFlow enabled
#enable_tensorflow_textcnn = "auto"

# Whether to use Word-based Bi-GRU TensorFlow models for NLP if TensorFlow enabled
#enable_tensorflow_textbigru = "auto"

# Whether to use Character-level CNN TensorFlow models for NLP if TensorFlow enabled
#enable_tensorflow_charcnn = "auto"

# Path to pretrained embeddings for TensorFlow NLP models
# For example, download and unzip https://nlp.stanford.edu/data/glove.6B.zip
# tensorflow_nlp_pretrained_embeddings_file_path = /path/on/server/to/glove.6B.300d.txt
#tensorflow_nlp_pretrained_embeddings_file_path = ""

# Allow training of all weights of the neural network graph, including the pretrained embedding layer weights. If disabled, then the embedding layer is frozen, but all other weights are still fine-tuned.
#tensorflow_nlp_pretrained_embeddings_trainable = false

# Whether Python/MOJO scoring runtime will have GPUs (otherwise BiGRU will fail in production if this is enabled).
# Enabling this can speed up training for BiGRU, but will require GPUs and CuDNN in production.
#tensorflow_nlp_have_gpus_in_production = false

# Fraction of text columns out of all features to be considered a text-dominated problem
#text_fraction_for_text_dominated_problem = 0.3

# Fraction of text transformers to all transformers above which to trigger that text dominated problem
#text_transformer_fraction_for_text_dominated_problem = 0.3

# Threshold for average string-is-text score as determined by internal heuristics
# It decides when a string column will be treated as text (for an NLP problem) or just as
# a standard categorical variable.
# Higher values will favor string columns as categoricals, lower values will favor string columns as text
#string_col_as_text_threshold = 0.3

# Mininum fraction of unique values for string columns to be considered as possible text (otherwise categorical)
#string_col_as_text_min_relative_cardinality = 0.1

# Mininum number of uniques for string columns to be considered as possible text (otherwise categorical)
#string_col_as_text_min_absolute_cardinality = 100

# Interpretability setting equal and above which will use automatic monotonicity constraints in
# XGBoostGBM/LightGBM/DecisionTree models.
# 
#monotonicity_constraints_interpretability_switch = 7

# Threshold, of Pearson product-moment correlation coefficient between numerical or encoded transformed
# feature and target, above (below negative for) which will enforce positive (negative) monotonicity
# for XGBoostGBM, LightGBM and DecisionTree models.
# Enabled when interpretability >= monotonicity_constraints_interpretability_switch config toml value.
# Only if monotonicity_constraints_dict is not provided.
# 
#monotonicity_constraints_correlation_threshold = 0.1

# Manual override for monotonicity constraints. Mapping of original numeric features to desired constraint
# (1 for pos, -1 for neg, or 0 to disable). Features that are not listed here will automatically get no
# constraint (i.e., 0). Example: {'PAY_0': -1, 'PAY_2': -1, 'AGE': -1, 'BILL_AMT1': 1, 'PAY_AMT1': -1}
# If not provided, then the automatic correlation based method will be in effect if monotonicity constraints are
# enabled at high enough interpretability settings.
# 
#monotonicity_constraints_dict = "{}"

# Exploring feature interactions can be important in gaining better predictive performance.
# The interaction can take multiple forms (i.e. feature1 + feature2 or feature1 * feature2 + ... featureN)
# Although certain machine learning algorithms (like tree-based methods) can do well in
# capturing these interactions as part of their training process, still generating them may
# help them (or other algorithms) yield better performance.
# The depth of the interaction level (as in "up to" how many features may be combined at
# once to create one single feature) can be specified to control the complexity of the
# feature engineering process.  For transformers that use both numeric and categorical features, this constrains
# the number of each type, not the total number. Higher values might be able to make more predictive models
# at the expense of time (-1 means automatic).
#max_feature_interaction_depth = -1

# Instead of sampling from min to max (up to max_feature_interaction_depth unless all specified)
# columns allowed for each transformer (0), choose fixed non-zero number of columns to use.
# Can make same as number of columns to use all columns for each transformers if allowed by each transformer.
# -n can be chosen to do 50/50 sample and fixed of n features.
# 
#fixed_feature_interaction_depth = 0

# Like fixed_feature_interaction_depth but for categoricals if doing numcat (i.e. numeric and categoricals separated)
# transformers.  Only applies if also fixed_feature_interaction_depth > 0, and then will use sampling (0) unless
# override since doesn't make sense to group by all columns usually.
#fixed_feature_interaction_depth_numcat_cat = 0

# Accuracy setting equal and above which enables tuning of model parameters
# Only applicable if parameter_tuning_num_models=-1 (auto)
#tune_parameters_accuracy_switch = 3

# Accuracy setting equal and above which enables tuning of target transform for regression.
# This is useful for time series when instead of predicting the actual target value, it
# might be better to predict a transformed target variable like sqrt(target) or log(target)
# as a means to control for outliers.
#tune_target_transform_accuracy_switch = 3

# Select a target transformation for regression problems. Must be one of: ['auto',
# 'identity', 'unit_box', 'log', 'square', 'sqrt', 'double_sqrt', 'inverse', 'anscombe', 'logit', 'sigmoid'].
# If set to 'auto', will automatically pick the best target transformer (if accuracy is set to
# tune_target_transform_accuracy_switch or larger).
# 
#target_transformer = "auto"

# Tournament style (method to decide which models are best at each iteration)
# 'auto' : Choose based upon accuracy, etc.
# 'fullstack' : Choose among optimal model and feature types
# 'model' : individuals with same model type compete
# 'feature' : individuals with similar feature types compete
# 'uniform' : all individuals in population compete to win as best
# 'model' and 'feature' styles preserve at least one winner for each type (and so 2 total indivs of each type after mutation)
# For each case, a round robin approach is used to choose best scores among type of models to choose from
#tournament_style = "auto"

# Interpretability above which will use 'uniform' tournament style
#tournament_uniform_style_interpretability_switch = 6

# Accuracy below which will use uniform style if tournament_style = 'auto' (regardless of other accuracy tournament style switch values)
#tournament_uniform_style_accuracy_switch = 6

# Accuracy equal and above which uses model style if tournament_style = 'auto'
#tournament_model_style_accuracy_switch = 6

# Accuracy equal and above which uses feature style if tournament_style = 'auto'
#tournament_feature_style_accuracy_switch = 7

# Accuracy equal and above which uses fullstack style if tournament_style = 'auto'
#tournament_fullstack_style_accuracy_switch = 8

# Whether to use penalized score for GA tournament or actual score
#tournament_use_feature_penalized_score = true
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902

# Driverless AI uses a genetic algorithm (GA) to find the best features, best models and
# best hyper parameters for these models. The GA facilitates getting good results while not
# requiring torun/try every possible model/feature/parameter. This version of GA has
# reinforcement learning elements - it uses a form of exploration-exploitation to reach
# optimum solutions. This means it will capitalise on models/features/parameters that seem # to be working well and continue to exploit them even more, while allowing some room for
# trying new (and semi-random) models/features/parameters to avoid settling on a local
# minimum.
# These models/features/parameters tried are what-we-call individuals of a population. More # individuals connote more models/features/parameters to be tried and compete to find the best # ones.
#num_individuals = 2

# set fixed number of individuals (if > 0) - useful to compare different hardware configurations
#fixed_num_individuals = 0

# set fixed number of fold reps (if > 0) - useful for quick runs regardless of data
#fixed_fold_reps = 0

# number of unique targets or folds counts after which switch to faster/simpler non-natural sorting and print outs
#sanitize_natural_sort_limit = 1000

# Whether target encoding could be enabled
# Target encoding refers to several different feature transformations (primarily focused on
# categorical data) that aim to represent the feature using information of the actual
# target variable. A simple example can be to use the mean of the target to replace each
# unique category of a categorical feature. This type of features can be very predictive,
# but are prone to overfitting and require more memory as they need to store mappings of
# the unique categories and the target values.
#enable_target_encoding = "auto"

#enable_lexilabel_encoding = "off"

#enable_isolation_forest = "off"

# Whether one hot encoding could be enabled.  If auto, then only applied for small data and GLM.
#enable_one_hot_encoding = "auto"

#isolation_forest_nestimators = 200

# Driverless AI categorises all data (feature engineering) transformers
# More information for these transformers can be viewed here:
# http://docs.h2o.ai/driverless-ai/latest-stable/docs/userguide/transformations.html
# This section allows including/excluding these transformations and may be useful when
# simpler (more interpretable) models are sought at the expense of accuracy.
# the interpretability setting)
# for multi-class: '['NumCatTETransformer', 'TextLinModelTransformer',
# 'FrequentTransformer', 'CVTargetEncodeTransformer', 'ClusterDistTransformer',
# 'WeightOfEvidenceTransformer', 'TruncSVDNumTransformer', 'CVCatNumEncodeTransformer',
# 'DatesTransformer', 'TextTransformer', 'OriginalTransformer',
# 'NumToCatWoETransformer', 'NumToCatTETransformer', 'ClusterTETransformer',
# 'InteractionsTransformer']'
# for regression/binary: '['TextTransformer', 'ClusterDistTransformer',
# 'OriginalTransformer', 'TextLinModelTransformer', 'NumToCatTETransformer',
# 'DatesTransformer', 'WeightOfEvidenceTransformer', 'InteractionsTransformer',
# 'FrequentTransformer', 'CVTargetEncodeTransformer', 'NumCatTETransformer',
# 'NumToCatWoETransformer', 'TruncSVDNumTransformer', 'ClusterTETransformer',
# 'CVCatNumEncodeTransformer']'
# This list appears in the experiment logs (search for 'Transformers used')
# 
#included_transformers = "[]"

