Experiment settings: Audio classification
The settings for an audio classification experiment are listed and described below.
General settings
Dataset
This setting defines the dataset for the experiment.
Problem category
This setting defines a particular general problem type category, for example, image.
- The selected problem category (for example, image) determines the options in the Problem type setting.
- The From experiment option enables you to utilize the settings of an experiment (another experiment).
Experiment
This setting defines the experiment H2O Hydrogen Torch references to initialize the experiment settings. H2O Hydrogen Torch initializes the experiment settings with the values from the selected (built) experiment.
This setting is available only if From experiment is selected in the Problem category setting.
Problem type
This setting defines the problem type of the experiment, which also defines the settings H2O Hydrogen Torch displays for the experiment.
- The selected problem category (in the Problem category setting) determines the available problem types.
- The selected problem type and experience level determine the settings H2O Hydrogen Torch displays for the experiment.
Import config from YAML
This setting defines the YML file that defines the experiment settings.
- H2O Hydrogen Torch supports a YML file import and export functionality. You can download the config settings of finished experiments, make changes, and re-upload them when starting a new experiment in any instance of H2O Hydrogen Torch.
- To learn how to download the YML file (configuration file) of a completed experiment, see Download an experiment's logs/config file.
Use previous experiment weights
This setting determines whether to initialize the model weights with the weights from the experiment specified in the Experiment setting.
A model's weights are available for an experiment (model) of the same problem type and backbone.
This setting might be useful in case you want to continue training from a built experiment.
The Use previous experiment weights setting is available only if From experiment is selected in the Problem category setting.
Experiment name
This setting defines the name of the experiment.
Dataset settings
Train dataframe
This setting specifies the path to a file that contains a dataframe comprising training records utilized by H2O Hydrogen Torch for model training within the experiment. Here, the term 'file' denotes a specific file adhering to a dataset format tailored for the problem type addressed in the experiment. To learn more, see Dataset formats.
- The records are combined into mini-batches when training the model.
- If a validation dataframe is provided, a fold column is not needed in the train dataframe.
- To import datasets for inference only, when defining the settings for an experiment, set the Train dataframe setting to None while setting the Test dataframe setting to the relevant dataframe (as a result, H2O Hydrogen Torch utilizes the relevant dataset for predictions and not for training).
Data folder
Defines the location of the folder containing assets (for example, images or audio clips) the model utilizes for training. H2O Hydrogen Torch loads assets from this folder during training.
Validation strategy
This setting specifies the validation strategy H2O Hydrogen Torch uses for the experiment.
To properly assess the performance of your trained models, it is common practice to evaluate it on separate holdout data that the model has not seen during training.
Details
Options
- K-fold cross validation
- This option splits the data using the provided optional fold column in the train data or performs an automatic 5-fold cross-validation in the absence of a fold column.
- Grouped k-fold cross-validation
- This option allows you to specify a group column based on which the data is split into folds.
- Custom holdout validation
- This option specifies a separate holdout dataframe.
- Automatic holdout validation
- This option allows you to specify a holdout validation sample size that is automatically generated.
Validation dataframe
This setting defines a file containing a dataframe with validation records that H2O Hydrogen Torch uses to evaluate the model during training.
- To set a Validation dataframe requires the Validation strategy to be set to Custom holdout validation. In the case of providing a validation dataframe, H2O Hydrogen Torch fully respects the choice of a separate validation dataframe and does not perform any internal cross-validation. In other words, the model is trained on the full provided train dataframe, and model performance is evaluated on the provided validation dataframe.
- The validation dataframe should have the same format as the train dataframe but does not require a fold column.
The Validation dataframe settings is only available when you select Validation strategy in the Custom holdout validation setting.
Selected folds
This setting defines the selected validation fold(s) in case of cross-validation; a separate model is trained for each value selected. Each model utilizes the corresponding part of the data as a holdout sample to assess performance while the model is fitted to the rest of the records from the training dataframe. As a result, folds estimate how the model performs in general when used to make predictions on data not used during model training.
H2O Hydrogen Torch allows running experiments on a single selected fold for faster experimenting and multiple selected folds to gain more trust in the model's generalization and performance capabilities.
This setting is available only when the Validation strategy setting is not set to Custom holdout validation or Automatic holdout validation.
