Import dataset settings: Text classification
Before importing a dataset to H2O Hydrogen Torch, you need to define a set of settings based on the problem type of the dataset. These settings are referred to as import dataset settings.
Dataset name
This setting defines the name of the dataset.
Problem category
This setting defines a particular general problem type category, for example, image.
- The selected problem category (for example, image) determines the options in the Problem type setting.
- The From experiment option enables you to utilize the settings of an experiment (another experiment).
- The From experiment option is unavailable when you select AutoDL as the experience level.
Problem type
This setting defines the problem type of the experiment, which also defines the settings H2O Hydrogen Torch displays for the experiment.
- The selected problem category (in the Problem category setting) determines the available problem types.
- The selected problem type and experience level determine the settings H2O Hydrogen Torch displays for the experiment.
Train dataframe
This setting specifies the path to a file that contains a dataframe comprising training records utilized by H2O Hydrogen Torch for model training within the experiment. Here, the term 'file' denotes a specific file adhering to a dataset format tailored for the problem type addressed in the experiment. To learn more, see Dataset formats.
- The records are combined into mini-batches when training the model.
- If a validation dataframe is provided, a fold column is not needed in the train dataframe.
- To import datasets for inference only, when defining the settings for an experiment, set the Train dataframe setting to None while setting the Test dataframe setting to the relevant dataframe (as a result, H2O Hydrogen Torch utilizes the relevant dataset for predictions and not for training).