# Auxiliary to included_transformers
# e.g. to disable all Target Encoding: excluded_transformers =
# '['NumCatTETransformer', 'CVTargetEncodeF', 'NumToCatTETransformer',
# 'ClusterTETransformer']'
# 
#excluded_transformers = "[]"

# Include list of genes (i.e. genes (built on top of transformers) to use,
# independent of the interpretability setting)
# Some transformers are used by multiple genes, so this allows different control over feature engineering
# for multi-class: '['InteractionsGene', 'WeightOfEvidenceGene',
# 'NumToCatTargetEncodeSingleGene', 'OriginalGene', 'TextGene', 'FrequentGene',
# 'NumToCatWeightOfEvidenceGene', 'NumToCatWeightOfEvidenceMonotonicGene', '
# CvTargetEncodeSingleGene', 'DateGene', 'NumToCatTargetEncodeMultiGene', '
# DateTimeGene', 'TextLinRegressorGene', 'ClusterIDTargetEncodeSingleGene',
# 'CvCatNumEncodeGene', 'TruncSvdNumGene', 'ClusterIDTargetEncodeMultiGene',
# 'NumCatTargetEncodeMultiGene', 'CvTargetEncodeMultiGene', 'TextLinClassifierGene',
# 'NumCatTargetEncodeSingleGene', 'ClusterDistGene']'
# for regression/binary: '['CvTargetEncodeSingleGene', 'NumToCatTargetEncodeSingleGene',
# 'CvCatNumEncodeGene', 'ClusterIDTargetEncodeSingleGene', 'TextLinRegressorGene',
# 'CvTargetEncodeMultiGene', 'ClusterDistGene', 'OriginalGene', 'DateGene',
# 'ClusterIDTargetEncodeMultiGene', 'NumToCatTargetEncodeMultiGene',
# 'NumCatTargetEncodeMultiGene', 'TextLinClassifierGene', 'WeightOfEvidenceGene',
# 'FrequentGene', 'TruncSvdNumGene', 'InteractionsGene', 'TextGene',
# 'DateTimeGene', 'NumToCatWeightOfEvidenceGene',
# 'NumToCatWeightOfEvidenceMonotonicGene', ''NumCatTargetEncodeSingleGene']'
# This list appears in the experiment logs (search for 'Genes used')
# e.g. to only enable interaction gene, use:  included_genes =
# '['InteractionsGene']'
#included_genes = "[]"

# Exclude list of genes (i.e. genes (built on top of transformers) to not use,
# independent of the interpretability setting)
# Some transformers are used by multiple genes, so this allows different control over feature engineering
# for multi-class: '['InteractionsGene', 'WeightOfEvidenceGene',
# 'NumToCatTargetEncodeSingleGene', 'OriginalGene', 'TextGene', 'FrequentGene',
# 'NumToCatWeightOfEvidenceGene', 'NumToCatWeightOfEvidenceMonotonicGene', '
# CvTargetEncodeSingleGene', 'DateGene', 'NumToCatTargetEncodeMultiGene', '
# DateTimeGene', 'TextLinRegressorGene', 'ClusterIDTargetEncodeSingleGene',
# 'CvCatNumEncodeGene', 'TruncSvdNumGene', 'ClusterIDTargetEncodeMultiGene',
# 'NumCatTargetEncodeMultiGene', 'CvTargetEncodeMultiGene', 'TextLinClassifierGene',
# 'NumCatTargetEncodeSingleGene', 'ClusterDistGene']'
# for regression/binary: '['CvTargetEncodeSingleGene', 'NumToCatTargetEncodeSingleGene',
# 'CvCatNumEncodeGene', 'ClusterIDTargetEncodeSingleGene', 'TextLinRegressorGene',
# 'CvTargetEncodeMultiGene', 'ClusterDistGene', 'OriginalGene', 'DateGene',
# 'ClusterIDTargetEncodeMultiGene', 'NumToCatTargetEncodeMultiGene',
# 'NumCatTargetEncodeMultiGene', 'TextLinClassifierGene', 'WeightOfEvidenceGene',
# 'FrequentGene', 'TruncSvdNumGene', 'InteractionsGene', 'TextGene',
# 'DateTimeGene', 'NumToCatWeightOfEvidenceGene',
# 'NumToCatWeightOfEvidenceMonotonicGene', ''NumCatTargetEncodeSingleGene']'
# This list appears in the experiment logs (search for 'Genes used')
# e.g. to disable interaction gene, use:  excluded_genes =
# '['InteractionsGene']'
#excluded_genes = "[]"

#included_models = "[]"

# Auxiliary to included_models
#excluded_models = "[]"

#included_scorers = "[]"

# Auxiliary to included_scorers
#excluded_scorers = "[]"

# Whether to enable XGBoost GBM models ('auto'/'on'/'off')
#enable_xgboost_gbm = "auto"

# Whether to enable XGBoost Dart models ('auto'/'on'/'off')
#enable_xgboost_dart = "auto"

# Internal threshold for number of rows x number of columns to trigger no xgboost models due to high memory use
# Overridden if enable_xgboost_gbm = "on" or enable_xgboost_dart = "on", in which case always allow each model type to be used
#xgboost_threshold_data_size_large = 100000000

# Internal threshold for number of rows x number of columns to trigger no xgboost models due to limits on GPU memory capability
# Overridden if enable_xgboost_gbm = "on" or enable_xgboost_dart = "on", in which case always allow each model type to be used
#xgboost_gpu_threshold_data_size_large = 30000000

# Whether to enable GLM models ('auto'/'on'/'off')
#enable_glm = "auto"

# Whether to enable Decision Tree models ('auto'/'on'/'off')
#enable_decision_tree = "auto"

# Whether to enable LightGBM models ('auto'/'on'/'off')
#enable_lightgbm = "auto"

# Whether to enable TensorFlow models ('auto'/'on'/'off')
#enable_tensorflow = "auto"

# Whether to enable FTRL support (beta version, no mojo) (follow the regularized leader) model ('auto'/'on'/'off')
#enable_ftrl = "auto"

# Whether to enable RuleFit support (beta version, no mojo) ('auto'/'on'/'off')
#enable_rulefit = "auto"

# Which boosting types to enable for LightGBM (gbdt = boosted trees, rf_early_stopping = random forest with early stopping rf = random forest (no early stopping), dart = drop-out boosted trees with no early stopping
#enable_lightgbm_boosting_types = "['gbdt']"

# Whether to enable LightGBM categorical feature support (only CPU mode currently)
#enable_lightgbm_cat_support = false

# Whether to enable constant models ('auto'/'on'/'off')
#enable_constant_model = "auto"

# Whether to show constant models in iteration panel
#show_constant_model = false

#drop_constant_model_final_ensemble = true

# Parameters for LightGBM to override DAI parameters
# parameters should be given as XGBoost equivalent unless unique LightGBM parameter
# e.g. 'eval_metric' instead of 'metric' should be used
# e.g. params_lightgbm = "{'objective': 'binary:logistic', 'n_estimators': 100, 'max_leaves': 64, 'random_state': 1234}"
# e.g. params_lightgbm = {'n_estimators': 600, 'learning_rate': 0.1, 'reg_alpha': 0.0, 'reg_lambda': 0.5, 'gamma': 0, 'max_depth': 0, 'max_bin': 128, 'max_leaves': 256, 'scale_pos_weight': 1.0, 'max_delta_step': 3.469919910597877, 'min_child_weight': 1, 'subsample': 0.9, 'colsample_bytree': 0.3, 'tree_method': 'gpu_hist', 'grow_policy': 'lossguide', 'min_data_in_bin': 3, 'min_child_samples': 5, 'early_stopping_rounds': 20, 'num_classes': 2, 'objective': 'binary:logistic', 'eval_metric': 'logloss', 'random_state': 987654, 'early_stopping_threshold': 0.01, 'monotonicity_constraints': False, 'silent': True, 'debug_verbose': 0, 'subsample_freq': 1}"
# avoid including "system"-level parameters like 'n_gpus': 1, 'gpu_id': 0, , 'n_jobs': 1, 'booster': 'lightgbm'
# also likely should avoid parameters like: 'objective': 'binary:logistic', unless one really knows what one is doing (e.g. alternative objectives)
# See: https://xgboost.readthedocs.io/en/latest/parameter.html
# And see: https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
# Can also pass objective parameters if choose (or in case automatically chosen) certain objectives
# https://lightgbm.readthedocs.io/en/latest/Parameters.html#metric-parameters
#params_lightgbm = "{}"

# Parameters for XGBoost to override DAI parameters
# similar parameters as lightgbm since lightgbm parameters are transcribed from xgboost equivalent versions
# e.g. params_xgboost = '{'n_estimators': 100, 'max_leaves': 64, 'max_depth': 0, 'random_state': 1234}'
# See: https://xgboost.readthedocs.io/en/latest/parameter.html
#params_xgboost = "{}"

# Like params_xgboost but for XGBoost's dart method
#params_dart = "{}"

# Parameters for TensorFlow to override DAI parameters
# e.g. params_tensorflow = '{'lr': 0.01, 'add_wide': False, 'add_attention': True, 'epochs': 30, 'layers': [100, 100], 'activation': 'selu', 'batch_size': 64, 'chunk_size': 1000, 'dropout': 0.3, 'strategy': 'one_shot', 'l1': 0.0, 'l2': 0.0, 'ort_loss': 0.5, 'ort_loss_tau': 0.01, 'normalize_type': 'streaming'}'
# See: https://keras.io/ , e.g. for activations: https://keras.io/activations/
# Example layers: [500, 500, 500], [100, 100, 100], [100, 100], [50, 50]
# Strategies: '1cycle' or 'one_shot', See: https://github.com/fastai/fastai
# normalize_type: 'streaming' or 'global' (using sklearn StandardScaler)
#params_tensorflow = "{}"

