public class Word2VecMojoModel extends MojoModel implements WordEmbeddingModel
_algoName, _balanceClasses, _category, _defaultThreshold, _h2oVersion, _modelAttributes, _modelClassDistrib, _modelDescriptor, _mojo_version, _nclasses, _nfeatures, _priorClassDistrib, _reproducibilityInformation, _supervised, _uuid
_domains, _foldColumn, _names, _offsetColumn, _responseColumn, _treatmentColumn
Modifier and Type | Method and Description |
---|---|
int |
getVecSize()
Dimensionality of the vector space of this Word Embedding model
|
double[] |
score0(double[] row,
double[] preds)
Subclasses implement the scoring logic.
|
float[] |
transform0(java.lang.String word,
float[] output)
Transforms a given a word into a word vector
|
getModelCategory, getUUID, isSupervised, load, load, load, nclasses, nfeatures
bitSetContains, bitSetIsInRange, calibrateClassProbabilities, convertDouble2Float, correctProbabilities, createAuxKey, features, GBM_rescale, getCategoricalEncoding, getColIdx, getDomainValues, getDomainValues, getDomainValues, getHeader, getModelCategories, getNames, getNumClasses, getNumCols, getNumResponseClasses, getOffsetName, getOrigDomainValues, getOrigNames, getOrigNumCols, getOrigProjectionArray, getOutputDomains, getOutputNames, getPrediction, getPredictionBinomial, getPredictionMultinomial, getPredsSize, getPredsSize, getResponseIdx, getResponseName, GLM_identityInv, GLM_inverseInv, GLM_logInv, GLM_logitInv, GLM_ologitInv, GLM_tweedieInv, img2pixels, internal_threadSafeInstance, isAutoEncoder, isClassifier, KMeans_closest, KMeans_distance, KMeans_distance, KMeans_distances, Kmeans_preprocessData, Kmeans_preprocessData, KMeans_simplex, log_rescale, mapEnum, nCatFeatures, requiresOffset, score0, setCats, setCats, setInput, setInput
public int getVecSize()
WordEmbeddingModel
getVecSize
in interface WordEmbeddingModel
public float[] transform0(java.lang.String word, float[] output)
WordEmbeddingModel
transform0
in interface WordEmbeddingModel
word
- input wordoutput
- pre-allocated word vector embeddingpublic double[] score0(double[] row, double[] preds)
GenModel