public static final class HGLMV3.HGLMParametersV3 extends water.api.schemas3.ModelParametersSchemaV3<HGLMModel.HGLMParameters,HGLMV3.HGLMParametersV3>
Modifier and Type | Field and Description |
---|---|
double |
em_epsilon |
GLMModel.GLMParameters.Family |
family |
static java.lang.String[] |
fields |
boolean |
gen_syn_data |
java.lang.String |
group_column |
double[] |
initial_fixed_effects |
water.api.schemas3.KeyV3.FrameKeyV3 |
initial_random_effects |
water.api.schemas3.KeyV3.FrameKeyV3 |
initial_t_matrix |
int |
max_iterations |
HGLMModel.HGLMParameters.Method |
method |
GLMModel.GLMParameters.MissingValuesHandling |
missing_values_handling |
water.api.schemas3.KeyV3.FrameKeyV3 |
plug_values |
GLMModel.GLMParameters.Family |
rand_family |
java.lang.String[] |
random_columns |
boolean |
random_intercept |
int |
score_iteration_interval |
long |
seed |
double |
tau_e_var_init |
double |
tau_u_var_init |
auc_type, categorical_encoding, checkpoint, custom_distribution_func, custom_metric_func, distribution, export_checkpoints_dir, fold_assignment, fold_column, gainslift_bins, huber_alpha, ignore_const_cols, ignored_columns, keep_cross_validation_fold_assignment, keep_cross_validation_models, keep_cross_validation_predictions, max_categorical_levels, max_runtime_secs, model_id, nfolds, offset_column, parallelize_cross_validation, quantile_alpha, response_column, score_each_iteration, stopping_metric, stopping_rounds, stopping_tolerance, training_frame, tweedie_power, validation_frame, weights_column
Constructor and Description |
---|
HGLMParametersV3() |
append_field_arrays, extractDeclaredApiParameters, fields, fillFromImpl, fillImpl, getAdditionalParameters, writeParametersJSON
createAndFillImpl, createImpl, extractVersionFromSchemaName, fillFromAny, fillFromBody, fillFromImpl, fillFromImpl, fillFromParms, fillFromParms, fillFromParms, fillImpl, getImplClass, getImplClass, getSchemaName, getSchemaType, getSchemaVersion, init_meta, markdown, markdown, newInstance, newInstance, setField, setSchemaType_doNotCall
public static final java.lang.String[] fields
@API(help="Perform scoring for every score_iteration_interval iterations.", level=secondary) public int score_iteration_interval
@API(help="Seed for pseudo random number generator (if applicable).", gridable=true) public long seed
@API(help="Handling of missing values. Either MeanImputation, Skip or PlugValues.", values={"MeanImputation","Skip","PlugValues"}, level=expert, direction=INOUT, gridable=true) public GLMModel.GLMParameters.MissingValuesHandling missing_values_handling
@API(help="Plug Values (a single row frame containing values that will be used to impute missing values of the training/validation frame, use with conjunction missing_values_handling = PlugValues).", direction=INPUT) public water.api.schemas3.KeyV3.FrameKeyV3 plug_values
@API(help="Family. Only gaussian is supported now.", values="gaussian", level=critical) public GLMModel.GLMParameters.Family family
@API(help="Set distribution of random effects. Only Gaussian is implemented now.", values="gaussian", level=critical) public GLMModel.GLMParameters.Family rand_family
@API(help="Maximum number of iterations. Value should >=1. A value of 0 is only set when only the model coefficient names and model coefficient dimensions are needed.", level=secondary) public int max_iterations
@API(level=expert, direction=INOUT, gridable=true, help="An array that contains initial values of the fixed effects coefficient.") public double[] initial_fixed_effects
@API(level=expert, direction=INOUT, gridable=true, help="A H2OFrame id that contains initial values of the random effects coefficient. The row names shouldbe the random coefficient names. If you are not sure what the random coefficient names are, build HGLM model with max_iterations = 0 and checkout the model output field random_coefficient_names. The number of rows of this frame should be the number of level 2 units. Again, to figure this out, build HGLM model with max_iterations=0 and check out the model output field group_column_names. The number of rows should equal the length of thegroup_column_names.") public water.api.schemas3.KeyV3.FrameKeyV3 initial_random_effects
@API(level=expert, direction=INOUT, gridable=true, help="A H2OFrame id that contains initial values of the T matrix. It should be a positive symmetric matrix.") public water.api.schemas3.KeyV3.FrameKeyV3 initial_t_matrix
@API(help="Initial variance of random coefficient effects. If set, should provide a value > 0.0. If not set, will be randomly set in the model building process.", level=expert, gridable=true) public double tau_u_var_init
@API(help="Initial variance of random noise. If set, should provide a value > 0.0. If not set, will be randomly set in the model building process.", level=expert, gridable=true) public double tau_e_var_init
@API(help="Random columns indices for HGLM.", gridable=true) public java.lang.String[] random_columns
@API(help="We only implemented EM as a method to obtain the fixed, random coefficients and the various variances.", values="EM", level=critical) public HGLMModel.HGLMParameters.Method method
@API(help="Converge if beta/ubeta/tmat/tauEVar changes less (using L-infinity norm) than em esilon. ONLY applies to EM method.", level=expert) public double em_epsilon
@API(help="If true, will allow random component to the GLM coefficients.", direction=INPUT, gridable=true) public boolean random_intercept
@API(help="Group column is the column that is categorical and used to generate the groups in HGLM", gridable=true) public java.lang.String group_column
@API(help="If true, add gaussian noise with variance specified in parms._tau_e_var_init.", direction=INPUT, gridable=true) public boolean gen_syn_data