# Parameters for XGBoost's gblinear to override DAI parameters
# e.g. params_gblinear = '{'n_estimators': 100}'
# See: https://xgboost.readthedocs.io/en/latest/parameter.html
#params_gblinear = "{}"

# Parameters for Decision Tree to override DAI parameters
# parameters should be given as XGBoost equivalent unless unique LightGBM parameter
# e.g. 'eval_metric' instead of 'metric' should be used
# e.g. params_decision_tree = "{'objective': 'binary:logistic', 'n_estimators': 100, 'max_leaves': 64, 'random_state': 1234}"
# e.g. params_decision_tree = {'n_estimators': 1, 'learning_rate': 1, 'reg_alpha': 0.0, 'reg_lambda': 0.5, 'gamma': 0, 'max_depth': 0, 'max_bin': 128, 'max_leaves': 256, 'scale_pos_weight': 1.0, 'max_delta_step': 3.469919910597877, 'min_child_weight': 1, 'subsample': 0.9, 'colsample_bytree': 0.3, 'tree_method': 'gpu_hist', 'grow_policy': 'lossguide', 'min_data_in_bin': 3, 'min_child_samples': 5, 'early_stopping_rounds': 20, 'num_classes': 2, 'objective': 'binary:logistic', 'eval_metric': 'logloss', 'random_state': 987654, 'early_stopping_threshold': 0.01, 'monotonicity_constraints': False, 'silent': True, 'debug_verbose': 0, 'subsample_freq': 1}"
# avoid including "system"-level parameters like 'n_gpus': 1, 'gpu_id': 0, , 'n_jobs': 1, 'booster': 'lightgbm'
# also likely should avoid parameters like: 'objective': 'binary:logistic', unless one really knows what one is doing (e.g. alternative objectives)
# See: https://xgboost.readthedocs.io/en/latest/parameter.html
# And see: https://github.com/Microsoft/LightGBM/blob/master/docs/Parameters.rst
# Can also pass objective parameters if choose (or in case automatically chosen) certain objectives
# https://lightgbm.readthedocs.io/en/latest/Parameters.html#metric-parameters
#params_decision_tree = "{}"

# Parameters for Rulefit to override DAI parameters
# e.g. params_rulefit = '{'max_leaves': 64}'
# See: https://xgboost.readthedocs.io/en/latest/parameter.html
#params_rulefit = "{}"

# Parameters for FTRL to override DAI parameters
#params_ftrl = "{}"

# Dictionary of key:lists of values to use for LightGBM tuning, overrides DAI's choice per key
# e.g. params_tune_lightgbm = '{'min_child_samples': [1,2,5,100,1000], 'min_data_in_bin': [1,2,3,10,100,1000]}'
#params_tune_lightgbm = "{}"

# Like params_tune_lightgbm but for XGBoost
# e.g. params_tune_xgboost = '{'max_leaves': [8, 16, 32, 64]}'
#params_tune_xgboost = "{}"

# Like params_tune_lightgbm but for XGBoost's Dart
# e.g. params_tune_dart = '{'max_leaves': [8, 16, 32, 64]}'
#params_tune_dart = "{}"

# Like params_tune_lightgbm but for TensorFlow
# e.g. params_tune_tensorflow = '{'layers': [[10,10,10], [10, 10, 10, 10]]}'
#params_tune_tensorflow = "{}"

# Like params_tune_lightgbm but for gblinear
# e.g. params_tune_gblinear = '{'reg_lambda': [.01, .001, .0001, .0002]}'
#params_tune_gblinear = "{}"

# Like params_tune_lightgbm but for rulefit
# e.g. params_tune_rulefit = '{'max_depth': [4, 5, 6]}'
#params_tune_rulefit = "{}"

# Like params_tune_lightgbm but for ftrl
#params_tune_ftrl = "{}"

# Whether to force max_leaves and max_depth to be 0 if grow_policy is depthwise and lossguide, respectively.
#params_tune_grow_policy_simple_trees = true

# Maximum number of GBM trees or GLM iterations
# Early-stopping usually chooses less
#max_nestimators = 3000

# LightGBM dart mode and normal rf mode do not use early stopping and will sample from these values for n_estimators.
#n_estimators_list_no_early_stopping = [50, 100, 200, 300]

# Lower limit on learning rate for final ensemble GBM models.
# In some cases, the maximum number of treess/iterations is insufficient for the final learning rate,
# which can lead to no early stopping triggered and poor final model performance.
# Then, one can try increasing the learning rate by raising this minimum,
# or one can try increasing the maximum number of trees/iterations.
# 
#min_learning_rate_final = 0.01

# Upper limit on learning rate for final ensemble GBM models
#max_learning_rate_final = 0.05

# factor by which max_nestimators is reduced for tuning and feature evolution
#max_nestimators_feature_evolution_factor = 0.2

# Lower limit on learning rate for feature engineering GBM models
#min_learning_rate = 0.05

# Upper limit on learning rate for GBM models
# If want to override min_learning_rate and min_learning_rate_final, set this to smaller value
#max_learning_rate = 0.5

# Max. number of epochs for TensorFlow and FTRL models
#max_epochs = 10

# Maximum tree depth (and corresponding max max_leaves as 2**max_max_depth)
#max_max_depth = 12

# Default max_bin for tree methods
#default_max_bin = 256

# Default max_bin for lightgbm (recommended for GPU lightgbm)
#default_lightgbm_max_bin = 64

# Maximum max_bin for tree features
#max_max_bin = 256

# Minimum max_bin for any tree
#min_max_bin = 32

# Amount of memory which can handle max_bin = 256 can handle 125 columns and max_bin = 32 for 1000 columns
# As available memory on system goes higher than this scale, can handle proportionally more columns at higher max_bin
# Currently set to 10GB
#scale_mem_for_max_bin = 10737418240

# Factor by which rf gets more depth than gbdt
#factor_rf = 1.25

# Whether TensorFlow will use all CPU cores, or if it will split among all transformers
#tensorflow_use_all_cores = true

# Whether TensorFlow will use all CPU cores if reproducible is set, or if it will split among all transformers
#tensorflow_use_all_cores_even_if_reproducible_true = false

# How many cores to use for each TensorFlow model, regardless if GPU or CPU based (0 = auto mode)
#tensorflow_cores = 0

# Max number of rules to be used for RuleFit models (-1 for all)
#rulefit_max_num_rules = -1

# Max tree depth for RuleFit models
#rulefit_max_tree_depth = 6

# Max number of trees for RuleFit models
#rulefit_max_num_trees = 100

# Internal threshold for number of rows x number of columns to trigger no rulefit models due to being too slow currently
#rulefit_threshold_data_size_large = 100000000

# Enable One-Hot-Encoding (which does binning to limit to number of bins to no more than 100 anyway) for categorical columns with fewer than this many unique values
# Set to 0 to disable
#one_hot_encoding_cardinality_threshold = 50

# Fixed ensemble_level
# -1 = auto, based upon ensemble_accuracy_switch, accuracy, size of data, etc.
# 0 = No ensemble, only final single model on validated iteration/tree count
# 1 = 1 model, multiple ensemble folds (cross-validation)
# 2 = 2 models, multiple ensemble folds (cross-validation)
# 3 = 3 models, multiple ensemble folds (cross-validation)
# 4 = 4 models, multiple ensemble folds (cross-validation)
#fixed_ensemble_level = -1

# If enabled, use cross-validation to determine optimal parameters for single final model,
# and to be able to create training holdout predictions.
#cross_validate_single_final_model = true

# Number of models to tune during pre-evolution phase
# Can make this lower to avoid excessive tuning, or make higher to do enhanced tuning.
# -1 : auto
# 
#parameter_tuning_num_models = -1

#validate_meta_learner = true

#validate_meta_learner_extra = false

# Specify the fixed number of cross-validation folds (if >= 2) for feature evolution. (The actual number of splits allowed can be less and is determined at experiment run-time).
#fixed_num_folds_evolution = -1

# Specify the fixed number of cross-validation folds (if >= 2) for the final model. (The actual number of splits allowed can be less and is determined at experiment run-time).
#fixed_num_folds = -1

# set "on" to force only first fold for models - useful for quick runs regardless of data
#fixed_only_first_fold_model = "auto"

#num_fold_ids_show = 10

#fold_scores_instability_warning_threshold = 0.25

# Upper limit on the number of rows x number of columns for feature evolution (applies to both training and validation/holdout splits)
# feature evolution is the process that determines which features will be derived.
# Depending on accuracy settings, a fraction of this value will be used
#feature_evolution_data_size = 100000000

# Upper limit on the number of rows x number of columns for training final pipeline.
# 
#final_pipeline_data_size = 500000000

# Smaller values can speed up final pipeline model training, as validation data is only used for early stopping.
# Note that final model predictions and scores will always be provided on the full dataset provided.
# 
#max_validation_to_training_size_ratio_for_final_ensemble = 2.0

# Ratio of minority to majority class of the target column beyond which stratified sampling is done for binary classification. Otherwise perform random sampling. Set to 0 to always do random sampling. Set to 1 to always do stratified sampling.
#force_stratified_splits_for_imbalanced_threshold_binary = 0.01

