Skip to main content
Version: v0.69.1

Shared code in examples

This page contains the shared code sections commonly used by the MLOps Python client examples.

  • Helper function

    def deployment_should_become_healthy(
    mlops_client: mlops.Client, deployment_id: str, max_wait_time: int = MAX_WAIT_TIME
    ):
    """Waits for the deployment to become healthy helper function."""
    svc = mlops_client.deployer.deployment_status
    status: mlops.DeployDeploymentStatus
    deadline = time.monotonic() + max_wait_time

    while True:
    time.sleep(REFRESH_STATUS_INTERVAL)
    status = svc.get_deployment_status(
    mlops.DeployGetDeploymentStatusRequest(deployment_id=deployment_id)
    ).deployment_status
    if (
    status.state == mlops.DeployDeploymentState.HEALTHY
    or time.monotonic() > deadline
    ):
    break

    return status
  • Convert the extracted metadata into storage compatible value objects.

    def convert_metadata(in_: mlops.IngestMetadata) -> mlops.StorageMetadata:
    """Converts extracted metadata into Storage compatible value objects."""
    values = {}
    for k, v in in_.values.items():
    i: mlops.IngestMetadataValue = v

    o = mlops.StorageValue(
    bool_value=i.bool_value,
    double_value=i.double_value,
    duration_value=i.duration_value,
    int64_value=i.int64_value,
    string_value=i.string_value,
    json_value=i.json_value,
    timestamp_value=i.timestamp_value,
    )

    values[k] = o

    return mlops.StorageMetadata(values=values)
  • Set up the token provider using an existing refresh token.

    mlops_token_provider = mlops.TokenProvider(
    refresh_token=REFRESH_TOKEN,
    client_id=CLIENT_ID,
    token_endpoint_url=TOKEN_ENDPOINT_URL,
    )
  • Set up the token provider using an existing refresh token and client secret.

    mlops_token_provider = mlops.TokenProvider(
    refresh_token=REFRESH_TOKEN,
    client_id=CLIENT_ID,
    token_endpoint_url=TOKEN_ENDPOINT_URL,
    client_secret=CLIENT_SECRET
    )
  • Set up the MLOps client.

    mlops_client = mlops.Client(
    gateway_url=MLOPS_API_URL,
    token_provider=mlops_token_provider,
    )
  • Create a project in MLOps and create an artifact in MLOps storage.

    # Creating a project in MLOps.
    prj: mlops.StorageProject = mlops_client.storage.project.create_project(
    mlops.StorageCreateProjectRequest(
    mlops.StorageProject(display_name=PROJECT_NAME)
    )
    ).project

    # Creating an artifact in MLOps Storage.
    artifact: mlops.StorageArtifact = mlops_client.storage.artifact.create_artifact(
    mlops.StorageCreateArtifactRequest(
    mlops.StorageArtifact(
    entity_id=prj.id, mime_type=mimetypes.types_map[".zip"]
    )
    )
    ).artifact
  • # Analyzing the MLflow zip file.
    ingestion: mlops.IngestMetadata = mlops_client.ingest.model.create_model_ingestion(
    mlops.IngestModelIngestion(artifact_id=artifact.id)
    ).ingestion

    model_metadata = convert_metadata(ingestion.model_metadata)
    model_params = mlops.StorageExperimentParameters(
    target_column=ingestion.model_parameters.target_column
    )

    # Creating an experiment from the MLflow zip file.
    experiment: mlops.StorageExperiment = (
    mlops_client.storage.experiment.create_experiment(
    mlops.StorageCreateExperimentRequest(
    project_id=prj.id,
    experiment=mlops.StorageExperiment(
    display_name=EXPERIMENT_NAME,
    metadata=model_metadata,
    parameters=model_params,
    ),
    )
    ).experiment
    )

    # Linking the artifact to the experiment.
    artifact.entity_id = experiment.id
    artifact.type = ingestion.artifact_type

    mlops_client.storage.artifact.update_artifact(
    mlops.StorageUpdateArtifactRequest(
    artifact=artifact, update_mask="type,entityId"
    )
    )
  • Fetch available deployment environments and search for the ID of the selected deployment environment for the Driverless AI client.

    # Fetching available deployment environments.
    deployment_envs: mlops.StorageListDeploymentEnvironmentsResponse = (
    mlops_client.storage.deployment_environment.list_deployment_environments(
    mlops.StorageListDeploymentEnvironmentsRequest(prj.key)
    )
    )

    # Looking for the ID of the selected deployment environment.
    for de in deployment_envs.deployment_environment:
    if de.display_name == DEPLOYMENT_ENVIRONMENT:
    deployment_env_id = de.id
    break
    else:
    raise LookupError("Requested deployment environment not found")
  • Fetch available deployment environments and search for the ID of the selected deployment environment for the MLOps client.

    # Fetching available deployment environments.
    deployment_envs: mlops.StorageListDeploymentEnvironmentsResponse = (
    mlops_client.storage.deployment_environment.list_deployment_environments(
    mlops.StorageListDeploymentEnvironmentsRequest(prj.id)
    )
    )

    # Looking for the ID of the selected deployment environment.
    for de in deployment_envs.deployment_environment:
    if de.display_name == DEPLOYMENT_ENVIRONMENT:
    deployment_env_id = de.id
    break
    else:
    raise LookupError("Requested deployment environment not found")
  • Customize the composition of the deployment and specify the deployment as a single deployment.

    # Customize the composition of the deployment
    composition = mlops.DeployDeploymentComposition(
    experiment_id=experiment.id,
    artifact_id=artifact.id,
    deployable_artifact_type_name="python/mlflow.zip",
    artifact_processor_name="unzip_processor",
    runtime_name="python-scorer_mlflow_38",
    )

    # Specify the deployment as a single deployment
    deployment = mlops.DeployDeployment(
    project_id=prj.id,
    deployment_environment_id=deployment_env_id,
    single_deployment=mlops.DeploySingleDeployment(
    deployment_composition=composition
    ),
    )
  • Create a deployment and wait for the deployment to become healthy.

    # Create the deployment (deploy the model).
    deployed_deployment = mlops_client.deployer.deployment.create_deployment(
    mlops.DeployCreateDeploymentRequest(deployment=to_deploy)
    ).deployment

    # Waiting for the deployment to become healthy.
    deployment_status = deployment_should_become_healthy(
    mlops_client, deployed_deployment.deployment.id
    )
    if deployment_status.state == mlops.DeployDeploymentState.HEALTHY:
    print("Deployment has become healthy")
    else:
    print(
    f"Deployment still not healthy after max wait time with state: {deployment_status.state}"
    )

Feedback