public abstract static class SharedTreeModel.SharedTreeParameters extends hex.Model.Parameters implements hex.Model.GetNTrees, CalibrationHelper.ParamsWithCalibration
Modifier and Type | Class and Description |
---|---|
static class |
SharedTreeModel.SharedTreeParameters.HistogramType |
Modifier and Type | Field and Description |
---|---|
boolean |
_build_tree_one_node |
boolean |
_calibrate_model |
water.Key<water.fvec.Frame> |
_calibration_frame |
CalibrationHelper.CalibrationMethod |
_calibration_method |
double |
_col_sample_rate_change_per_level |
double |
_col_sample_rate_per_tree |
SharedTreeModel.SharedTreeParameters.HistogramType |
_histogram_type |
java.lang.String |
_in_training_checkpoints_dir |
int |
_in_training_checkpoints_tree_interval |
int |
_initial_score_interval |
int |
_max_depth |
double |
_min_rows |
double |
_min_split_improvement |
int |
_nbins |
int |
_nbins_cats |
int |
_nbins_top_level |
int |
_ntrees |
boolean |
_parallel_main_model_building |
double |
_r2_stopping |
double |
_sample_rate |
double[] |
_sample_rate_per_class |
int |
_score_interval |
int |
_score_tree_interval |
boolean |
_use_best_cv_iteration |
_auc_type, _auto_rebalance, _auuc_nbins, _auuc_type, _balance_classes, _categorical_encoding, _check_constant_response, _checkpoint, _class_sampling_factors, _custom_distribution_func, _custom_metric_func, _cv_fold, _distribution, _export_checkpoints_dir, _fold_assignment, _fold_column, _gainslift_bins, _huber_alpha, _ignore_const_cols, _ignored_columns, _is_cv_model, _keep_cross_validation_fold_assignment, _keep_cross_validation_models, _keep_cross_validation_predictions, _keep_cross_validation_predictions_precision, _main_model_time_budget_factor, _max_after_balance_size, _max_categorical_levels, _max_confusion_matrix_size, _max_runtime_secs, _nfolds, _offset_column, _parallelize_cross_validation, _preprocessors, _pretrained_autoencoder, _quantile_alpha, _response_column, _score_each_iteration, _seed, _stopping_metric, _stopping_rounds, _stopping_tolerance, _train, _treatment_column, _tweedie_power, _valid, _weights_column, MAX_SUPPORTED_LEVELS
Constructor and Description |
---|
SharedTreeParameters() |
Modifier and Type | Method and Description |
---|---|
boolean |
calibrateModel() |
boolean |
forceStrictlyReproducibleHistograms()
Do we need to enable strictly deterministic way of building histograms?
Used eg.
|
water.fvec.Frame |
getCalibrationFrame() |
CalibrationHelper.CalibrationMethod |
getCalibrationMethod() |
int |
getNTrees() |
hex.Model.Parameters |
getParams() |
boolean |
isStochastic() |
long |
progressUnits() |
void |
setCalibrationMethod(CalibrationHelper.CalibrationMethod calibrationMethod) |
boolean |
useColSampling() |
boolean |
useRowSampling() |
algoName, checksum, checksum, defaultDropConsCols, defaultStoppingTolerance, fullName, getCategoricalEncoding, getDependentKeys, getDistributionFamily, getFoldColumn, getMaxCategoricalLevels, getNonPredictors, getOffsetColumn, getOrMakeRealSeed, getResponseColumn, getTreatmentColumn, getUsedColumns, getWeightsColumn, hasCheckpoint, hasCustomMetricFunc, javaName, missingColumnsType, read_lock_frames, read_unlock_frames, setDistributionFamily, setTrain, train, valid
public int _ntrees
public int _max_depth
public double _min_rows
public int _nbins
public int _nbins_cats
public double _min_split_improvement
public SharedTreeModel.SharedTreeParameters.HistogramType _histogram_type
public double _r2_stopping
public int _nbins_top_level
public boolean _build_tree_one_node
public int _score_tree_interval
public int _initial_score_interval
public int _score_interval
public double _sample_rate
public double[] _sample_rate_per_class
public boolean _calibrate_model
public water.Key<water.fvec.Frame> _calibration_frame
public CalibrationHelper.CalibrationMethod _calibration_method
public double _col_sample_rate_change_per_level
public double _col_sample_rate_per_tree
public boolean _parallel_main_model_building
public boolean _use_best_cv_iteration
public java.lang.String _in_training_checkpoints_dir
public int _in_training_checkpoints_tree_interval
public boolean useRowSampling()
public long progressUnits()
progressUnits
in class hex.Model.Parameters
public boolean useColSampling()
public boolean isStochastic()
public int getNTrees()
getNTrees
in interface hex.Model.GetNTrees
public water.fvec.Frame getCalibrationFrame()
getCalibrationFrame
in interface CalibrationHelper.ParamsWithCalibration
public boolean calibrateModel()
calibrateModel
in interface CalibrationHelper.ParamsWithCalibration
public CalibrationHelper.CalibrationMethod getCalibrationMethod()
getCalibrationMethod
in interface CalibrationHelper.ParamsWithCalibration
public void setCalibrationMethod(CalibrationHelper.CalibrationMethod calibrationMethod)
setCalibrationMethod
in interface CalibrationHelper.ParamsWithCalibration
public hex.Model.Parameters getParams()
getParams
in interface CalibrationHelper.ParamsWithCalibration
public boolean forceStrictlyReproducibleHistograms()