# Sampling method for imbalanced binary classification problems. Choices are:
# "auto": sample both classes as needed, depending on data
# "over_under_sampling": over-sample the minority class and under-sample the majority class, depending on data
# "under_sampling": under-sample the majority class to reach class balance
# "off": do not perform any sampling
# 
#imbalance_sampling_method = "off"

# For imbalanced binary classification: ratio of majority to minority class equal and above which to enable
# special imbalanced models with sampling techniques (specified by imbalance_sampling_method) to attempt to improve model performance.
#imbalance_ratio_sampling_threshold = 5

# For heavily imbalanced binary classification: ratio of majority to minority class equal and above which to enable only
# special imbalanced models on full original data, without upfront sampling.
#heavy_imbalance_ratio_sampling_threshold = 25

# -1: automatic
#imbalance_sampling_number_of_bags = -1

# -1: automatic
#imbalance_sampling_max_number_of_bags = 10

# Only for shift/leakage/tuning/feature evolution models. Not used for final models. Final models can
# be limited by imbalance_sampling_max_number_of_bags.
#imbalance_sampling_max_number_of_bags_feature_evolution = 3

# Max. size of data sampled during imbalanced sampling (in terms of dataset size),
# controls number of bags (approximately). Only for imbalance_sampling_number_of_bags == -1.
#imbalance_sampling_max_multiple_data_size = 1.0

# Rank averaging can be helpful when ensembling diverse models when ranking metrics like AUC/Gini
# metrics are optimized. No MOJO support yet.
#imbalance_sampling_rank_averaging = "auto"

# A value of 0.5 means that models/algorithms will be presented a balanced target class distribution
# after applying under/over-sampling techniques on the training data. Sometimes it makes sense to
# choose a smaller value like 0.1 or 0.01 when starting from an extremely imbalanced original target
# distribution. -1.0: automatic
#imbalance_sampling_target_minority_fraction = -1.0

# For binary classification: ratio of majority to minority class equal and above which to notify
# of imbalance in GUI to say slightly imbalanced.
# More than imbalance_ratio_sampling_threshold will say problem is imbalanced.
# 
#imbalance_ratio_notification_threshold = 2.0

# list of possible bins for FTRL (largest is default best value)
#nbins_ftrl_list = "[1000000, 10000000, 100000000]"

# Samples the number of automatic FTRL interactions terms to no more than this value (for each of 2nd, 3rd, 4th order terms)
#ftrl_max_interaction_terms_per_degree = 10000

# list of possible bins for target encoding (first is default value)
#te_bin_list = "[25, 10, 100, 250]"

# list of possible bins for weight of evidence encoding (first is default value)
# If only want one value: woe_bin_list = [2]
#woe_bin_list = "[25, 10, 100, 250]"

# list of possible bins for ohe hot encoding (first is default value)
#ohe_bin_list = "[10, 25, 50, 75, 100]"

# Whether to drop columns with constant values
#drop_constant_columns = true

# Whether to drop columns that appear to be an ID
#drop_id_columns = true

# Whether to avoid dropping any columns (original or derived)
#no_drop_features = false

# Direct control over columns to drop in bulk so can copy-paste large lists instead of selecting each one separately in GUI
#cols_to_drop = ""

# Control over columns to group by, default is empty list that means DAI automatically searches all columns,
# selected randomly or by which have top variable importance.
#cols_to_group_by = ""

# Whether to sample from given features to group by (True) or to always group by all features (False).
#sample_cols_to_group_by = false

# Aggregation functions to use for groupby operations.
#agg_funcs_for_group_by = "['mean', 'sd', 'min', 'max', 'count']"

# Out of fold aggregations ensure less overfitting, but see less data in each fold.
#folds_for_group_by = 5

# Strategy to apply when doing mutations on transformers.
# Sample mode is default, with tendency to sample transformer parameters.
# Batched mode tends to do multiple types of the same transformation together.
# Full mode does even more types of the same transformation together.
# 
#mutation_mode = "sample"

# Whether to enable checking text for shift, currently only via label encoding.
#shift_check_text = false

# Whether to use LightGBM random forest mode without early stopping for shift detection.
#use_rf_for_shift_if_have_lgbm = true

# Normalized training variable importance above which to check the feature for shift
# Useful to avoid checking likely unimportant features
#shift_key_features_varimp = 0.01

# Whether to only check certain features based upon the value of shift_key_features_varimp
#shift_check_reduced_features = true

# Number of trees to use to train model to check shift in distribution
# No larger than max_nestimators
#shift_trees = 100

# The value of max_bin to use for trees to use to train model to check shift in distribution
#shift_max_bin = 256

# The min. value of max_depth to use for trees to use to train model to check shift in distribution
#shift_min_max_depth = 4

# The max. value of max_depth to use for trees to use to train model to check shift in distribution
#shift_max_max_depth = 8

# If distribution shift detection is enabled, show features for which shift AUC is above this value
# (AUC of a binary classifier that predicts whether given feature value belongs to train or test data)
#detect_features_distribution_shift_threshold_auc = 0.55

# Minimum number of features to keep, keeping least shifted feature at least if 1
#drop_features_distribution_shift_min_features = 1

# Whether to enable checking text for leakage, currently only via label encoding.
#leakage_check_text = true

# Normalized training variable importance (per 1 minus AUC/R2 to control for leaky varimp dominance) above which to check the feature for leakage
# Useful to avoid checking likely unimportant features
#leakage_key_features_varimp = 0.001

# Like leakage_key_features_varimp, but applies if early stopping disabled when can trust multiple leaks to get uniform varimp.
#leakage_key_features_varimp_if_no_early_stopping = 0.05

# Whether to only check certain features based upon the value of leakage_key_features_varimp.  If any feature has AUC near 1, will consume all variable importance, even if another feature is also leaky.  So False is safest option, but True generally good if many columns.
#leakage_check_reduced_features = true

# Whether to use LightGBM random forest mode without early stopping for leakage detection.
#use_rf_for_leakage_if_have_lgbm = true

# Number of trees to use to train model to check for leakage
# No larger than max_nestimators
#leakage_trees = 100

# The value of max_bin to use for trees to use to train model to check for leakage
#leakage_max_bin = 256

# The value of max_depth to use for trees to use to train model to check for leakage
#leakage_min_max_depth = 4

# The value of max_depth to use for trees to use to train model to check for leakage
#leakage_max_max_depth = 8

# When leakage detection is enabled, if AUC (R2 for regression) on original data (label-encoded)
# is above or equal to this value, then trigger per-feature leakage detection
#detect_features_leakage_threshold_auc = 0.95

# When leakage detection is enabled, show features for which AUC (R2 for regression,
# for whether that predictor/feature alone predicts the target) is above or equal to this value.
# Feature is dropped if AUC/R2 is above or equal to drop_features_leakage_threshold_auc
#detect_features_per_feature_leakage_threshold_auc = 0.8

# Minimum number of features to keep, keeping least leakage feature at least if 1
#drop_features_leakage_min_features = 1

# Ratio of train to validation holdout when testing for leakage
#leakage_train_test_split = 0.25

# Whether to enable detailed traces (in GUI Trace)
#detailed_traces = false

# Whether to enable debug log level (in log files)
#debug_log = false

# Whether to add logging of system information such as CPU, GPU, disk space at the start of each experiment log. Same information is already logged in system logs.
#log_system_info_per_experiment = true

# How close to the optimal value (usually 1 or 0) does the validation score need to be to be considered perfect (to stop the experiment)?
#abs_tol_for_perfect_score = 0.0001

# Timeout in seconds to wait for data ingestion.
#data_ingest_timeout = 86400.0

# Enable time series recipe
#time_series_recipe = true

# Provide date or datetime timestamps (in same format as the time column) for custom training and validation splits like this: "tr_start1, tr_end1, va_start1, va_end1, ..., tr_startN, tr_endN, va_startN, va_endN"
#time_series_validation_fold_split_datetime_boundaries = ""

# Timeout in seconds for time-series properties detection in UI.
#timeseries_split_suggestion_timeout = 30.0

# Whether to use lag transformers when using causal-split for validation (as occurs when not using time-based lag recipe).
# If no time groups columns, lag transformers will still use time-column as sole time group column.
# 
#use_lags_if_not_time_series_recipe = false

# earliest datetime for automatic conversion of integers in %Y%m%d format to a time column during parsing
#min_ymd_timestamp = 19000101

# lastet datetime for automatic conversion of integers in %Y%m%d format to a time column during parsing
#max_ymd_timestamp = 21000101

# maximum number of data samples (randomly selected rows) for date/datetime format detection
#max_rows_datetime_format_detection = 100000

# Automatically generate is-holiday features from date columns
#holiday_features = true

# County code to use to look up holiday calendar (Python package 'holiday')
#holiday_country = "US"

# Max. sample size for automatic determination of time series train/valid split properties, only if time column is selected
#max_time_series_properties_sample_size = 250000

# Maximum number of lag sizes to use for lags-based time-series experiments. are sampled from if sample_lag_sizes==True, else all are taken (-1 == automatic)
#max_lag_sizes = 30

# Minimum required autocorrelation threshold for a lag to be considered for feature engineering
#min_lag_autocorrelation = 0.1

# How many samples of lag sizes to use for a single time group (single time series signal)
#max_signal_lag_sizes = 100

# Whether to sample lag sizes
#sample_lag_sizes = false

# How many samples of lag sizes to use, chosen randomly out of original set of lag sizes
#max_sampled_lag_sizes = 10

# Override lags to be used
# e.g. [7, 14, 21] # this exact list
# e.g. 21 # produce from 1 to 21
# e.g. 21:3 produce from 1 to 21 in step of 3
# e.g. 5-21 produce from 5 to 21
# e.g. 5-21:3 produce from 5 to 21 in step of 3
#override_lag_sizes = []

