public static class GBMModel.GBMParameters extends SharedTreeModel.SharedTreeParameters
SharedTreeModel.SharedTreeParameters.HistogramType
Modifier and Type | Field and Description |
---|---|
double |
_col_sample_rate |
java.lang.String[][] |
_interaction_constraints |
double |
_learn_rate |
double |
_learn_rate_annealing |
double |
_max_abs_leafnode_pred |
hex.KeyValue[] |
_monotone_constraints |
double |
_pred_noise_bandwidth |
_build_tree_one_node, _calibrate_model, _calibration_frame, _calibration_method, _col_sample_rate_change_per_level, _col_sample_rate_per_tree, _histogram_type, _in_training_checkpoints_dir, _in_training_checkpoints_tree_interval, _initial_score_interval, _max_depth, _min_rows, _min_split_improvement, _nbins, _nbins_cats, _nbins_top_level, _ntrees, _parallel_main_model_building, _r2_stopping, _sample_rate, _sample_rate_per_class, _score_interval, _score_tree_interval, _use_best_cv_iteration
_auc_type, _auto_rebalance, _auuc_nbins, _auuc_type, _balance_classes, _categorical_encoding, _check_constant_response, _checkpoint, _class_sampling_factors, _custom_distribution_func, _custom_metric_func, _cv_fold, _distribution, _export_checkpoints_dir, _fold_assignment, _fold_column, _gainslift_bins, _huber_alpha, _ignore_const_cols, _ignored_columns, _is_cv_model, _keep_cross_validation_fold_assignment, _keep_cross_validation_models, _keep_cross_validation_predictions, _keep_cross_validation_predictions_precision, _main_model_time_budget_factor, _max_after_balance_size, _max_categorical_levels, _max_confusion_matrix_size, _max_runtime_secs, _nfolds, _offset_column, _parallelize_cross_validation, _preprocessors, _pretrained_autoencoder, _quantile_alpha, _response_column, _score_each_iteration, _seed, _stopping_metric, _stopping_rounds, _stopping_tolerance, _train, _treatment_column, _tweedie_power, _valid, _weights_column, MAX_SUPPORTED_LEVELS
Constructor and Description |
---|
GBMParameters() |
Modifier and Type | Method and Description |
---|---|
java.lang.String |
algoName() |
Constraints |
constraints(water.fvec.Frame f) |
boolean |
forceStrictlyReproducibleHistograms()
Do we need to enable strictly deterministic way of building histograms?
Used eg.
|
java.lang.String |
fullName() |
BranchInteractionConstraints |
initialInteractionConstraints(GlobalInteractionConstraints ics) |
GlobalInteractionConstraints |
interactionConstraints(water.fvec.Frame frame) |
java.lang.String |
javaName() |
boolean |
useColSampling() |
calibrateModel, getCalibrationFrame, getCalibrationMethod, getNTrees, getParams, isStochastic, progressUnits, setCalibrationMethod, useRowSampling
checksum, checksum, defaultDropConsCols, defaultStoppingTolerance, getCategoricalEncoding, getDependentKeys, getDistributionFamily, getFoldColumn, getMaxCategoricalLevels, getNonPredictors, getOffsetColumn, getOrMakeRealSeed, getResponseColumn, getTreatmentColumn, getUsedColumns, getWeightsColumn, hasCheckpoint, hasCustomMetricFunc, missingColumnsType, read_lock_frames, read_unlock_frames, setDistributionFamily, setTrain, train, valid
public double _learn_rate
public double _learn_rate_annealing
public double _col_sample_rate
public double _max_abs_leafnode_pred
public double _pred_noise_bandwidth
public hex.KeyValue[] _monotone_constraints
public java.lang.String[][] _interaction_constraints
public boolean useColSampling()
useColSampling
in class SharedTreeModel.SharedTreeParameters
public java.lang.String algoName()
algoName
in class hex.Model.Parameters
public java.lang.String fullName()
fullName
in class hex.Model.Parameters
public java.lang.String javaName()
javaName
in class hex.Model.Parameters
public boolean forceStrictlyReproducibleHistograms()
SharedTreeModel.SharedTreeParameters
forceStrictlyReproducibleHistograms
in class SharedTreeModel.SharedTreeParameters
public Constraints constraints(water.fvec.Frame f)
public GlobalInteractionConstraints interactionConstraints(water.fvec.Frame frame)
public BranchInteractionConstraints initialInteractionConstraints(GlobalInteractionConstraints ics)