public class GLM extends hex.ModelBuilder<GLMModel,GLMModel.GLMParameters,GLMModel.GLMOutput>
| Modifier and Type | Class and Description |
|---|---|
class |
GLM.BetaConstraint |
static class |
GLM.BetaInfo |
class |
GLM.GLMDriver
Main loop of the glm algo.
|
static class |
GLM.GLMGradientInfo |
static class |
GLM.GLMGradientSolver
Gradient and line search computation for L_BFGS and also L_BFGS solver wrapper (for ADMM)
|
static class |
GLM.GramSolver
Created by tomasnykodym on 3/30/15.
|
static class |
GLM.PlugValuesImputer |
static class |
GLM.ProximalGradientInfo |
static class |
GLM.ProximalGradientSolver
Simple wrapper around ginfo computation, adding proximal penalty
|
| Modifier and Type | Field and Description |
|---|---|
GLM.BetaInfo |
_betaInfo |
int[][] |
_gamColIndices |
java.lang.String[][] |
_gamColnames |
java.lang.String |
_generatedWeights |
double[][][] |
_penaltyMatrix |
static int |
SCORING_INTERVAL_MSEC |
protected static long |
WORK_TOTAL |
_coordinator, _desc, _eventPublisher, _fold, _input_parms, _job, _messages, _nclass, _offset, _orig_projection_array, _origDomains, _origNames, _origTrain, _parms, _priorClassDist, _removedCols, _response, _result, _startUpOnceModelBuilder, _train, _treatment, _valid, _vresponse, _weights| Constructor and Description |
|---|
GLM(boolean startup_once) |
GLM(GLMModel.GLMParameters parms) |
GLM(GLMModel.GLMParameters parms,
double[][][] penaltyMatrix,
java.lang.String[][] gamColnames)
This constructor is only called by GAM when it is trying to build a GAM model using GLM.
|
GLM(GLMModel.GLMParameters parms,
water.Key dest) |
| Modifier and Type | Method and Description |
|---|---|
hex.ModelCategory[] |
can_build() |
protected void |
checkMemoryFootPrint(DataInfo activeData) |
double[] |
COD_solve(ComputationState.GramXY gram,
double alpha,
double lambda) |
void |
computeCrossValidation()
GLM implementation of N-fold cross-validation.
|
protected boolean |
computePriorClassDistribution() |
void |
cv_computeAndSetOptimalParameters(hex.ModelBuilder[] cvModelBuilders)
If run with lambda search, we need to take extra action performed after cross-val models are built.
|
static int[] |
findIterIndexAcrossFolds(java.util.List<java.lang.Integer>[] cvModelIters,
int fold0Index)
This method is used to locate common iteration indices across all folds.
|
double[] |
genInitBeta() |
boolean |
haveMojo() |
boolean |
havePojo() |
void |
init(boolean expensive) |
boolean |
isSupervised() |
int |
nclasses() |
protected static double |
sparseOffset(double[] beta,
DataInfo dinfo) |
protected GLM.GLMDriver |
trainModelImpl() |
algoName, algos, builderVisibility, canLearnFromNAs, checkCustomMetricForEarlyStopping, checkDistributions, checkEarlyStoppingReproducibility, checkMemoryFootPrint_impl, checkMemoryFootPrint, checkResponseVariable, clearInitState, clearValidationErrors, cv_buildModels, cv_canBuildMainModelInParallel, cv_initStoppingParameters, cv_mainModelScores, cv_makeAggregateModelMetrics, cv_scoreCVModels, cv_updateOptimalParameters, defaultKey, desiredChunks, dest, error_count, error, get, getMessagesByFieldAndSeverity, getName, getSysProperty, getToEigenVec, hasFoldCol, hasOffsetCol, hasTreatmentCol, hasWeightCol, hide, ignoreBadColumns, ignoreConstColumns, ignoreInvalidColumns, ignoreStringColumns, ignoreUuidColumns, info, init_adaptFrameToTrain, init_getNClass, initWorkspace, isClassifier, isResponseOptional, isStopped, javaName, logMe, make, make, make, makeCVMetrics, makeCVModelBuilder, makeParameters, makePojoWriter, message, nFoldCV, nFoldWork, nModelsInParallel, nModelsInParallel, nModelsInParallel, numSpecialCols, paramName, raiseReproducibilityWarning, rebalance, remainingTimeSecs, response, schemaDirectory, separateFeatureVecs, setMaxRuntimeSecsForMainModel, setTrain, setValid, shouldReorder, smallDataSize, stop_requested, timeout, train, trainModel, trainModel, trainModelNested, trainModelNested, trainModelOnH2ONode, valid, validateBinaryResponse, validateStoppingMetric, validationErrors, validationWarnings, vresponse, warnpublic static final int SCORING_INTERVAL_MSEC
public java.lang.String _generatedWeights
public double[][][] _penaltyMatrix
public java.lang.String[][] _gamColnames
public int[][] _gamColIndices
public GLM.BetaInfo _betaInfo
protected static final long WORK_TOTAL
public GLM(boolean startup_once)
public GLM(GLMModel.GLMParameters parms)
public GLM(GLMModel.GLMParameters parms, double[][][] penaltyMatrix, java.lang.String[][] gamColnames)
public GLM(GLMModel.GLMParameters parms, water.Key dest)
public boolean isSupervised()
isSupervised in class hex.ModelBuilder<GLMModel,GLMModel.GLMParameters,GLMModel.GLMOutput>public hex.ModelCategory[] can_build()
can_build in class hex.ModelBuilder<GLMModel,GLMModel.GLMParameters,GLMModel.GLMOutput>public boolean havePojo()
havePojo in class hex.ModelBuilder<GLMModel,GLMModel.GLMParameters,GLMModel.GLMOutput>public boolean haveMojo()
haveMojo in class hex.ModelBuilder<GLMModel,GLMModel.GLMParameters,GLMModel.GLMOutput>public void computeCrossValidation()
computeCrossValidation in class hex.ModelBuilder<GLMModel,GLMModel.GLMParameters,GLMModel.GLMOutput>public void cv_computeAndSetOptimalParameters(hex.ModelBuilder[] cvModelBuilders)
cv_computeAndSetOptimalParameters in class hex.ModelBuilder<GLMModel,GLMModel.GLMParameters,GLMModel.GLMOutput>public static int[] findIterIndexAcrossFolds(java.util.List<java.lang.Integer>[] cvModelIters,
int fold0Index)
cvModelIters: - store model keys from models generated by cross validation.fold0Index: - iteration index of fold 0 modelprotected void checkMemoryFootPrint(DataInfo activeData)
public int nclasses()
nclasses in class hex.ModelBuilder<GLMModel,GLMModel.GLMParameters,GLMModel.GLMOutput>protected boolean computePriorClassDistribution()
computePriorClassDistribution in class hex.ModelBuilder<GLMModel,GLMModel.GLMParameters,GLMModel.GLMOutput>public void init(boolean expensive)
init in class hex.ModelBuilder<GLMModel,GLMModel.GLMParameters,GLMModel.GLMOutput>public double[] genInitBeta()
protected GLM.GLMDriver trainModelImpl()
trainModelImpl in class hex.ModelBuilder<GLMModel,GLMModel.GLMParameters,GLMModel.GLMOutput>public double[] COD_solve(ComputationState.GramXY gram, double alpha, double lambda)
protected static double sparseOffset(double[] beta,
DataInfo dinfo)