# Smallest considered lag size
#min_lag_size = -1

# Whether to enable feature engineering based on selected time column, e.g. Date~weekday.
#allow_time_column_as_feature = true

# Whether to enable integer time column to be used as a numeric feature.
# If using time series recipe, using time column (numeric time stamps) as input features can lead to model that
# memorizes the actual time stamps instead of features that generalize to the future.
# 
#allow_time_column_as_numeric_feature = false

# Allowed date or date-time transformations.
# Date transformers include: year, quarter, month, week, weekday, day, dayofyear, num.
# Date transformers also include: hour, minute, second.
# Features in DAI will show up as get_ + transformation name.
# E.g. num is a direct numeric value representing the floating point value of time,
# which can lead to over-fitting if used on IID problems.  So this is turned off by default.
#datetime_funcs = "['year', 'quarter', 'month', 'week', 'weekday', 'day', 'dayofyear', 'hour', 'minute', 'second']"

# Whether to consider time groups columns (tgc) as standalone features.
# Note that 'time_column' is treated separately via 'Allow to engineer features from time column'.
# Use allowed_coltypes_for_tgc_as_features for control per feature type.
# 
#allow_tgc_as_features = false

# Which time groups columns (tgc) feature types to consider as standalone features,
# if the corresponding flag "Consider time groups columns as standalone features" is set to true.
# E.g. all column types would be ["numeric", "categorical", "ohe_categorical", "datetime", "date", "text"]
# Note that 'time_column' is treated separately via 'Allow to engineer features from time column'.
# Note that if lag-based time series recipe is disabled, then all tgc are allowed features.
# 
#allowed_coltypes_for_tgc_as_features = "['numeric', 'categorical', 'ohe_categorical', 'datetime', 'date', 'text']"

# Whether various transformers (clustering, truncated SVD) are enabled,
# that otherwise would be disabled for time series due to
# potential to overfit by leaking across time within the fit of each fold.
#enable_time_unaware_transformers = "auto"

# Whether to group by all time groups columns for creating lag features, instead of sampling from them
#tgc_only_use_all_groups = true

# Enable creation of holdout predictions on training data
# using moving windows (useful for MLI, but can be slow)
#time_series_holdout_preds = true

# Set fixed number of time-based splits for internal model validation (actual number of splits allowed can be less and is determined at experiment run-time).
#time_series_validation_splits = -1

# Maximum overlap between two time-based splits. Higher values increase the amount of possible splits.
#time_series_splits_max_overlap = 0.5

# Max number of splits used for creating final time-series model's holdout/backtesting predictions. With the default value '-1' the same amount of splits as during model validation will be used. Use 'time_series_validation_splits' to control amount of time-based splits used for model validation.
#time_series_max_holdout_splits = -1

#single_model_vs_cv_score_reldiff = 0.05

#single_model_vs_cv_score_reldiff2 = 0.0

# Whether to speed up time-series holdout predictions for back-testing on training data (used for MLI and metrics calculation). Can be slightly less accurate.
#mli_ts_fast_approx = false

# Whether to speed up Shapley values for time-series holdout predictions for back-testing on training data (used for MLI). Can be slightly less accurate.
#mli_ts_fast_approx_contribs = true

# Enable creation of Shapley values for holdout predictions on training data
# using moving windows (useful for MLI, but can be slow), at the time of the experiment. If disabled, MLI will
# generate Shapley values on demand.
#mli_ts_holdout_contribs = true

# Values of 5 or more can improve generalization by more aggressive dropping of least important features. Set to 1 to disable.
#time_series_min_interpretability = 5

# Dropout mode for lag features in order to achieve an equal n.a.-ratio between train and validation/test. The independent mode performs a simple feature-wise dropout, whereas the dependent one takes lag-size dependencies per sample/row into account.
#lags_dropout = "dependent"

# Normalized probability of choosing to lag non-targets relative to targets (-1.0 = auto)
#prob_lag_non_targets = -1.0

# Method to create rolling test set predictions, if the forecast horizon is shorter than the time span of the test set. One can choose between test time augmentation (TTA) and a successive refitting of the final pipeline.
#rolling_test_method = "tta"

# Probability for new Lags/EWMA gene to use default lags (determined by frequency/gap/horizon, independent of data) (-1.0 = auto)
#prob_default_lags = -1.0

# Unnormalized probability of choosing other lag time-series transformers based on interactions (-1.0 = auto)
#prob_lagsinteraction = -1.0

# Unnormalized probability of choosing other lag time-series transformers based on aggregations (-1.0 = auto)
#prob_lagsaggregates = -1.0

# Maximum amount of columns send from UI to backend in order to auto-detect TGC
#tgc_via_ui_max_ncols = 10

# Maximum frequency of duplicated timestamps for TGC detection
#tgc_dup_tolerance = 0.01

# Build (if missing but available) the MOJO pipeline to be used for predictions in MLI. For certain models this can improve performance.
#mli_use_mojo_pipeline = false

# When number of rows are above this limit sample for MLI for scoring UI data
#mli_sample_above_for_scoring = 1000000

# When number of rows are above this limit sample for MLI for training surrogate models
#mli_sample_above_for_training = 100000

# When sample for MLI how many rows to sample
#mli_sample_size = 100000

# how many bins to do quantile binning
#mli_num_quantiles = 10

# mli random forest number of trees
#mli_drf_num_trees = 100

# Whether to speed up predictions used inside MLI with a fast approximation
#mli_fast_approx = true

# mli number of trees for fast_approx during predict for Shapley
#fast_approx_num_trees = 50

# whether to do only 1 fold and 1 model of all folds and models if ensemble
#fast_approx_do_one_fold_one_model = true

# mli random forest max depth
#mli_drf_max_depth = 20

# not only sample training, but also sample scoring
#mli_sample_training = true

# regularization strength for k-LIME GLM's
#klime_lambda = "[1e-06, 1e-08]"

# regularization strength for k-LIME GLM's
#klime_alpha = 0.0

# mli converts numeric columns to enum when cardinality is <= this value
#mli_max_numeric_enum_cardinality = 25

# Maximum number of features allowed for k-LIME k-means clustering
#mli_max_number_cluster_vars = 6

# Use all columns for k-LIME k-means clustering (this will override `mli_max_number_cluster_vars` if set to `True`
#use_all_columns_klime_kmeans = false

# Strict version check for MLI
#mli_strict_version_check = true

# MLI cloud name
#mli_cloud_name = ""

# Compute original model ICE using per feature's bin predictions (true) or use "one frame" strategy (false)
#mli_ice_per_bin_strategy = false

# By default DIA will run for categorical columns with cardinality <= mli_dia_default_max_cardinality
#mli_dia_default_max_cardinality = 10

# Enable MLI Sensitivity Analysis
#enable_mli_sa = true

# When number of rows are above this limit, then sample for DIA
#mli_dia_sample_size = 100000

# When number of rows are above this limit, then sample for DAI PD/ICE
#mli_pd_sample_size = 100000

# Use dynamic switching between PD numeric and categorical binning and UI chart selection in case of features which were used both as numeric and categorical by auto ML
#mli_pd_numcat_num_chart = false

# If 'mli_pd_numcat_num_chart' is enabled, then use numeric binning and chart if feature unique values count is bigger than threshold, else use categorical binning and chart
#mli_pd_numcat_threshold = 10

# When number of rows are above this limit, then sample for MLI Shapley calculation
#mli_shapley_sample_size = 100000

# Enable async/await-based non-blocking MLI API
#enable_mli_async_api = true

# Enable main chart aggregator in Sensitivity Analysis
#enable_mli_sa_main_chart_aggregator = true

# When to sample for Sensitivity Analysis (number of rows after sampling)
#mli_sa_sampling_limit = 500000

# Run main chart aggregator in Sensitivity Analysis when the number of dataset instances is bigger than given limit
#mli_sa_main_chart_aggregator_limit = 1000

# Use predict_safe() (true) or predict_base() (false) in MLI (PD, ICE, SA, ...
#mli_predict_safe = false

# Allow predict method with fast approximation in MLI (PD, ICE, SA, ...
#enable_mli_predict_fast_approx = false

# Number of max retries should the surrogate model fail to build.
#mli_max_surrogate_retries = 5

# Number of rows per batch when scoring using MOJO.
#mli_mojo_batch_size = 50

# Tokenizer used to extract tokens from text columns for MLI.
#mli_nlp_tokenizer = "tfidf"

# Number of tokens used for MLI NLP explanations. -1 means all.
#mli_nlp_top_n = 20

# Maximum number of records on which we'll perform MLI NLP
#mli_nlp_sample_limit = 10000

# Number of parallel workers when scoring using MOJO in MLI NLP.
#mli_nlp_workers = 4

# Minimum number of documents in which token has to appear. Integer mean absolute count, float means percentage.
#mli_nlp_min_df = 3

# Maximum number of documents in which token has to appear. Integer mean absolute count, float means percentage.
#mli_nlp_max_df = 0.9

# The minimum value in the ngram range. The tokenizer will generate all possible tokens in the (mli_nlp_min_ngram, mli_nlp_max_ngram) range.
#mli_nlp_min_ngram = 1

# The maximum value in the ngram range. The tokenizer will generate all possible tokens in the (mli_nlp_min_ngram, mli_nlp_max_ngram) range.
#mli_nlp_max_ngram = 1

