public class DispersionUtils
extends java.lang.Object
Constructor and Description |
---|
DispersionUtils() |
Modifier and Type | Method and Description |
---|---|
static double |
dispersionLS(DispersionTask.ComputeMaxSumSeriesTsk computeTsk,
TweedieMLDispersionOnly tDispersion,
GLMModel.GLMParameters parms) |
static double |
estimateGammaMLSE(GLMTask.ComputeGammaMLSETsk mlCT,
double seOld,
double[] beta,
GLMModel.GLMParameters parms,
ComputationState state,
water.Job job,
GLMModel model)
Estimate dispersion factor using maximum likelihood.
|
static double |
estimateNegBinomialDispersionFisherScoring(GLMModel.GLMParameters parms,
GLMModel model,
double[] beta,
DataInfo dinfo) |
static double |
estimateNegBinomialDispersionMomentMethod(GLMModel model,
double[] beta,
DataInfo dinfo,
water.fvec.Vec weights,
water.fvec.Vec response,
water.fvec.Vec mu) |
static double |
estimateTweedieDispersionOnly(GLMModel.GLMParameters parms,
GLMModel model,
water.Job job,
double[] beta,
DataInfo dinfo)
This method estimates the tweedie dispersion parameter.
|
static double[] |
makeZeros(double[] sourceCoeffs,
double[] targetCoeffs) |
public static double estimateGammaMLSE(GLMTask.ComputeGammaMLSETsk mlCT, double seOld, double[] beta, GLMModel.GLMParameters parms, ComputationState state, water.Job job, GLMModel model)
public static double estimateTweedieDispersionOnly(GLMModel.GLMParameters parms, GLMModel model, water.Job job, double[] beta, DataInfo dinfo)
public static double estimateNegBinomialDispersionMomentMethod(GLMModel model, double[] beta, DataInfo dinfo, water.fvec.Vec weights, water.fvec.Vec response, water.fvec.Vec mu)
public static double estimateNegBinomialDispersionFisherScoring(GLMModel.GLMParameters parms, GLMModel model, double[] beta, DataInfo dinfo)
public static double dispersionLS(DispersionTask.ComputeMaxSumSeriesTsk computeTsk, TweedieMLDispersionOnly tDispersion, GLMModel.GLMParameters parms)
public static double[] makeZeros(double[] sourceCoeffs, double[] targetCoeffs)