Skip to main content
Version: v2.0.2

Feature Store & Sparkling Water integration

Python Sparkling Water

  1. In a Python environment, pip install the featurestore client.
  2. Download spark and pysparkling by following the instructions from the Sparkling Water documentation.
  3. Start the pysparkling session with the Spark dependencies.
./bin/pysparkling --jars <spark dependency jar file>

Example:

from featurestore import Client
ref = fs.retrieve()
data_frame = ref.as_spark_frame(spark)

# sparklingwater
from pysparkling import *
hc = H2OContext.getOrCreate()
from pysparkling.ml import H2OGLM
estimator = H2OGLM(labelCol = "RainTomorrow")
model = estimator.fit(data_frame)

Feedback