# Mode used to choose N tokens for MLI NLP.
# "top" chooses N top tokens.
# "bottom" chooses N bottom tokens.
# "top-bottom" chooses math.floor(N/2) top and math.ceil(N/2) bottom tokens.
# "linspace" chooses N evenly spaced out tokens.
#mli_nlp_min_token_mode = "top"

# The number of top tokens to be used as features when building token based feature importance.
#mli_nlp_tokenizer_max_features = -1

# The number of top tokens to be used as features when computing text LOCO.
#mli_nlp_loco_max_features = -1

# The number of top tokens to be used as features when building surrogate models.
#mli_nlp_surrogate_tokens = 100

# Whether to dump every scored individual's variable importance (both derived and original) to csv/tabulated/json file
# produces files like: individual_scored_id%d.iter%d*features*
#dump_varimp_every_scored_indiv = false

# Whether to dump every scored individual's model parameters to csv/tabulated/json file
# produces files like: individual_scored.params.[txt, csv, json]
#dump_modelparams_every_scored_indiv = true

# Number of features to show in model dump every scored individual
#dump_modelparams_every_scored_indiv_feature_count = 3

# Whether to append (false) or have separate files, files like: individual_scored_id%d.iter%d*params*, (true) for modelparams every scored indiv
#dump_modelparams_separate_files = false

# Whether to dump every scored fold's timing and feature info to a *timings*.txt file
#dump_trans_timings = false

# whether to delete preview timings if wrote transformer timings
#delete_preview_trans_timings = true

# Location of the AutoDoc template
#autodoc_template = "report_template.docx"

# Specify the output of the report.
# Options are docx or md.
#autodoc_output_type = "docx"

# Specify the name of the report.
#autodoc_report_name = "report"

# Specify the maximum number of classes in the confusion
# matrix.
#autodoc_max_cm_size = 10

# Set the number of models for which a glm coefficients
# table is shown in the Autoreport. coef_table_num_models must
# be -1 or an integer >= 1 (-1 shows all models).
#autodoc_coef_table_num_models = 1

# Set the number of folds per model for which a glm
# coefficients table is shown in the Autoreport. coef_table_num_folds
# must be -1 or an integer >= 1 (-1 shows all folds per model).
#autodoc_coef_table_num_folds = -1

# Set the number of coefficients to show within a glm
# coefficients table in the Autoreport. coef_table_num_coef, controls
# the number of rows shown in a glm table and must be -1 or
# an integer >= 1 (-1 shows all coefficients).
#autodoc_coef_table_num_coef = 50

# Set the number of classes to show within a glm
# coefficients table in the Autoreport. coef_table_num_classes controls
# the number of class-columns shown in a glm table and must be -1 or
# an integer >= 4 (-1 shows all classes).
#autodoc_coef_table_num_classes = 9

# Specify whether to show the full glm coefficient
# table(s) in the appendix. coef_table_appendix_results_table must be
# a boolean: True to show tables in appendix, False to not show them.
#autodoc_coef_table_appendix_results_table = false

# Specify the minimum relative importance in order
# for a feature to be displayed. autodoc_min_relative_importance
# must be a float >= 0 and < 1.
#autodoc_min_relative_importance = 0.003

# Specify the number of top features to display in
# the document. setting to -1 disables this restriction
#autodoc_num_features = 50

# Specify the number of rows to include in PDP and ICE plot
# if individual rows are not specified.
#autodoc_num_rows = 0

# Maximum number of seconds Partial Dependency computation
# can take when generating report. Set to -1 for no time limit.
#autodoc_pd_max_runtime = 20

# Number of standard deviations outside of the range of
# a column to include in partial dependence plots. This shows how the
# model will react to data it has not seen before.
#autodoc_out_of_range = 3

# Number of columns to be show in data summary. Value
# must be an integer. Values lower than 1, f.e. 0 or -1, indicate that
# all columns should be shown.
#autodoc_data_summary_col_num = -1

# Whether to include prediction statistics information if
# experiment is binary classification/regression.
#autodoc_prediction_stats = false

# Number of quantiles to use for prediction statistics
# computation.
#autodoc_prediction_stats_n_quantiles = 20

# Whether to include population stability index if
# experiment is binary classification/regression.
#autodoc_population_stability_index = false

# Number of quantiles to use for population stability index
# computation.
#autodoc_population_stability_index_n_quantiles = 10

# Whether to compute permutation based feature importance.
#autodoc_include_permutation_feature_importance = false

# Name of the scorer to be used to calculate feature
# importance. Leave blank to use experiments default scorer
#autodoc_feature_importance_scorer = ""

# Number of permutations to make per feature when computing
# feature importance.
#autodoc_feature_importance_num_perm = 1

# Whether to include response rates information if
# experiment is binary classification.
#autodoc_response_rate = false

# Number of quantiles to use for response rates information
# computation.
#autodoc_response_rate_n_quantiles = 10

# The number feature in a KLIME global GLM coefficients
# table. Must be an integer greater than 0 or -1. To
# show all features set to -1.
#autodoc_global_klime_num_features = 10

# Set the number of KLIME global GLM coefficients tables. Set
# to 1 to show one table with coefficients sorted by absolute
# value. Set to 2 to two tables one with the top positive
# coefficients and one with the top negative coefficients. Must
# be set to the integer 1 or 2.
#autodoc_global_klime_num_tables = 1

# Whether to show the Gini Plot.
#autodoc_gini_plot = false

# Whether to show all config settings. If False, only
# the changed settings (config overrides) are listed, otherwise all
# settings are listed.
#autodoc_list_all_config_settings = false

# Maximum number of columns autoviz will work with.
# If dataset has more columns than this number,
# autoviz will pick columns randomly, prioritizing numerical columns
# 
#autoviz_max_num_columns = 50

# '
# Whether to compute training, validation, and test correlation matrix (table and heatmap pdf) and save to disk
# alpha: currently single threaded and slow for many columns
#compute_correlation = false

# Whether to dump to disk a correlation heatmap
#produce_correlation_heatmap = false

# Value to report high correlation between original features
#high_correlation_value_to_report = 0.95

# Whether to delete preview cache on server exit
#preview_cache_upon_server_exit = true

# Configurations for a HDFS data source
# Path of hdfs coresite.xml
# core_site_xml_path is deprecated, please use hdfs_config_path
#core_site_xml_path = ""

# (Required) HDFS config folder path. Can contain multiple config files.
#hdfs_config_path = ""

# Path of the principal key tab file. Required when hdfs_auth_type='principal'.
# key_tab_path is deprecated, please use hdfs_keytab_path
# 
#key_tab_path = ""

# Path of the principal key tab file. Required when hdfs_auth_type='principal'.
# 
#hdfs_keytab_path = ""

# The option disable access to DAI data_directory from file browser
#file_hide_data_directory = true

# Enable usage of path filters
#file_path_filtering_enabled = false

# List of absolute path prefixes to restrict access to in file browser.
# For example:
# file_path_filter_include = "['/data','/home/michal/']"
#file_path_filter_include = []

# (Required) HDFS connector
# Specify HDFS Auth Type, allowed options are:
# noauth : (default) No authentication needed
# principal : Authenticate with HDFS with a principal user (DEPRECTATED - use `keytab` auth type)
# keytab : Authenticate with a Key tab (recommended). If running
# DAI as a service, then the Kerberos keytab needs to
# be owned by the DAI user.
# keytabimpersonation : Login with impersonation using a keytab
#hdfs_auth_type = "noauth"

# Kerberos app principal user. Required when hdfs_auth_type='keytab'; recommended otherwise.
#hdfs_app_principal_user = ""

# Deprecated - Do Not Use, login user is taken from the user name from login
#hdfs_app_login_user = ""

# JVM args for HDFS distributions, provide args seperate by space
# -Djava.security.krb5.conf=<path>/krb5.conf
# -Dsun.security.krb5.debug=True
# -Dlog4j.configuration=file:///<path>log4j.properties
#hdfs_app_jvm_args = ""

# hdfs class path
#hdfs_app_classpath = ""

# List of supported DFS schemas. Ex. "['hdfs://', 'maprfs://', 'swift://']"
# Supported schemas list is used as an initial check to ensure valid input to connector
# 
#hdfs_app_supported_schemes = "['hdfs://', 'maprfs://', 'swift://']"

# Maximum number of files viewable in connector ui. Set to larger number to view more files
#hdfs_max_files_listed = 100

# Blue Data DTap connector settings are similar to HDFS connector settings.
# Specify DTap Auth Type, allowed options are:
# noauth : No authentication needed
# principal : Authenticate with DTab with a principal user
# keytab : Authenticate with a Key tab (recommended). If running
# DAI as a service, then the Kerberos keytab needs to
# be owned by the DAI user.
# keytabimpersonation : Login with impersonation using a keytab
# NOTE: "hdfs_app_classpath" and "core_site_xml_path" are both required to be set for DTap connector
#dtap_auth_type = "noauth"

# Dtap (HDFS) config folder path , can contain multiple config files
#dtap_config_path = ""

# Path of the principal key tab file, dtap_key_tab_path is deprecated. Please use dtap_keytab_path
#dtap_key_tab_path = ""

# Path of the principal key tab file
#dtap_keytab_path = ""

# Kerberos app principal user (recommended)
#dtap_app_principal_user = ""

# Specify the user id of the current user here as user@realm
#dtap_app_login_user = ""

# JVM args for DTap distributions, provide args seperate by space
#dtap_app_jvm_args = ""

# DTap (HDFS) class path. NOTE: set 'hdfs_app_classpath' also
#dtap_app_classpath = ""

# S3 Connector credentials
#aws_access_key_id = ""

# S3 Connector credentials
#aws_secret_access_key = ""

# S3 Connector credentials
#aws_role_arn = ""

# What region to use when none is specified in the s3 url.
# Ignored when aws_s3_endpoint_url is set.
# 
#aws_default_region = ""