Test dataframe
This setting defines a file containing a dataframe with test records that H2O Hydrogen Torch uses to test the model.
- The test dataframe should have the same format as the train dataframe but does not require a label column.
- To import datasets for inference only, when defining the setting for an experiment, set the Train dataframe setting to None while setting the Test dataframe setting to the relevant dataframe (as a result, H2O Hydrogen Torch utilizes the relevant dataset for predictions and not for training).
Data folder test
Defines the location of the folder containing assets (for example, images, texts, or audio clips) H2O Hydrogen Torch utilizes to test the model. H2O Hydrogen Torch loads the assets from this folder when testing the model. This setting is only available if a test dataframe is selected.
- This setting is only available if a test dataframe is selected.
- The Data folder test setting appears when you specify a test dataframe in the Test dataframe setting.
Unlabeled dataframe
Defines a separate CSV or Parquet file (depending on the problem type) containing a dataframe with unlabeled records that H2O Hydrogen Torch utilizes to generate pseudo labels. H2O Hydrogen Torch first trains the model with the provided labeled data (Train dataframe). Right after, the model predicts pseudo labels for the provided unlabeled dataframe before doing another training run that combines the original labels and pseudo labels.
- Image regression | Image classification | Image object detection
- The unlabeled dataframe just needs to contain a single image column
- Text regression | Text classification
- The unlabeled dataframe just needs to contain a single text column
- Audio regression | Audio classification | Speech recognition
- The unlabeled dataframe just needs to contain a single audio column
- Image regression | Image classification | Image object detection | Audio regression | Audio classification | Speech recognition
- Assets (images or audios) need to be located in the Data folder (setting)
- All supported problem types
- The training time can significantly increase depending on the size of the unlabeled data
As labeling can be expensive, having additional unlabeled data is quite common. Providing this unlabeled data in H2O Hydrogen Torch trains the model semi-supervised, potentially improving the model quality in contrast to only training on labeled data.
Label columns
This setting defines the name(s) of the dataframe column(s) that refer to the target value(s) an H2O Hydrogen Torch experiment can aim to predict.
Audio column
Defines the dataframe column storing the names of audios that H2O Hydrogen Torch loads from the Data folder and Data folder test when training and testing the model.
Data sample
This setting defines the percentage of the data to use for the experiment. The default percentage is 100%.
Changing the default value can significantly increase the training speed. Still, it might lead to a substantially poor accuracy value. Using 100% of the data for final models is highly recommended.
Data sample choice
This setting specifies the data H2O Hydrogen Torch samples according to the percentage set in the Data sample setting. H2O Hydrogen Torch does not sample the unselected data.
The Data sample choice setting is only available if the value in the Data sample setting is less than 1.0.
Audio settings
Audio parameters
Defines if H2O Hydrogen Torch, or you can define the values for the following audio settings:
- Sample rate
- Training chunk seconds
- STFT window size
- Hop size
- Mel frequency bins
- Minimum frequency
- Maximum frequency
Details
Options
Details
Audio classification | Audio regression
- Auto
- H2O Hydrogen Torch calculates the Sample rate and Training chunk seconds using the training samples and assigns default values to the following audio settings:
- STFT window size
- Hop size
- Mel frequency bins
- Minimum frequency
- Maximum frequency
- H2O Hydrogen Torch calculates the Sample rate and Training chunk seconds using the training samples and assigns default values to the following audio settings:
- Manual
- You can specify all audio settings.
- Sample rate
- Audio channels
- Training chunk seconds
- STFT window size
- Hop size
- Mel frequency bins
- Minimum frequency
- Maximum frequency
- You can specify all audio settings.
Sample rate
Defines the sample rate (Hz) that H2O Hydrogen Torch utilizes to resample the audio files to a given sample rate for training and inference (validation and prediction). This setting becomes useful when audio files in the dataset have mixed samples (22kHz, 32kHz, 44kHz, etc.).
- Resampling the audio files to a common sample rate can result in a faster training
- The Sample Rate setting is only available if Manual is selected in the Audio Parameters setting
- The Auto option selects the most common sample rate from the training set
- Speech recognition
- 16000hz is a good default setting and most contemporary speech architectures are pretrained against it