Explainer (Recipes) Expert Settings

The following is a list of the explainer-specific expert settings that are available when setting up a new interpretation. These settings can be accessed when running interpretation from the MLI page under recipes tab. For info on general MLI expert settings, see Interpretation Expert Settings.

Interpretation Explainer Expert Settings

Absolute Permutation Feature Importance Explainer Settings

mli_sample_size

missing_values

autodoc_feature_importance_num_perm

autodoc_feature_importance_scorer

MLI AutoDoc Explainer Settings

autodoc_report_name

autodoc_template

autodoc_output_type

autodoc_subtemplate_type

autodoc_max_cm_size

autodoc_num_features

autodoc_min_relative_importance

autodoc_include_permutation_feature_importance

autodoc_feature_importance_num_perm

autodoc_feature_importance_scorer

autodoc_pd_max_rows

autodoc_pd_max_runtime

autodoc_out_of_range

autodoc_num_rows

autodoc_population_stability_index

autodoc_population_stability_index_n_quantiles

autodoc_prediction_stats

autodoc_prediction_stats_n_quantiles

autodoc_response_rate

autodoc_response_rate_n_quantiles

autodoc_gini_plot

autodoc_enable_shapley_values

autodoc_global_klime_num_features

autodoc_global_klime_num_tables

autodoc_data_summary_col_num

autodoc_list_all_config_settings

autodoc_keras_summary_line_length

autodoc_transformer_architecture_max_lines

autodoc_full_architecture_in_appendix

autodoc_coef_table_appendix_results_table

autodoc_coef_table_num_models

autodoc_coef_table_num_folds

autodoc_coef_table_num_coef

autodoc_coef_table_num_classes

autodoc_num_histogram_plots

Disparate Impact Analysis Explainer Settings

For information on Disparate Impact Analysis in Driverless AI, see Disparate Impact Analysis (DIA). The following is a list of parameters that can be toggled from the recipes tab of the MLI page when running a new interpretation.

dia_cols

cut_off

maximize_metric

use_holdout_preds

sample_size

max_card

min_card

num_card

fast_approx

NLP Partial Dependence Plot Explainer Settings

max_tokens

custom_tokens

NLP Vectorizer + Linear Model Text Feature Importance Explainer Settings

txt_cols

cut_off

maximize_metric

Partial Dependence Plot Explainer Settings

For information on Partial Dependence Plots in Driverless AI, see Partial Dependence Plot (PDP). The following is a list of parameters that can be toggled from the recipes tab of the MLI page when running a new interpretation.

sample_size

max_features

features

oor_grid_resolution

qtile_grid_resolution

grid_resolution

center

sort_bins

histograms

qtile-bins

1_frame

numcat_num_chart

numcat_threshold

Sensitivity Analysis Explainer Settings

sample_size

Shapley Summary Plot Explainer Settings

For information on Shapley Summary Plots in Driverless AI, see Shapley Summary Plot (Original Features). The following is a list of parameters that can be toggled from the recipes tab of the MLI page when running a new interpretation.

max_features

sample_size

x_resolution

drilldown_charts

fast_approx

Shapley Values for Original Features Settings

sample_size

When the number of rows is above this limit, sample for Naive Shapley. By default, this value is set to 100000.

fast_approx

Surrogate Decision Tree Explainer Settings

For information on Surrogate Decision Tree Plots in Driverless AI, see Surrogate Decision Tree. The following is a list of parameters that can be toggled from the recipes tab of the MLI page when running a new interpretation.

dt_tree_depth

nfolds

qbin_cols

qbin_count