# Sets enpoint URL that will be used to access S3.
#aws_s3_endpoint_url = ""

# If set to true S3 Connector will try to to obtain credentials assiciated with
# the role attached to the EC2 instance.
#aws_use_ec2_role_credentials = false

# Starting S3 path displayed in UI S3 browser
#s3_init_path = "s3://"

# GCS Connector credentials
# example (suggested) -- '/licenses/my_service_account_json.json'
#gcs_path_to_service_account_json = ""

# Minio Connector credentials
#minio_endpoint_url = ""

# Minio Connector credentials
#minio_access_key_id = ""

# Minio Connector credentials
#minio_secret_access_key = ""

# Recommended Provide: url, user, password
# Optionally Provide: account, user, password
# Example URL: https://<snowflake_account>.<region>.snowflakecomputing.com
# Snowflake Connector credentials
#snowflake_url = ""

# Snowflake Connector credentials
#snowflake_user = ""

# Snowflake Connector credentials
#snowflake_password = ""

# Snowflake Connector credentials
#snowflake_account = ""

# KDB Connector credentials
#kdb_user = ""

# KDB Connector credentials
#kdb_password = ""

# KDB Connector credentials
#kdb_hostname = ""

# KDB Connector credentials
#kdb_port = ""

# KDB Connector credentials
#kdb_app_classpath = ""

# KDB Connector credentials
#kdb_app_jvm_args = ""

# Azure Blob Store Connector credentials
#azure_blob_account_name = ""

# Azure Blob Store Connector credentials
#azure_blob_account_key = ""

# Azure Blob Store Connector credentials
#azure_connection_string = ""

# Configuration for JDBC Connector.
# JSON/Dictionary String with multiple keys.
# Format as a single line without using carriage returns (the following example is formatted for readability).
# Use triple quotations to ensure that the text is read as a single string.
# Example:
# '{
# "postgres": {
# "url": "jdbc:postgresql://ip address:port/postgres",
# "jarpath": "/path/to/postgres_driver.jar",
# "classpath": "org.postgresql.Driver"
# },
# "mysql": {
# "url":"mysql connection string",
# "jarpath": "/path/to/mysql_driver.jar",
# "classpath": "my.sql.classpath.Driver"
# }
# }'
# 
#jdbc_app_configs = "{}"

# extra jvm args for jdbc connector
#jdbc_app_jvm_args = "-Xmx4g"

# alternative classpath for jdbc connector
#jdbc_app_classpath = ""

# Configuration for Hive Connector.
# Note that inputs are similar to configuring HDFS connectivity.
# important keys:
# * hive_conf_path - path to hive configuration, may have multiple files. typically: hive-site.xml, hdfs-site.xml, etc
# * auth_type - one of `noauth`, `keytab`, `keytabimpersonation` for kerberos authentication
# * keytab_path - path to the kerberos keytab to use for authentication, can be "" if using `noauth` auth_type
# * principal_user - Kerberos app principal user. Required when using auth_type `keytab` or `keytabimpersonation`
# JSON/Dictionary String with multiple keys. Example:
# '{
# "hive_connection_1": {
# "hive_conf_path": "/path/to/hive/conf",
# "auth_type": "one of ['noauth', 'keytab', 'keytabimpersonation']",
# "keytab_path": "/path/to/<filename>.keytab",
# "principal_user": "hive/LOCALHOST@H2O.AI",
# },
# "hive_connection_2": {
# "hive_conf_path": "/path/to/hive/conf_2",
# "auth_type": "one of ['noauth', 'keytab', 'keytabimpersonation']",
# "keytab_path": "/path/to/<filename_2>.keytab",
# "principal_user": "my_user/LOCALHOST@H2O.AI",
# }
# }'
# 
#hive_app_configs = "{}"

# Extra jvm args for hive connector. Provide args separated by a space.
# Notes regarding default jvm args:
# * -Djavax.security.auth.useSubjectCredsOnly=false -- setting required for kerberos authentication + impersonation
# * -Djava.security.auth.login.config=/etc/dai/jaas.conf -- setting required to allow underlying connector process
# to adopt kerberos login properties as defined in the file /etc/dai/jaas.conf
# -- Note: user must create the `jaas.conf` and place it in the specified directory
# * Example /etc/dai/jaas.conf (result of `cat /etc/dai/jaas.conf`) --
# com.sun.security.jgss.initiate {
# com.sun.security.auth.module.Krb5LoginModule required
# useKeyTab=true
# useTicketCache=false
# principal="hive/LOCALHOST@H2O.AI"
# doNotPrompt=true
# keyTab="/path/to/<filename>.keytab"
# debug=true;
# };
# -- Note: principal and keytab settings should be the same as configurations above for hive_app_configs.
# and are the ONLY settings that need to be changed for DAI Hive connector to function.
# 
#hive_app_jvm_args = "-Xmx4g -Djavax.security.auth.useSubjectCredsOnly=false -Djava.security.auth.login.config=/etc/dai/jaas.conf"

# Alternative classpath for hive connector. Can be used to add additional jar files to classpath.
#hive_app_classpath = ""

# Notification scripts
# - the variable points to a location of script which is executed at given event in experiment lifecycle
# - the script should have executable flag enabled
# - use of absolute path is suggested
# The on experiment start notification script location
#listeners_experiment_start = ""

# The on experiment finished notification script location
#listeners_experiment_done = ""

# Address of the H2O Storage endpoint. Keep empty to use the local storage only.
#h2o_storage_address = ""

# Whether the channel to the storage should be encrypted.
#h2o_storage_tls_enabled = true

# Path to the certification authority certificate that H2O Storage server identity will be checked against.
#h2o_storage_tls_ca_path = ""

# Path to the client certificate to authenticate with H2O Storage server
#h2o_storage_tls_cert_path = ""

# Path to the client key to authenticate with H2O Storage server
#h2o_storage_tls_key_path = ""

# UUID of a Storage project to use instead of the remote HOME folder.
#h2o_storage_internal_default_project_id = ""

# Default AWS credentials to be used for scorer deployments.
#deployment_aws_access_key_id = ""

# Default AWS credentials to be used for scorer deployments.
#deployment_aws_secret_access_key = ""

# AWS S3 bucket to be used for scorer deployments.
#deployment_aws_bucket_name = ""

# Allow the browser to store e.g. login credentials in login form (set to false for higher security)
#allow_form_autocomplete = true

# Enable Projects workspace (alpha version, for evaluation)
#enable_projects = true

# Enable custom recipes.
#enable_custom_recipes = true

# Enable uploading of custom recipes.
#enable_custom_recipes_upload = true

# Enable downloading of custom recipes from external URL.
#enable_custom_recipes_from_url = true

# Include custom recipes in default inclusion lists (warning: enables all custom recipes)
#include_custom_recipes_by_default = false

# Default application language - options are 'en', 'ja', 'cn', 'ko'
#app_language = "en"

# If true, Logout button is not visible in the GUI.
#disablelogout = false

# Whether to check if config.toml keys are valid and fail if not valid
#check_invalid_config_toml_keys = true

#enable_funnel = true

#clean_funnel = true

#quiet_funnel = false

#debug_daimodel_level = 0

#interaction_finder_max_rows_x_cols = 200000.0

#interaction_finder_corr_threshold = 0.95

# Required GINI relative improvement for InteractionTransformer.
# If GINI is not better than this relative improvement compared to original features considered
# in the interaction, then the interaction is not returned.  If noisy data, and no clear signal
# in interactions but still want interactions, then can decrease this number.
#interaction_finder_gini_rel_improvement_threshold = 0.5

# Number of transformed Interactions to make as best out of many generated trial interactions.
#interaction_finder_return_limit = 5

# Whether to enable bootstrap sampling. Provides error bars to validation and test scores based on the standard error of the bootstrap mean.
#enable_bootstrap = true

# Minimum number of bootstrap samples to use for estimating score and its standard deviation
# Actual number of bootstrap samples will vary between the min and max,
# depending upon row count (more rows, fewer samples) and accuracy settings (higher accuracy, more samples)
# 
#min_bootstrap_samples = 1

# Maximum number of bootstrap samples to use for estimating score and its standard deviation
# Actual number of bootstrap samples will vary between the min and max,
# depending upon row count (more rows, fewer samples) and accuracy settings (higher accuracy, more samples)
# 
#max_bootstrap_samples = 100

# Minimum fraction of row size to take as sample size for bootstrap estimator
# Actual sample size used for bootstrap estimate will vary between the min and max,
# depending upon row count (more rows, smaller sample size) and accuracy settings (higher accuracy, larger sample size)
# 
#min_bootstrap_sample_size_factor = 1.0

# Maximum fraction of row size to take as sample size for bootstrap estimator
# Actual sample size used for bootstrap estimate will vary between the min and max,
# depending upon row count (more rows, smaller sample size) and accuracy settings (higher accuracy, larger sample size)
# 
#max_bootstrap_sample_size_factor = 10.0

# Seed to use for final model bootstrap sampling, -1 means use experiment-derived seed.
# E.g. one can retrain final model with different seed to get different final model error bars for scores.
# 
#bootstrap_final_seed = -1

