public static class GBMModel.GBMParameters extends SharedTreeModel.SharedTreeParameters
SharedTreeModel.SharedTreeParameters.HistogramType| Modifier and Type | Field and Description |
|---|---|
double |
_col_sample_rate |
java.lang.String[][] |
_interaction_constraints |
double |
_learn_rate |
double |
_learn_rate_annealing |
double |
_max_abs_leafnode_pred |
hex.KeyValue[] |
_monotone_constraints |
double |
_pred_noise_bandwidth |
_build_tree_one_node, _calibrate_model, _calibration_frame, _calibration_method, _col_sample_rate_change_per_level, _col_sample_rate_per_tree, _histogram_type, _in_training_checkpoints_dir, _in_training_checkpoints_tree_interval, _initial_score_interval, _max_depth, _min_rows, _min_split_improvement, _nbins, _nbins_cats, _nbins_top_level, _ntrees, _parallel_main_model_building, _r2_stopping, _sample_rate, _sample_rate_per_class, _score_interval, _score_tree_interval, _use_best_cv_iteration_auc_type, _auto_rebalance, _auuc_nbins, _auuc_type, _balance_classes, _categorical_encoding, _check_constant_response, _checkpoint, _class_sampling_factors, _custom_distribution_func, _custom_metric_func, _cv_fold, _distribution, _export_checkpoints_dir, _fold_assignment, _fold_column, _gainslift_bins, _huber_alpha, _ignore_const_cols, _ignored_columns, _is_cv_model, _keep_cross_validation_fold_assignment, _keep_cross_validation_models, _keep_cross_validation_predictions, _keep_cross_validation_predictions_precision, _main_model_time_budget_factor, _max_after_balance_size, _max_categorical_levels, _max_confusion_matrix_size, _max_runtime_secs, _nfolds, _offset_column, _parallelize_cross_validation, _preprocessors, _pretrained_autoencoder, _quantile_alpha, _response_column, _score_each_iteration, _seed, _stopping_metric, _stopping_rounds, _stopping_tolerance, _train, _treatment_column, _tweedie_power, _valid, _weights_column, MAX_SUPPORTED_LEVELS| Constructor and Description |
|---|
GBMParameters() |
| Modifier and Type | Method and Description |
|---|---|
java.lang.String |
algoName() |
Constraints |
constraints(water.fvec.Frame f) |
boolean |
forceStrictlyReproducibleHistograms()
Do we need to enable strictly deterministic way of building histograms?
Used eg.
|
java.lang.String |
fullName() |
BranchInteractionConstraints |
initialInteractionConstraints(GlobalInteractionConstraints ics) |
GlobalInteractionConstraints |
interactionConstraints(water.fvec.Frame frame) |
java.lang.String |
javaName() |
boolean |
useColSampling() |
calibrateModel, getCalibrationFrame, getCalibrationMethod, getNTrees, getParams, isStochastic, progressUnits, setCalibrationMethod, useRowSamplingchecksum, checksum, defaultDropConsCols, defaultStoppingTolerance, getCategoricalEncoding, getDependentKeys, getDistributionFamily, getFoldColumn, getMaxCategoricalLevels, getNonPredictors, getOffsetColumn, getOrMakeRealSeed, getResponseColumn, getTreatmentColumn, getUsedColumns, getWeightsColumn, hasCheckpoint, hasCustomMetricFunc, missingColumnsType, read_lock_frames, read_unlock_frames, setDistributionFamily, setTrain, train, validpublic double _learn_rate
public double _learn_rate_annealing
public double _col_sample_rate
public double _max_abs_leafnode_pred
public double _pred_noise_bandwidth
public hex.KeyValue[] _monotone_constraints
public java.lang.String[][] _interaction_constraints
public boolean useColSampling()
useColSampling in class SharedTreeModel.SharedTreeParameterspublic java.lang.String algoName()
algoName in class hex.Model.Parameterspublic java.lang.String fullName()
fullName in class hex.Model.Parameterspublic java.lang.String javaName()
javaName in class hex.Model.Parameterspublic boolean forceStrictlyReproducibleHistograms()
SharedTreeModel.SharedTreeParametersforceStrictlyReproducibleHistograms in class SharedTreeModel.SharedTreeParameterspublic Constraints constraints(water.fvec.Frame f)
public GlobalInteractionConstraints interactionConstraints(water.fvec.Frame frame)
public BranchInteractionConstraints initialInteractionConstraints(GlobalInteractionConstraints ics)