#varimp_threshold_at_interpretability_10 = 0.05

#features_allowed_by_interpretability = "{1: 10000000, 2: 10000, 3: 1000, 4: 500, 5: 300, 6: 200, 7: 150, 8: 100, 9: 80, 10: 50, 11: 50, 12: 50, 13: 50}"

#nfeatures_max_threshold = 200

#rdelta_percent_score_penalty_per_feature_by_interpretability = "{1: 0.0, 2: 0.1, 3: 1.0, 4: 2.0, 5: 5.0, 6: 10.0, 7: 20.0, 8: 30.0, 9: 50.0, 10: 100.0, 11: 100.0, 12: 100.0, 13: 100.0}"

#drop_low_meta_weights = true

#meta_weight_allowed_by_interpretability = "{1: 1E-7, 2: 1E-5, 3: 1E-4, 4: 1E-3, 5: 1E-2, 6: 0.03, 7: 0.05, 8: 0.08, 9: 0.10, 10: 0.15, 11: 0.15, 12: 0.15, 13: 0.15}"

#feature_cost_mean_interp_for_penalty = 5

#features_cost_per_interp = 0.25

#varimp_threshold_shift_report = 0.3

#apply_featuregene_limits_after_tuning = true

#remove_scored_0gain_genes_in_postprocessing_above_interpretability = 13

#remove_scored_0gain_genes_in_postprocessing_above_interpretability_final_population = 2

#remove_scored_by_threshold_genes_in_postprocessing_above_interpretability_final_population = 7

# Unnormalized probability to add genes or instances of transformers with specific attributes.
# If no genes can be added, other mutations
# (mutating models hyper parmaters, pruning genes, pruning features, etc.) are attempted.
# 
#prob_add_genes = 0.5

# Unnormalized probability, conditioned on prob_add_genes,
# to add genes or instances of transformers with specific attributes
# that have shown to be beneficial to other individuals within the population.
# 
#prob_addbest_genes = 0.5

# Unnormalized probability to prune genes or instances of transformers with specific attributes.
# If a variety of transformers with many attributes exists, default value is reasonable.
# However, if one has fixed set of transformers that should not change or no new transformer attributes
# can be added, then setting this to 0.0 is reasonable to avoid undesired loss of transformations.
# 
#prob_prune_genes = 0.5

# Unnormalized probability change model hyper parameters.
# 
#prob_perturb_xgb = 0.25

# Unnormalized probability to prune features that have low variable importance,
# as opposed to pruning entire instances of genes/transformers.
# 
#prob_prune_by_features = 0.25

#max_absolute_feature_expansion = 1000

#booster_for_fs_permute = "auto"

#model_class_name_for_fs_permute = "auto"

# Number of classes above which to always use TensorFlow (if TensorFlow is enabled),
# instead of others models set on 'auto' (models set to 'on' are still used).
#tensorflow_num_classes_switch = 10

# Class count above which do not use TextLin Transformer.
#textlin_num_classes_switch = 5

#text_gene_dim_reduction_choices = "[50]"

#text_gene_max_ngram = "[1, 2, 3]"

#gbm_early_stopping_rounds_min = 1

#gbm_early_stopping_rounds_max = 10000000000

# Max. number of top variable importances to show in logs during feature evolution
#max_num_varimp_to_log = 10

# Max. number of top variable importance shifts to show in logs and GUI after final model built
#max_num_varimp_shift_to_log = 10

# Dictionary to control recipes for each experiment and particular custom recipes.
# E.g. if inserting into the GUI as any toml string, can use:
# ""recipe_dict="{'key1': 2, 'key2': 'value2'}"""
# E.g. if putting into config.toml as a dict, can use:
# recipe_dict="{'key1': 2, 'key2': 'value2'}"
# 
#recipe_dict = "{}"

# location of custom recipes packages installed (relative to data_directory)
# We will try to install packages dynamically, but can also do (before or after server started):
# (inside docker running docker instance if running docker, or as user server is running as (e.g. dai user) if deb/tar native installation:
# PYTHONPATH=<full tmp dir>/<contrib_env_relative_directory>/lib/python3.6/site-packages/ <path to dai>dai-env.sh python -m pip install --prefix=<full tmp dir>/<contrib_env_relative_directory> <packagename> --upgrade --upgrade-strategy only-if-needed --log-file pip_log_file.log
# where <path to dai> is /opt/h2oai/dai/ for native rpm/deb installation
# Note can also install wheel files if <packagename> is name of wheel file or archive.
# 
#contrib_env_relative_directory = "contrib/env"

# pip install retry for call to pip.  Sometimes need to try twice
#pip_install_overall_retries = 2

# pip install verbosity level (number of -v's given to pip, up to 3
#pip_install_verbosity = 2

# pip install timeout in seconds, Sometimes internet issues would mean want to fail faster
#pip_install_timeout = 15

# pip install retry count
#pip_install_retries = 5

# pip install options: string of list of other options, e.g. "['--proxy', 'http://user:password@proxyserver:port']"
#pip_install_options = ""

# Whether to enable basic acceptance testing.  Tests if can pickle the state, etc.
#enable_basic_acceptance_tests = true

# Whether acceptance tests should run for custom genes / models / scorers / etc.
#enable_acceptance_tests = true

# Minutes to wait until a recipe's acceptance testing is aborted.  A recipe is rejected if acceptance
# testing is enabled and times out.
# One may also set timeout for a specific recipe by setting the class's staticmethod function called
# acceptance_test_timeout to return number of minutes to wait until timeout doing acceptance testing.
# This timeout does not include the time to install required packages.
# 
#acceptance_test_timeout = 20.0

# Skipping just avoids the failed transformer.
# Sometimes python multiprocessing swallows exceptions,
# so skipping and logging exceptions is also more reliable way to handle them.
# Recipe can raise h2oaicore.systemutils.IgnoreError to ignore error and avoid logging error.
# 
#skip_transformer_failures = true

# Skipping just avoids the failed model.  Failures are logged depending upon detailed_skip_failure_messages_level."
# Recipe can raise h2oaicore.systemutils.IgnoreError to ignore error and avoid logging error.
# 
#skip_model_failures = true

# How much verbosity to log failure messages for failed and then skipped transformers or models.
# Full failures always go to disk as *.stack files,
# which upon completion of experiment goes into details folder within experiment log zip file.
# 
#detailed_skip_failure_messages_level = 1

# Instructions for 'Add to config.toml via toml string' in GUI expert page
# Self-referential toml parameter, for setting any other toml parameters as string of tomls separated by
# (spaces around
# are ok).
# Useful when toml parameter is not in expert mode but want per-experiment control.
# Setting this will override all other choices.
# In expert page, each time expert options saved, the new state is set without memory of any prior settings.
# The entered item is a fully compliant toml string that would be processed directly by toml.load().
# One should include 2 double quotes around the entire setting, or double quotes need to be escaped.
# One enters into the expert page text as follows:
# e.g. enable_glm="off"
# enable_xgboost_gbm="off"
# enable_lightgbm="on"
# e.g. ""enable_glm="off"
# enable_xgboost_gbm="off"
# enable_lightgbm="off"
# enable_tensorflow="on"""
# e.g. fixed_num_individuals=4
# e.g. params_lightgbm="{'objective':'poisson'}"
# e.g. ""params_lightgbm="{'objective':'poisson'}"""
# e.g. max_cores=10
# data_precision="float32"
# max_rows_feature_evolution=50000000000
# ensemble_accuracy_switch=11
# feature_engineering_effort=1
# target_transformer="identity"
# tournament_feature_style_accuracy_switch=5
# params_tensorflow="{'layers': [100, 100, 100, 100, 100, 100]}"
# e.g. ""max_cores=10
# data_precision="float32"
# max_rows_feature_evolution=50000000000
# ensemble_accuracy_switch=11
# feature_engineering_effort=1
# target_transformer="identity"
# tournament_feature_style_accuracy_switch=5
# params_tensorflow="{'layers': [100, 100, 100, 100, 100, 100]}"""
# If you see: "toml.TomlDecodeError" then ensure toml is set correctly.
# When set in the expert page of an experiment, these changes only affect experiments and not the server
# Usually should keep this as empty string in this toml file.
#config_overrides = ""

# Whether user can download dataset as csv file
#enable_dataset_downloading = true

# Extra HTTP headers.
#extra_http_headers = "{}"

# After how many days the audit log records are removed.
# Set equal to 0 to disable removal of old records.
# 
#audit_log_retention_period = 5

# Replace all the downloads on the experiment page to exports and allow users to push to the artifact store configured with artifacts_store
#enable_artifacts_upload = false

# Artifacts store.
# file_system: stores artifacts on a file system directory denoted by artifacts_file_system_directory.
# s3: stores artifacts to S3 bucket.
# bitbucket: stores data into Bitbucket repository
# 
#artifacts_store = "file_system"

# File system location where artifacts will be copied in case artifacts_store is set to file_system
#artifacts_file_system_directory = "tmp"

# AWS S3 bucket to be used for storing artifacts.
#artifacts_s3_bucket = ""

# Decide whether to skip cert verification for Bitbucket when using a repo with HTTPS
#bitbucket_skip_cert_verification = false

# Local temporary directory to clone artifacts to, relative to data_directory
#bitbucket_tmp_relative_dir = "local_git_tmp"

# Git auth user
#artifacts_git_user = "git"

# Git auth password
#artifacts_git_password = ""

# Git repo where artifacts will be pushed upon and upload
#artifacts_git_repo = ""

# Git branch on the remote repo where artifacts are pushed
#artifacts_git_branch = "dev"

# File location for the ssh private key used for git authentication
#artifacts_git_ssh_private_key_file_location = ""

#num_models_for_resume_graph = 1000